summaryrefslogtreecommitdiffstats
path: root/docs/plat/nxp
diff options
context:
space:
mode:
Diffstat (limited to 'docs/plat/nxp')
-rw-r--r--docs/plat/nxp/index.rst17
-rw-r--r--docs/plat/nxp/nxp-layerscape.rst473
-rw-r--r--docs/plat/nxp/nxp-ls-fuse-prov.rst271
-rw-r--r--docs/plat/nxp/nxp-ls-tbbr.rst210
4 files changed, 971 insertions, 0 deletions
diff --git a/docs/plat/nxp/index.rst b/docs/plat/nxp/index.rst
new file mode 100644
index 0000000..8546887
--- /dev/null
+++ b/docs/plat/nxp/index.rst
@@ -0,0 +1,17 @@
+NXP Reference Development Platforms
+===================================
+
+.. toctree::
+ :maxdepth: 1
+ :caption: Contents
+
+ nxp-layerscape
+ nxp-ls-fuse-prov
+ nxp-ls-tbbr
+
+This chapter holds documentation related to NXP reference development platforms.
+It includes details on image flashing, fuse provisioning and trusted board boot-up.
+
+--------------
+
+*Copyright (c) 2021, NXP Limited. All rights reserved.*
diff --git a/docs/plat/nxp/nxp-layerscape.rst b/docs/plat/nxp/nxp-layerscape.rst
new file mode 100644
index 0000000..cd5874b
--- /dev/null
+++ b/docs/plat/nxp/nxp-layerscape.rst
@@ -0,0 +1,473 @@
+NXP SoCs - Overview
+=====================
+.. section-numbering::
+ :suffix: .
+
+The QorIQ family of ARM based SoCs that are supported on TF-A are:
+
+1. LX2160A
+
+- SoC Overview:
+
+The LX2160A multicore processor, the highest-performance member of the
+Layerscape family, combines FinFET process technology's low power and
+sixteen Arm® Cortex®-A72 cores with datapath acceleration optimized for
+L2/3 packet processing, together with security offload, robust traffic
+management and quality of service.
+
+Details about LX2160A can be found at `lx2160a`_.
+
+- LX2160ARDB Board:
+
+The LX2160A reference design board provides a comprehensive platform
+that enables design and evaluation of the LX2160A or LX2162A processors. It
+comes preloaded with a board support package (BSP) based on a standard Linux
+kernel.
+
+Board details can be fetched from the link: `lx2160ardb`_.
+
+2. LS1028A
+
+- SoC Overview:
+
+The Layerscape LS1028A applications processor for industrial and
+automotive includes a time-sensitive networking (TSN) -enabled Ethernet
+switch and Ethernet controllers to support converged IT and OT networks.
+Two powerful 64-bit Arm®v8 cores support real-time processing for
+industrial control and virtual machines for edge computing in the IoT.
+The integrated GPU and LCD controller enable Human-Machine Interface
+(HMI) systems with next-generation interfaces.
+
+Details about LS1028A can be found at `ls1028a`_.
+
+- LS1028ARDB Board:
+
+The LS1028A reference design board (RDB) is a computing, evaluation,
+and development platform that supports industrial IoT applications, human
+machine interface solutions, and industrial networking.
+
+Details about LS1028A RDB board can be found at `ls1028ardb`_.
+
+3. LS1043A
+
+- SoC Overview:
+
+The Layerscape LS1043A processor is NXP's first quad-core, 64-bit Arm®-based
+processor for embedded networking. The LS1023A (two core version) and the
+LS1043A (four core version) deliver greater than 10 Gbps of performance
+in a flexible I/O package supporting fanless designs. This SoC is a
+purpose-built solution for small-form-factor networking and industrial
+applications with BOM optimizations for economic low layer PCB, lower cost
+power supply and single clock design. The new 0.9V versions of the LS1043A
+and LS1023A deliver addition power savings for applications such as Wireless
+LAN and to Power over Ethernet systems.
+
+Details about LS1043A can be found at `ls1043a`_.
+
+- LS1043ARDB Board:
+
+The LS1043A reference design board (RDB) is a computing, evaluation, and
+development platform that supports the Layerscape LS1043A architecture
+processor. The LS1043A-RDB can help shorten your time to market by providing
+the following features:
+
+Memory subsystem:
+ * 2GByte DDR4 SDRAM (32bit bus)
+ * 128 Mbyte NOR flash single-chip memory
+ * 512 Mbyte NAND flash
+ * 16 Mbyte high-speed SPI flash
+ * SD connector to interface with the SD memory card
+
+Ethernet:
+ * XFI 10G port
+ * QSGMII with 4x 1G ports
+ * Two RGMII ports
+
+PCIe:
+ * PCIe2 (Lanes C) to mini-PCIe slot
+ * PCIe3 (Lanes D) to PCIe slot
+
+USB 3.0: two super speed USB 3.0 type A ports
+
+UART: supports two UARTs up to 115200 bps for console
+
+Details about LS1043A RDB board can be found at `ls1043ardb`_.
+
+4. LS1046A
+
+- SoC Overview:
+
+The LS1046A is a cost-effective, power-efficient, and highly integrated
+system-on-chip (SoC) design that extends the reach of the NXP value-performance
+line of QorIQ communications processors. Featuring power-efficient 64-bit
+Arm Cortex-A72 cores with ECC-protected L1 and L2 cache memories for high
+reliability, running up to 1.8 GHz.
+
+Details about LS1046A can be found at `ls1046a`_.
+
+- LS1046ARDB Board:
+
+The LS1046A reference design board (RDB) is a high-performance computing,
+evaluation, and development platform that supports the Layerscape LS1046A
+architecture processor. The LS1046ARDB board supports the Layerscape LS1046A
+processor and is optimized to support the DDR4 memory and a full complement
+of high-speed SerDes ports.
+
+Details about LS1046A RDB board can be found at `ls1046ardb`_.
+
+- LS1046AFRWY Board:
+
+The LS1046A Freeway board (FRWY) is a high-performance computing, evaluation,
+and development platform that supports the LS1046A architecture processor
+capable of support more than 32,000 CoreMark performance. The FRWY-LS1046A
+board supports the LS1046A processor, onboard DDR4 memory, multiple Gigabit
+Ethernet, USB3.0 and M2_Type_E interfaces for Wi-Fi, FRWY-LS1046A-AC includes
+the Wi-Fi card.
+
+Details about LS1046A FRWY board can be found at `ls1046afrwy`_.
+
+5. LS1088A
+
+- SoC Overview:
+
+The LS1088A family of multicore communications processors combines up to and eight
+Arm Cortex-A53 cores with the advanced, high-performance data path and network
+peripheral interfaces required for wireless access points, networking infrastructure,
+intelligent edge access, including virtual customer premise equipment (vCPE) and
+high-performance industrial applications.
+
+Details about LS1088A can be found at `ls1088a`_.
+
+- LS1088ARDB Board:
+
+The LS1088A reference design board provides a comprehensive platform that
+enables design and evaluation of the product (LS1088A processor). This RDB
+comes pre-loaded with a board support package (BSP) based on a standard
+Linux kernel.
+
+Details about LS1088A RDB board can be found at `ls1088ardb`_.
+
+Table of supported boot-modes by each platform & platform that needs FIP-DDR:
+-----------------------------------------------------------------------------
+
++---------------------+---------------------------------------------------------------------+-----------------+
+| | BOOT_MODE | |
+| PLAT +-------+--------+-------+-------+-------+-------------+--------------+ fip_ddr_needed |
+| | sd | qspi | nor | nand | emmc | flexspi_nor | flexspi_nand | |
++=====================+=======+========+=======+=======+=======+=============+==============+=================+
+| lx2160ardb | yes | | | | yes | yes | | yes |
++---------------------+-------+--------+-------+-------+-------+-------------+--------------+-----------------+
+| ls1028ardb | yes | | | | yes | yes | | no |
++---------------------+-------+--------+-------+-------+-------+-------------+--------------+-----------------+
+| ls1043ardb | yes | | yes | yes | | | | no |
++---------------------+-------+--------+-------+-------+-------+-------------+--------------+-----------------+
+| ls1046ardb | yes | yes | | | yes | | | no |
++---------------------+-------+--------+-------+-------+-------+-------------+--------------+-----------------+
+| ls1046afrwy | yes | yes | | | | | | no |
++---------------------+-------+--------+-------+-------+-------+-------------+--------------+-----------------+
+| ls1088ardb | yes | yes | | | | | | no |
++---------------------+-------+--------+-------+-------+-------+-------------+--------------+-----------------+
+
+
+Boot Sequence
+-------------
+::
+
++ Secure World | Normal World
++ EL0 |
++ |
++ EL1 BL32(Tee OS) | kernel
++ ^ | | ^
++ | | | |
++ EL2 | | | BL33(u-boot)
++ | | | ^
++ | v | /
++ EL3 BootROM --> BL2 --> BL31 ---------------/
++
+
+Boot Sequence with FIP-DDR
+--------------------------
+::
+
++ Secure World | Normal World
++ EL0 |
++ |
++ EL1 fip-ddr BL32(Tee OS) | kernel
++ ^ | ^ | | ^
++ | | | | | |
++ EL2 | | | | | BL33(u-boot)
++ | | | | | ^
++ | v | v | /
++ EL3 BootROM --> BL2 -----> BL31 ---------------/
++
+
+DDR Memory Layout
+--------------------------
+
+NXP Platforms divide DRAM into banks:
+
+- DRAM0 Bank: Maximum size of this bank is fixed to 2GB, DRAM0 size is defined in platform_def.h if it is less than 2GB.
+
+- DRAM1 ~ DRAMn Bank: Greater than 2GB belongs to DRAM1 and following banks, and size of DRAMn Bank varies for one platform to others.
+
+The following diagram is default DRAM0 memory layout in which secure memory is at top of DRAM0.
+
+::
+
+ high +---------------------------------------------+
+ | |
+ | Secure EL1 Payload Shared Memory (2 MB) |
+ | |
+ +---------------------------------------------+
+ | |
+ | Secure Memory (64 MB) |
+ | |
+ +---------------------------------------------+
+ | |
+ | Non Secure Memory |
+ | |
+ low +---------------------------------------------+
+
+How to build
+=============
+
+Code Locations
+--------------
+
+- OP-TEE:
+ `link <https://source.codeaurora.org/external/qoriq/qoriq-components/optee_os>`__
+
+- U-Boot:
+ `link <https://source.codeaurora.org/external/qoriq/qoriq-components/u-boot>`__
+
+- RCW:
+ `link <https://source.codeaurora.org/external/qoriq/qoriq-components/rcw>`__
+
+- ddr-phy-binary: Required by platforms that need fip-ddr.
+ `link <https:://github.com/NXP/ddr-phy-binary>`__
+
+- cst: Required for TBBR.
+ `link <https:://source.codeaurora.org/external/qoriq/qoriq-components/cst>`__
+
+Build Procedure
+---------------
+
+- Fetch all the above repositories into local host.
+
+- Prepare AARCH64 toolchain and set the environment variable "CROSS_COMPILE".
+
+ .. code:: shell
+
+ export CROSS_COMPILE=.../bin/aarch64-linux-gnu-
+
+- Build RCW. Refer README from the respective cloned folder for more details.
+
+- Build u-boot and OPTee firstly, and get binary images: u-boot.bin and tee.bin.
+ For u-boot you can use the <platform>_tfa_defconfig for build.
+
+- Copy/clone the repo "ddr-phy-binary" to the tfa directory for platform needing ddr-fip.
+
+- Below are the steps to build TF-A images for the supported platforms.
+
+Compilation steps without BL32
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+BUILD BL2:
+
+-To compile
+ .. code:: shell
+
+ make PLAT=$PLAT \
+ BOOT_MODE=<platform_supported_boot_mode> \
+ RCW=$RCW_BIN \
+ pbl
+
+BUILD FIP:
+
+ .. code:: shell
+
+ make PLAT=$PLAT \
+ BOOT_MODE=<platform_supported_boot_mode> \
+ RCW=$RCW_BIN \
+ BL33=$UBOOT_SECURE_BIN \
+ pbl \
+ fip
+
+Compilation steps with BL32
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+BUILD BL2:
+
+-To compile
+ .. code:: shell
+
+ make PLAT=$PLAT \
+ BOOT_MODE=<platform_supported_boot_mode> \
+ RCW=$RCW_BIN \
+ BL32=$TEE_BIN SPD=opteed\
+ pbl
+
+BUILD FIP:
+
+ .. code:: shell
+
+ make PLAT=$PLAT \
+ BOOT_MODE=<platform_supported_boot_mode> \
+ RCW=$RCW_BIN \
+ BL32=$TEE_BIN SPD=opteed\
+ BL33=$UBOOT_SECURE_BIN \
+ pbl \
+ fip
+
+
+BUILD fip-ddr (Mandatory for certain platforms, refer table above):
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+-To compile additional fip-ddr for selected platforms(Refer above table if the platform needs fip-ddr).
+ .. code:: shell
+
+ make PLAT=<platform_name> fip-ddr
+
+
+Deploy ATF Images
+=================
+
+Note: The size in the standard uboot commands for copy to nor, qspi, nand or sd
+should be modified based on the binary size of the image to be copied.
+
+- Deploy ATF images on flexspi-Nor or QSPI flash Alt Bank from U-Boot prompt.
+
+ -- Commands to flash images for bl2_xxx.pbl and fip.bin
+
+ Notes: ls1028ardb has no flexspi-Nor Alt Bank, so use "sf probe 0:0" for current bank.
+
+ .. code:: shell
+
+ tftp 82000000 $path/bl2_xxx.pbl;
+
+ i2c mw 66 50 20;sf probe 0:1; sf erase 0 +$filesize; sf write 0x82000000 0x0 $filesize;
+
+ tftp 82000000 $path/fip.bin;
+ i2c mw 66 50 20;sf probe 0:1; sf erase 0x100000 +$filesize; sf write 0x82000000 0x100000 $filesize;
+
+ -- Next step is valid for platform where FIP-DDR is needed.
+
+ .. code:: shell
+
+ tftp 82000000 $path/ddr_fip.bin;
+ i2c mw 66 50 20;sf probe 0:1; sf erase 0x800000 +$filesize; sf write 0x82000000 0x800000 $filesize;
+
+ -- Then reset to alternate bank to boot up ATF.
+
+ Command for lx2160a, ls1088a and ls1028a platforms:
+
+ .. code:: shell
+
+ qixisreset altbank;
+
+ Command for ls1046a platforms:
+
+ .. code:: shell
+
+ cpld reset altbank;
+
+- Deploy ATF images on SD/eMMC from U-Boot prompt.
+ -- file_size_in_block_sizeof_512 = (Size_of_bytes_tftp / 512)
+
+ .. code:: shell
+
+ mmc dev <idx>; (idx = 1 for eMMC; idx = 0 for SD)
+
+ tftp 82000000 $path/bl2_<sd>_or_<emmc>.pbl;
+ mmc write 82000000 8 <file_size_in_block_sizeof_512>;
+
+ tftp 82000000 $path/fip.bin;
+ mmc write 82000000 0x800 <file_size_in_block_sizeof_512>;
+
+ -- Next step is valid for platform that needs FIP-DDR.
+
+ .. code:: shell
+
+ tftp 82000000 $path/ddr_fip.bin;
+ mmc write 82000000 0x4000 <file_size_in_block_sizeof_512>;
+
+ -- Then reset to sd/emmc to boot up ATF from sd/emmc as boot-source.
+
+ Command for lx2160A, ls1088a and ls1028a platforms:
+
+ .. code:: shell
+
+ qixisreset <sd or emmc>;
+
+ Command for ls1043a and ls1046a platform:
+
+ .. code:: shell
+
+ cpld reset <sd or emmc>;
+
+- Deploy ATF images on IFC nor flash from U-Boot prompt.
+
+ .. code:: shell
+
+ tftp 82000000 $path/bl2_nor.pbl;
+ protect off 64000000 +$filesize; erase 64000000 +$filesize; cp.b 82000000 64000000 $filesize;
+
+ tftp 82000000 $path/fip.bin;
+ protect off 64100000 +$filesize; erase 64100000 +$filesize; cp.b 82000000 64100000 $filesize;
+
+ -- Then reset to alternate bank to boot up ATF.
+
+ Command for ls1043a platform:
+
+ .. code:: shell
+
+ cpld reset altbank;
+
+- Deploy ATF images on IFC nand flash from U-Boot prompt.
+
+ .. code:: shell
+
+ tftp 82000000 $path/bl2_nand.pbl;
+ nand erase 0x0 $filesize; nand write 82000000 0x0 $filesize;
+
+ tftp 82000000 $path/fip.bin;
+ nand erase 0x100000 $filesize;nand write 82000000 0x100000 $filesize;
+
+ -- Then reset to nand flash to boot up ATF.
+
+ Command for ls1043a platform:
+
+ .. code:: shell
+
+ cpld reset nand;
+
+
+
+Trusted Board Boot:
+===================
+
+For TBBR, the binary name changes:
+
++-------------+--------------------------+---------+-------------------+
+| Boot Type | BL2 | FIP | FIP-DDR |
++=============+==========================+=========+===================+
+| Normal Boot | bl2_<boot_mode>.pbl | fip.bin | ddr_fip.bin |
++-------------+--------------------------+---------+-------------------+
+| TBBR Boot | bl2_<boot_mode>_sec.pbl | fip.bin | ddr_fip_sec.bin |
++-------------+--------------------------+---------+-------------------+
+
+Refer `nxp-ls-tbbr.rst`_ for detailed user steps.
+
+
+.. _lx2160a: https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/layerscape-processors/layerscape-lx2160a-lx2120a-lx2080a-processors:LX2160A
+.. _lx2160ardb: https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/layerscape-communication-process/layerscape-lx2160a-multicore-communications-processor:LX2160A
+.. _ls1028a: https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/layerscape-processors/layerscape-1028a-applications-processor:LS1028A
+.. _ls1028ardb: https://www.nxp.com/design/qoriq-developer-resources/layerscape-ls1028a-reference-design-board:LS1028ARDB
+.. _ls1043a: https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/layerscape-processors/layerscape-1043a-and-1023a-processors:LS1043A
+.. _ls1043ardb: https://www.nxp.com/design/qoriq-developer-resources/layerscape-ls1043a-reference-design-board:LS1043A-RDB
+.. _ls1046a: https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/layerscape-processors/layerscape-1046a-and-1026a-processors:LS1046A
+.. _ls1046ardb: https://www.nxp.com/design/qoriq-developer-resources/layerscape-ls1046a-reference-design-board:LS1046A-RDB
+.. _ls1046afrwy: https://www.nxp.com/design/qoriq-developer-resources/ls1046a-freeway-board:FRWY-LS1046A
+.. _ls1088a: https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/layerscape-processors/layerscape-1088a-and-1048a-processor:LS1088A
+.. _ls1088ardb: https://www.nxp.com/design/qoriq-developer-resources/layerscape-ls1088a-reference-design-board:LS1088A-RDB
+.. _nxp-ls-tbbr.rst: ./nxp-ls-tbbr.rst
diff --git a/docs/plat/nxp/nxp-ls-fuse-prov.rst b/docs/plat/nxp/nxp-ls-fuse-prov.rst
new file mode 100644
index 0000000..64e1c6f
--- /dev/null
+++ b/docs/plat/nxp/nxp-ls-fuse-prov.rst
@@ -0,0 +1,271 @@
+
+Steps to blow fuses on NXP LS SoC:
+==================================
+
+
+- Enable POVDD
+ -- Refer board GSG(Getting Started Guide) for the steps to enable POVDD.
+ -- Once the POVDD is enabled, make sure to set variable POVDD_ENABLE := yes, in the platform.mk.
+
++---+-----------------+-----------+------------+-----------------+-----------------------------+
+| | Platform | Jumper | Switch | LED to Verify | Through GPIO Pin (=number) |
++===+=================+===========+============+=================+=============================+
+| 1.| lx2160ardb | J9 | | | no |
++---+-----------------+-----------+------------+-----------------+-----------------------------+
+| 2.| lx2160aqds | J35 | | | no |
++---+-----------------+-----------+------------+-----------------+-----------------------------+
+| 3.| lx2162aqds | J35 | SW9[4] = 1 | D15 | no |
++---+-----------------+-----------+------------+-----------------+-----------------------------+
+
+- SFP registers to be written to:
+
++---+----------------------------------+----------------------+----------------------+
+| | Platform | OTPMKR0..OTPMKR7 | SRKHR0..SRKHR7 |
++===+==================================+======================+======================+
+| 1.| lx2160ardb/lx2160aqds/lx2162aqds | 0x1e80234..0x1e80250 | 0x1e80254..0x1e80270 |
++---+----------------------------------+----------------------+----------------------+
+
+- At U-Boot prompt, verify that SNVS register - HPSR, whether OTPMK was written, already:
+
++---+----------------------------------+-------------------------------------------+---------------+
+| | Platform | OTPMK_ZERO_BIT(=value) | SNVS_HPSR_REG |
++===+==================================+===========================================+===============+
+| 1.| lx2160ardb/lx2160aqds/lx2162aqds | 27 (= 1 means not blown, =0 means blown) | 0x01E90014 |
++---+----------------------------------+-------------------------------------------+---------------+
+
+From u-boot prompt:
+
+ -- Check for the OTPMK.
+ .. code:: shell
+
+ md $SNVS_HPSR_REG
+
+ Command Output:
+ 01e90014: 88000900
+
+ In case it is read as 00000000, then read this register using jtag (in development mode only through CW tap).
+ +0 +4 +8 +C
+ [0x01E90014] 88000900
+
+ Note: OTPMK_ZERO_BIT is 1, indicating that the OTPMK is not blown.
+
+ -- Check for the SRK Hash.
+ .. code:: shell
+
+ md $SRKHR0 0x10
+
+ Command Output:
+ 01e80254: 00000000 00000000 00000000 00000000 ................
+ 01e80264: 00000000 00000000 00000000 00000000 ................
+
+ Note: Zero means that SRK hash is not blown.
+
+- If not blown, then from the U-Boot prompt, using following commands:
+ -- Provision the OTPMK.
+
+ .. code:: shell
+
+ mw.l $OTPMKR0 <OTMPKR_0_32Bit_val>
+ mw.l $OTPMKR1 <OTMPKR_1_32Bit_val>
+ mw.l $OTPMKR2 <OTMPKR_2_32Bit_val>
+ mw.l $OTPMKR3 <OTMPKR_3_32Bit_val>
+ mw.l $OTPMKR4 <OTMPKR_4_32Bit_val>
+ mw.l $OTPMKR5 <OTMPKR_5_32Bit_val>
+ mw.l $OTPMKR6 <OTMPKR_6_32Bit_val>
+ mw.l $OTPMKR7 <OTMPKR_7_32Bit_val>
+
+ -- Provision the SRK Hash.
+
+ .. code:: shell
+
+ mw.l $SRKHR0 <SRKHR_0_32Bit_val>
+ mw.l $SRKHR1 <SRKHR_1_32Bit_val>
+ mw.l $SRKHR2 <SRKHR_2_32Bit_val>
+ mw.l $SRKHR3 <SRKHR_3_32Bit_val>
+ mw.l $SRKHR4 <SRKHR_4_32Bit_val>
+ mw.l $SRKHR5 <SRKHR_5_32Bit_val>
+ mw.l $SRKHR6 <SRKHR_6_32Bit_val>
+ mw.l $SRKHR7 <SRKHR_7_32Bit_val>
+
+ Note: SRK Hash should be carefully written keeping in mind the SFP Block Endianness.
+
+- At U-Boot prompt, verify that SNVS registers for OTPMK are correctly written:
+
+ -- Check for the OTPMK.
+ .. code:: shell
+
+ md $SNVS_HPSR_REG
+
+ Command Output:
+ 01e90014: 80000900
+
+ OTPMK_ZERO_BIT is zero, indicating that the OTPMK is blown.
+
+ Note: In case it is read as 00000000, then read this register using jtag (in development mode only through CW tap).
+
+ .. code:: shell
+
+ md $OTPMKR0 0x10
+
+ Command Output:
+ 01e80234: ffffffff ffffffff ffffffff ffffffff ................
+ 01e80244: ffffffff ffffffff ffffffff ffffffff ................
+
+ Note: OTPMK will never be visible in plain.
+
+ -- Check for the SRK Hash. For example, if following SRK hash is written:
+
+ SFP SRKHR0 = fdc2fed4
+ SFP SRKHR1 = 317f569e
+ SFP SRKHR2 = 1828425c
+ SFP SRKHR3 = e87b5cfd
+ SFP SRKHR4 = 34beab8f
+ SFP SRKHR5 = df792a70
+ SFP SRKHR6 = 2dff85e1
+ SFP SRKHR7 = 32a29687,
+
+ then following would be the value on dumping SRK hash.
+
+ .. code:: shell
+
+ md $SRKHR0 0x10
+
+ Command Output:
+ 01e80254: d4fec2fd 9e567f31 5c422818 fd5c7be8 ....1.V..(B\.{\.
+ 01e80264: 8fabbe34 702a79df e185ff2d 8796a232 4....y*p-...2...
+
+ Note: SRK Hash is visible in plain based on the SFP Block Endianness.
+
+- Caution: Donot proceed to the next step, until you are sure that OTPMK and SRKH are correctly blown from above steps.
+ -- After the next step, there is no turning back.
+ -- Fuses will be burnt, which cannot be undo.
+
+- Write SFP_INGR[INST] with the PROGFB(0x2) instruction to blow the fuses.
+ -- User need to save the SRK key pair and OTPMK Key forever, to continue using this board.
+
++---+----------------------------------+-------------------------------------------+-----------+
+| | Platform | SFP_INGR_REG | SFP_WRITE_DATE_FRM_MIRROR_REG_TO_FUSE |
++===+==================================+=======================================================+
+| 1.| lx2160ardb/lx2160aqds/lx2162aqds | 0x01E80020 | 0x2 |
++---+----------------------------------+--------------+----------------------------------------+
+
+ .. code:: shell
+
+ md $SFP_INGR_REG $SFP_WRITE_DATE_FRM_MIRROR_REG_TO_FUSE
+
+- On reset, if the SFP register were read from u-boot, it will show the following:
+ -- Check for the OTPMK.
+
+ .. code:: shell
+
+ md $SNVS_HPSR_REG
+
+ Command Output:
+ 01e90014: 80000900
+
+ In case it is read as 00000000, then read this register using jtag (in development mode only through CW tap).
+ +0 +4 +8 +C
+ [0x01E90014] 80000900
+
+ Note: OTPMK_ZERO_BIT is zero, indicating that the OTPMK is blown.
+
+ .. code:: shell
+
+ md $OTPMKR0 0x10
+
+ Command Output:
+ 01e80234: ffffffff ffffffff ffffffff ffffffff ................
+ 01e80244: ffffffff ffffffff ffffffff ffffffff ................
+
+ Note: OTPMK will never be visible in plain.
+
+ -- SRK Hash
+
+ .. code:: shell
+
+ md $SRKHR0 0x10
+
+ Command Output:
+ 01e80254: d4fec2fd 9e567f31 5c422818 fd5c7be8 ....1.V..(B\.{\.
+ 01e80264: 8fabbe34 702a79df e185ff2d 8796a232 4....y*p-...2...
+
+ Note: SRK Hash is visible in plain based on the SFP Block Endianness.
+
+Second method to do the fuse provsioning:
+=========================================
+
+This method is used for quick way to provision fuses.
+Typically used by those who needs to provision number of boards.
+
+- Enable POVDD:
+ -- Refer the table above to enable POVDD.
+
+ Note: If GPIO Pin supports enabling POVDD, it can be done through the below input_fuse_file.
+
+ -- Once the POVDD is enabled, make sure to set variable POVDD_ENABLE := yes, in the platform.mk.
+
+- User need to populate the "input_fuse_file", corresponding to the platform for:
+
+ -- OTPMK
+ -- SRKH
+
+ Table of fuse provisioning input file for every supported platform:
+
++---+----------------------------------+-----------------------------------------------------------------+
+| | Platform | FUSE_PROV_FILE |
++===+==================================+=================================================================+
+| 1.| lx2160ardb/lx2160aqds/lx2162aqds | ${CST_DIR}/input_files/gen_fusescr/ls2088_1088/input_fuse_file |
++---+----------------------------------+--------------+--------------------------------------------------+
+
+- Create the TF-A binary with FUSE_PROG=1.
+
+ .. code:: shell
+
+ make PLAT=$PLAT FUSE_PROG=1\
+ BOOT_MODE=<platform_supported_boot_mode> \
+ RCW=$RCW_BIN \
+ BL32=$TEE_BIN SPD=opteed\
+ BL33=$UBOOT_SECURE_BIN \
+ pbl \
+ fip \
+ fip_fuse \
+ FUSE_PROV_FILE=../../apps/security/cst/input_files/gen_fusescr/ls2088_1088/input_fuse_file
+
+- Deployment:
+ -- Refer the nxp-layerscape.rst for deploying TF-A images.
+ -- Deploying fip_fuse.bin:
+
+ For Flexspi-Nor:
+
+ .. code:: shell
+
+ tftp 82000000 $path/fuse_fip.bin;
+ i2c mw 66 50 20;sf probe 0:0; sf erase 0x880000 +$filesize; sf write 0x82000000 0x880000 $filesize;
+
+ For SD or eMMC [file_size_in_block_sizeof_512 = (Size_of_bytes_tftp / 512)]:
+
+ .. code:: shell
+
+ tftp 82000000 $path/fuse_fip.bin;
+ mmc write 82000000 0x4408 <file_size_in_block_sizeof_512>;
+
+- Valiation:
+
++---+----------------------------------+---------------------------------------------------+
+| | Platform | Error_Register | Error_Register_Address |
++===+==================================+===================================================+
+| 1.| lx2160ardb/lx2160aqds/lx2162aqds | DCFG scratch 4 register | 0x01EE020C |
++---+----------------------------------+---------------------------------------------------+
+
+ At the U-Boot prompt, check DCFG scratch 4 register for any error.
+
+ .. code:: shell
+
+ md $Error_Register_Address 1
+
+ Command Ouput:
+ 01ee020c: 00000000
+
+ Note:
+ - 0x00000000 shows no error, then fuse provisioning is successful.
+ - For non-zero value, refer the code header file ".../drivers/nxp/sfp/sfp_error_codes.h"
diff --git a/docs/plat/nxp/nxp-ls-tbbr.rst b/docs/plat/nxp/nxp-ls-tbbr.rst
new file mode 100644
index 0000000..43e15f7
--- /dev/null
+++ b/docs/plat/nxp/nxp-ls-tbbr.rst
@@ -0,0 +1,210 @@
+
+--------------
+NXP Platforms:
+--------------
+TRUSTED_BOARD_BOOT option can be enabled by specifying TRUSTED_BOARD_BOOT=1 on command line during make.
+
+
+
+Bare-Minimum Preparation to run TBBR on NXP Platforms:
+=======================================================
+- OTPMK(One Time Programable Key) needs to be burnt in fuses.
+ -- It is the 256 bit key that stores a secret value used by the NXP SEC 4.0 IP in Trusted or Secure mode.
+
+ Note: It is primarily for the purpose of decrypting additional secrets stored in system non-volatile memory.
+
+ -- NXP CST tool gives an option to generate it.
+
+ Use the below command from directory 'cst', with correct options.
+
+ .. code:: shell
+
+ ./gen_otpmk_drbg
+
+- SRKH (Super Root Key Hash) needs to be burnt in fuses.
+ -- It is the 256 bit hash of the list of the public keys of the SRK key pair.
+ -- NXP CST tool gives an option to generate the RSA key pair and its hash.
+
+ Use the below command from directory 'cst', with correct options.
+
+ .. code:: shell
+
+ ./gen_keys
+
+Refer fuse frovisioning readme 'nxp-ls-fuse-prov.rst' for steps to blow these keys.
+
+
+
+Two options are provided for TRUSTED_BOARD_BOOT:
+================================================
+
+-------------------------------------------------------------------------
+Option 1: CoT using X 509 certificates
+-------------------------------------------------------------------------
+
+- This CoT is as provided by ARM.
+
+- To use this option user needs to specify mbedtld dir path in MBEDTLS_DIR.
+
+- To generate CSF header, path of CST repository needs to be specified as CST_DIR
+
+- CSF header is embedded to each of the BL2 image.
+
+- GENERATE_COT=1 adds the tool 'cert_create' to the build environment to generate:
+ -- X509 Certificates as (.crt) files.
+ -- X509 Pem key file as (.pem) files.
+
+- SAVE_KEYS=1 saves the keys and certificates, if GENERATE_COT=1.
+ -- For this to work, file name for cert and keys are provided as part of compilation or build command.
+
+ --- default file names will be used, incase not provided as part compilation or build command.
+ --- default folder 'BUILD_PLAT' will be used to store them.
+
+- ROTPK for x.509 certificates is generated and embedded in bl2.bin and
+ verified as part of CoT by Boot ROM during secure boot.
+
+- Compilation steps:
+
+All Images
+ .. code:: shell
+
+ make PLAT=$PLAT TRUSTED_BOARD_BOOT=1 GENERATE_COT=1 MBEDTLS_DIR=$MBEDTLS_PATH CST_DIR=$CST_DIR_PATH \
+ BOOT_MODE=<platform_supported_boot_mode> \
+ RCW=$RCW_BIN \
+ BL32=$TEE_BIN SPD=opteed\
+ BL33=$UBOOT_SECURE_BIN \
+ pbl \
+ fip
+
+Additional FIP_DDR Image (For NXP platforms like lx2160a)
+ .. code:: shell
+
+ make PLAT=$PLAT TRUSTED_BOARD_BOOT=1 GENERATE_COT=1 MBEDTLS_DIR=$MBEDTLS_PATH fip_ddr
+
+ Note: make target 'fip_ddr' should never be combine with other make target 'fip', 'pbl' & 'bl2'.
+
+-------------------------------------------------------------------------
+Option 2: CoT using NXP CSF headers.
+-------------------------------------------------------------------------
+
+- This option is automatically selected when TRUSTED_BOARD_BOOT is set but MBEDTLS_DIR path is not specified.
+
+- CSF header is embedded to each of the BL31, BL32 and BL33 image.
+
+- To generate CSF header, path of CST repository needs to be specified as CST_DIR
+
+- Default input files for CSF header generation is added in this repo.
+
+- Default input file requires user to generate RSA key pair named
+ -- srk.pri, and
+ -- srk.pub, and add them in ATF repo.
+ -- These keys can be generated using gen_keys tool of CST.
+
+- To change the input file , user can use the options BL33_INPUT_FILE, BL32_INPUT_FILE, BL31_INPUT_FILE
+
+- There are 2 paths in secure boot flow :
+ -- Development Mode (sb_en in RCW = 1, SFP->OSPR, ITS = 0)
+
+ --- In this flow , even on ROTPK comparison failure, flow would continue.
+ --- However SNVS is transitioned to non-secure state
+
+ -- Production mode (SFP->OSPR, ITS = 1)
+
+ --- Any failure is fatal failure
+
+- Compilation steps:
+
+All Images
+ .. code:: shell
+
+ make PLAT=$PLAT TRUSTED_BOARD_BOOT=1 CST_DIR=$CST_DIR_PATH \
+ BOOT_MODE=<platform_supported_boot_mode> \
+ RCW=$RCW_BIN \
+ BL32=$TEE_BIN SPD=opteed\
+ BL33=$UBOOT_SECURE_BIN \
+ pbl \
+ fip
+
+Additional FIP_DDR Image (For NXP platforms like lx2160a)
+ .. code:: shell
+
+ make PLAT=$PLAT TRUSTED_BOARD_BOOT=1 CST_DIR=$CST_DIR_PATH fip_ddr
+
+- Compilation Steps with build option for generic image processing filters to prepend CSF header:
+ -- Generic image processing filters to prepend CSF header
+
+ BL32_INPUT_FILE = < file name>
+ BL33_INPUT_FILE = <file name>
+
+ .. code:: shell
+
+ make PLAT=$PLAT TRUSTED_BOARD_BOOT=1 CST_DIR=$CST_DIR_PATH \
+ BOOT_MODE=<platform_supported_boot_mode> \
+ RCW=$RCW_BIN \
+ BL32=$TEE_BIN SPD=opteed\
+ BL33=$UBOOT_SECURE_BIN \
+ BL33_INPUT_FILE = <ip file> \
+ BL32_INPUT_FILE = <ip_file> \
+ BL31_INPUT_FILE = <ip file> \
+ pbl \
+ fip
+
+
+Deploy ATF Images
+=================
+Same steps as mentioned in the readme "nxp-layerscape.rst".
+
+
+
+Verification to check if Secure state is achieved:
+==================================================
+
++---+----------------+-----------------+------------------------+----------------------------------+-------------------------------+
+| | Platform | SNVS_HPSR_REG | SYS_SECURE_BIT(=value) | SYSTEM_SECURE_CONFIG_BIT(=value) | SSM_STATE |
++===+================+=================+========================+==================================+===============================+
+| 1.| lx2160ardb or | 0x01E90014 | 15 | 14-12 | 11-8 |
+| | lx2160aqds or | | ( = 1, BootROM Booted) | ( = 010 means Intent to Secure, | (=1111 means secure boot) |
+| | lx2162aqds | | | ( = 000 Unsecure) | (=1011 means Non-secure Boot) |
++---+----------------+-----------------+------------------------+----------------------------------+-------------------------------+
+
+- Production mode (SFP->OSPR, ITS = 1)
+ -- Linux prompt will successfully come. if the TBBR is successful.
+
+ --- Else, Linux boot will be successful.
+
+ -- For secure-boot status, read SNVS Register $SNVS_HPSR_REG from u-boot prompt:
+
+ .. code:: shell
+
+ md $SNVS_HPSR_REG
+
+ Command Output:
+ 1e90014: 8000AF00
+
+ In case it is read as 00000000, then read this register using jtag (in development mode only through CW tap).
+ +0 +4 +8 +C
+ [0x01E90014] 8000AF00
+
+
+- Development Mode (sb_en in RCW = 1, SFP->OSPR, ITS = 0)
+ -- Refer the SoC specific table to read the register to interpret whether the secure boot is achieved or not.
+ -- Using JTAG (in development environment only, using CW tap):
+
+ --- For secure-boot status, read SNVS Register $SNVS_HPSR_REG
+
+ .. code:: shell
+
+ ccs::display_regs 86 0x01E90014 4 0 1
+
+ Command Output:
+ Using the SAP chain position number 86, following is the output.
+
+ +0 +4 +8 +C
+ [0x01E90014] 8000AF00
+
+ Note: Chain position number will vary from one SoC to other SoC.
+
+- Interpretation of the value:
+
+ -- 0xA indicates BootROM booted, with intent to secure.
+ -- 0xF = secure boot, as SSM_STATE.