diff options
Diffstat (limited to 'docs/plat/rpi3.rst')
-rw-r--r-- | docs/plat/rpi3.rst | 466 |
1 files changed, 466 insertions, 0 deletions
diff --git a/docs/plat/rpi3.rst b/docs/plat/rpi3.rst new file mode 100644 index 0000000..38c3dfa --- /dev/null +++ b/docs/plat/rpi3.rst @@ -0,0 +1,466 @@ +Raspberry Pi 3 +============== + +The `Raspberry Pi 3`_ is an inexpensive single-board computer that contains four +Arm Cortex-A53 cores. + +The following instructions explain how to use this port of the TF-A with the +default distribution of `Raspbian`_ because that's the distribution officially +supported by the Raspberry Pi Foundation. At the moment of writing this, the +officially supported kernel is a AArch32 kernel. This doesn't mean that this +port of TF-A can't boot a AArch64 kernel. The `Linux tree fork`_ maintained by +the Foundation can be compiled for AArch64 by following the steps in +`AArch64 kernel build instructions`_. + +**IMPORTANT NOTE**: This port isn't secure. All of the memory used is DRAM, +which is available from both the Non-secure and Secure worlds. This port +shouldn't be considered more than a prototype to play with and implement +elements like PSCI to support the Linux kernel. + +Design +------ + +The SoC used by the Raspberry Pi 3 is the Broadcom BCM2837. It is a SoC with a +VideoCore IV that acts as primary processor (and loads everything from the SD +card) and is located between all Arm cores and the DRAM. Check the `Raspberry Pi +3 documentation`_ for more information. + +This explains why it is possible to change the execution state (AArch64/AArch32) +depending on a few files on the SD card. We only care about the cases in which +the cores boot in AArch64 mode. + +The rules are simple: + +- If a file called ``kernel8.img`` is located on the ``boot`` partition of the + SD card, it will load it and execute in EL2 in AArch64. Basically, it executes + a `default AArch64 stub`_ at address **0x0** that jumps to the kernel. + +- If there is also a file called ``armstub8.bin``, it will load it at address + **0x0** (instead of the default stub) and execute it in EL3 in AArch64. All + the cores are powered on at the same time and start at address **0x0**. + +This means that we can use the default AArch32 kernel provided in the official +`Raspbian`_ distribution by renaming it to ``kernel8.img``, while TF-A and +anything else we need is in ``armstub8.bin``. This way we can forget about the +default bootstrap code. When using a AArch64 kernel, it is only needed to make +sure that the name on the SD card is ``kernel8.img``. + +Ideally, we want to load the kernel and have all cores available, which means +that we need to make the secondary cores work in the way the kernel expects, as +explained in `Secondary cores`_. In practice, a small bootstrap is needed +between TF-A and the kernel. + +To get the most out of a AArch32 kernel, we want to boot it in Hypervisor mode +in AArch32. This means that BL33 can't be in EL2 in AArch64 mode. The +architecture specifies that AArch32 Hypervisor mode isn't present when AArch64 +is used for EL2. When using a AArch64 kernel, it should simply start in EL2. + +Placement of images +~~~~~~~~~~~~~~~~~~~ + +The file ``armstub8.bin`` contains BL1 and the FIP. It is needed to add padding +between them so that the addresses they are loaded to match the ones specified +when compiling TF-A. This is done automatically by the build system. + +The device tree block is loaded by the VideoCore loader from an appropriate +file, but we can specify the address it is loaded to in ``config.txt``. + +The file ``kernel8.img`` contains a kernel image that is loaded to the address +specified in ``config.txt``. The `Linux kernel tree`_ has information about how +a AArch32 Linux kernel image is loaded in ``Documentation/arm/Booting``: + +:: + + The zImage may also be placed in system RAM and called there. The + kernel should be placed in the first 128MiB of RAM. It is recommended + that it is loaded above 32MiB in order to avoid the need to relocate + prior to decompression, which will make the boot process slightly + faster. + +There are no similar restrictions for AArch64 kernels, as specified in the file +``Documentation/arm64/booting.txt``. + +This means that we need to avoid the first 128 MiB of RAM when placing the +TF-A images (and specially the first 32 MiB, as they are directly used to +place the uncompressed AArch32 kernel image. This way, both AArch32 and +AArch64 kernels can be placed at the same address. + +In the end, the images look like the following diagram when placed in memory. +All addresses are Physical Addresses from the point of view of the Arm cores. +Again, note that this is all just part of the same DRAM that goes from +**0x00000000** to **0x3F000000**, it just has different names to simulate a real +secure platform! + +:: + + 0x00000000 +-----------------+ + | ROM | BL1 + 0x00020000 +-----------------+ + | FIP | + 0x00200000 +-----------------+ + | | + | ... | + | | + 0x01000000 +-----------------+ + | DTB | (Loaded by the VideoCore) + +-----------------+ + | | + | ... | + | | + 0x02000000 +-----------------+ + | Kernel | (Loaded by the VideoCore) + +-----------------+ + | | + | ... | + | | + 0x10000000 +-----------------+ + | Secure SRAM | BL2, BL31 + 0x10100000 +-----------------+ + | Secure DRAM | BL32 (Secure payload) + 0x11000000 +-----------------+ + | Non-secure DRAM | BL33 + +-----------------+ + | | + | ... | + | | + 0x3F000000 +-----------------+ + | I/O | + 0x40000000 +-----------------+ + +The area between **0x10000000** and **0x11000000** has to be manually protected +so that the kernel doesn't use it. The current port tries to modify the live DTB +to add a memreserve region that reserves the previously mentioned area. + +If this is not possible, the user may manually add ``memmap=16M$256M`` to the +command line passed to the kernel in ``cmdline.txt``. See the `Setup SD card`_ +instructions to see how to do it. This system is strongly discouraged. + +The last 16 MiB of DRAM can only be accessed by the VideoCore, that has +different mappings than the Arm cores in which the I/O addresses don't overlap +the DRAM. The memory reserved to be used by the VideoCore is always placed at +the end of the DRAM, so this space isn't wasted. + +Considering the 128 MiB allocated to the GPU and the 16 MiB allocated for +TF-A, there are 880 MiB available for Linux. + +Boot sequence +~~~~~~~~~~~~~ + +The boot sequence of TF-A is the usual one except when booting an AArch32 +kernel. In that case, BL33 is booted in AArch32 Hypervisor mode so that it +can jump to the kernel in the same mode and let it take over that privilege +level. If BL33 was running in EL2 in AArch64 (as in the default bootflow of +TF-A) it could only jump to the kernel in AArch32 in Supervisor mode. + +The `Linux kernel tree`_ has instructions on how to jump to the Linux kernel +in ``Documentation/arm/Booting`` and ``Documentation/arm64/booting.txt``. The +bootstrap should take care of this. + +This port support a direct boot of the Linux kernel from the firmware (as a BL33 +image). Alternatively, U-Boot or other bootloaders may be used. + +Secondary cores +~~~~~~~~~~~~~~~ + +This port of the Trusted Firmware-A supports ``PSCI_CPU_ON``, +``PSCI_SYSTEM_RESET`` and ``PSCI_SYSTEM_OFF``. The last one doesn't really turn +the system off, it simply reboots it and asks the VideoCore firmware to keep it +in a low power mode permanently. + +The kernel used by `Raspbian`_ doesn't have support for PSCI, so it is needed to +use mailboxes to trap the secondary cores until they are ready to jump to the +kernel. This mailbox is located at a different address in the AArch32 default +kernel than in the AArch64 kernel. + +Kernels with PSCI support can use the PSCI calls instead for a cleaner boot. + +Also, this port of TF-A has another Trusted Mailbox in Shared BL RAM. During +cold boot, all secondary cores wait in a loop until they are given given an +address to jump to in this Mailbox (``bl31_warm_entrypoint``). + +Once BL31 has finished and the primary core has jumped to the BL33 payload, it +has to call ``PSCI_CPU_ON`` to release the secondary CPUs from the wait loop. +The payload then makes them wait in another waitloop listening from messages +from the kernel. When the primary CPU jumps into the kernel, it will send an +address to the mailbox so that the secondary CPUs jump to it and are recognised +by the kernel. + +Build Instructions +------------------ + +To boot a AArch64 kernel, only the AArch64 toolchain is required. + +To boot a AArch32 kernel, both AArch64 and AArch32 toolchains are required. The +AArch32 toolchain is needed for the AArch32 bootstrap needed to load a 32-bit +kernel. + +The build system concatenates BL1 and the FIP so that the addresses match the +ones in the memory map. The resulting file is ``armstub8.bin``, located in the +build folder (e.g. ``build/rpi3/debug/armstub8.bin``). To know how to use this +file, follow the instructions in `Setup SD card`_. + +The following build options are supported: + +- ``RPI3_BL33_IN_AARCH32``: This port can load a AArch64 or AArch32 BL33 image. + By default this option is 0, which means that TF-A will jump to BL33 in EL2 + in AArch64 mode. If set to 1, it will jump to BL33 in Hypervisor in AArch32 + mode. + +- ``PRELOADED_BL33_BASE``: Used to specify the address of a BL33 binary that has + been preloaded by any other system than using the firmware. ``BL33`` isn't + needed in the build command line if this option is used. Specially useful + because the file ``kernel8.img`` can be loaded anywhere by modifying the file + ``config.txt``. It doesn't have to contain a kernel, it could have any + arbitrary payload. + +- ``RPI3_DIRECT_LINUX_BOOT``: Disabled by default. Set to 1 to enable the direct + boot of the Linux kernel from the firmware. Option ``RPI3_PRELOADED_DTB_BASE`` + is mandatory when the direct Linux kernel boot is used. Options + ``PRELOADED_BL33_BASE`` will most likely be needed as well because it is + unlikely that the kernel image will fit in the space reserved for BL33 images. + This option can be combined with ``RPI3_BL33_IN_AARCH32`` in order to boot a + 32-bit kernel. The only thing this option does is to set the arguments in + registers x0-x3 or r0-r2 as expected by the kernel. + +- ``RPI3_PRELOADED_DTB_BASE``: Auxiliary build option needed when using + ``RPI3_DIRECT_LINUX_BOOT=1``. This option allows to specify the location of a + DTB in memory. + +- ``RPI3_RUNTIME_UART``: Indicates whether the UART should be used at runtime + or disabled. ``-1`` (default) disables the runtime UART. Any other value + enables the default UART (currently UART1) for runtime messages. + +- ``RPI3_USE_UEFI_MAP``: Set to 1 to build ATF with the altername memory + mapping required for an UEFI firmware payload. These changes are needed + to be able to run Windows on ARM64. This option, which is disabled by + default, results in the following memory mappings: + +:: + + 0x00000000 +-----------------+ + | ROM | BL1 + 0x00010000 +-----------------+ + | DTB | (Loaded by the VideoCore) + 0x00020000 +-----------------+ + | FIP | + 0x00030000 +-----------------+ + | | + | UEFI PAYLOAD | + | | + 0x00200000 +-----------------+ + | Secure SRAM | BL2, BL31 + 0x00300000 +-----------------+ + | Secure DRAM | BL32 (Secure payload) + 0x00400000 +-----------------+ + | | + | | + | Non-secure DRAM | BL33 + | | + | | + 0x01000000 +-----------------+ + | | + | ... | + | | + 0x3F000000 +-----------------+ + | I/O | + +- ``BL32``: This port can load and run OP-TEE. The OP-TEE image is optional. + Please use the code from `here <https://github.com/OP-TEE/optee_os>`__. + Build the Trusted Firmware with option ``BL32=tee-header_v2.bin + BL32_EXTRA1=tee-pager_v2.bin BL32_EXTRA2=tee-pageable_v2.bin`` + to put the binaries into the FIP. + + .. warning:: + If OP-TEE is used it may be needed to add the following options to the + Linux command line so that the USB driver doesn't use FIQs: + ``dwc_otg.fiq_enable=0 dwc_otg.fiq_fsm_enable=0 dwc_otg.nak_holdoff=0``. + This will unfortunately reduce the performance of the USB driver. It is + needed when using Raspbian, for example. + +- ``TRUSTED_BOARD_BOOT``: This port supports TBB. Set this option to 1 to enable + it. In order to use TBB, you might want to set ``GENERATE_COT=1`` to let the + contents of the FIP automatically signed by the build process. The ROT key + will be generated and output to ``rot_key.pem`` in the build directory. It is + able to set ROT_KEY to your own key in PEM format. Also in order to build, + you need to clone mbed TLS from `here <https://github.com/ARMmbed/mbedtls>`__. + ``MBEDTLS_DIR`` must point at the mbed TLS source directory. + +- ``ENABLE_STACK_PROTECTOR``: Disabled by default. It uses the hardware RNG of + the board. + +The following is not currently supported: + +- AArch32 for TF-A itself. + +- ``EL3_PAYLOAD_BASE``: The reason is that you can already load anything to any + address by changing the file ``armstub8.bin``, so there's no point in using + TF-A in this case. + +- ``MULTI_CONSOLE_API=0``: The multi console API must be enabled. Note that the + crash console uses the internal 16550 driver functions directly in order to be + able to print error messages during early crashes before setting up the + multi console API. + +Building the firmware for kernels that don't support PSCI +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +This is the case for the 32-bit image of Raspbian, for example. 64-bit kernels +always support PSCI, but they may not know that the system understands PSCI due +to an incorrect DTB file. + +First, clone and compile the 32-bit version of the `Raspberry Pi 3 TF-A +bootstrap`_. Choose the one needed for the architecture of your kernel. + +Then compile TF-A. For a 32-bit kernel, use the following command line: + +.. code:: shell + + CROSS_COMPILE=aarch64-linux-gnu- make PLAT=rpi3 \ + RPI3_BL33_IN_AARCH32=1 \ + BL33=../rpi3-arm-tf-bootstrap/aarch32/el2-bootstrap.bin + +For a 64-bit kernel, use this other command line: + +.. code:: shell + + CROSS_COMPILE=aarch64-linux-gnu- make PLAT=rpi3 \ + BL33=../rpi3-arm-tf-bootstrap/aarch64/el2-bootstrap.bin + +However, enabling PSCI support in a 64-bit kernel is really easy. In the +repository `Raspberry Pi 3 TF-A bootstrap`_ there is a patch that can be applied +to the Linux kernel tree maintained by the Raspberry Pi foundation. It modifes +the DTS to tell the kernel to use PSCI. Once this patch is applied, follow the +instructions in `AArch64 kernel build instructions`_ to get a working 64-bit +kernel image and supporting files. + +Building the firmware for kernels that support PSCI +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +For a 64-bit kernel: + +.. code:: shell + + CROSS_COMPILE=aarch64-linux-gnu- make PLAT=rpi3 \ + PRELOADED_BL33_BASE=0x02000000 \ + RPI3_PRELOADED_DTB_BASE=0x01000000 \ + RPI3_DIRECT_LINUX_BOOT=1 + +For a 32-bit kernel: + +.. code:: shell + + CROSS_COMPILE=aarch64-linux-gnu- make PLAT=rpi3 \ + PRELOADED_BL33_BASE=0x02000000 \ + RPI3_PRELOADED_DTB_BASE=0x01000000 \ + RPI3_DIRECT_LINUX_BOOT=1 \ + RPI3_BL33_IN_AARCH32=1 + +AArch64 kernel build instructions +--------------------------------- + +The following instructions show how to install and run a AArch64 kernel by +using a SD card with the default `Raspbian`_ install as base. Skip them if you +want to use the default 32-bit kernel. + +Note that this system won't be fully 64-bit because all the tools in the +filesystem are 32-bit binaries, but it's a quick way to get it working, and it +allows the user to run 64-bit binaries in addition to 32-bit binaries. + +1. Clone the `Linux tree fork`_ maintained by the Raspberry Pi Foundation. To + speed things up, do a shallow clone of the desired branch. + +.. code:: shell + + git clone --depth=1 -b rpi-4.18.y https://github.com/raspberrypi/linux + cd linux + +2. Configure and compile the kernel. Adapt the number after ``-j`` so that it is + 1.5 times the number of CPUs in your computer. This may take some time to + finish. + +.. code:: shell + + make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- bcmrpi3_defconfig + make -j 6 ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- + +3. Copy the kernel image and the device tree to the SD card. Replace the path + by the corresponding path in your computers to the ``boot`` partition of the + SD card. + +.. code:: shell + + cp arch/arm64/boot/Image /path/to/boot/kernel8.img + cp arch/arm64/boot/dts/broadcom/bcm2710-rpi-3-b.dtb /path/to/boot/ + cp arch/arm64/boot/dts/broadcom/bcm2710-rpi-3-b-plus.dtb /path/to/boot/ + +4. Install the kernel modules. Replace the path by the corresponding path to the + filesystem partition of the SD card on your computer. + +.. code:: shell + + make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- \ + INSTALL_MOD_PATH=/path/to/filesystem modules_install + +5. Follow the instructions in `Setup SD card`_ except for the step of renaming + the existing ``kernel7.img`` (we have already copied a AArch64 kernel). + +Setup SD card +------------- + +The instructions assume that you have an SD card with a fresh install of +`Raspbian`_ (or that, at least, the ``boot`` partition is untouched, or nearly +untouched). They have been tested with the image available in 2018-03-13. + +1. Insert the SD card and open the ``boot`` partition. + +2. Rename ``kernel7.img`` to ``kernel8.img``. This tricks the VideoCore + bootloader into booting the Arm cores in AArch64 mode, like TF-A needs, + even though the kernel is not compiled for AArch64. + +3. Copy ``armstub8.bin`` here. When ``kernel8.img`` is available, The VideoCore + bootloader will look for a file called ``armstub8.bin`` and load it at + address **0x0** instead of a predefined one. + +4. To enable the serial port "Mini UART" in Linux, open ``cmdline.txt`` and add + ``console=serial0,115200 console=tty1``. + +5. Open ``config.txt`` and add the following lines at the end (``enable_uart=1`` + is only needed to enable debugging through the Mini UART): + +:: + + enable_uart=1 + kernel_address=0x02000000 + device_tree_address=0x01000000 + +If you connect a serial cable to the Mini UART and your computer, and connect +to it (for example, with ``screen /dev/ttyUSB0 115200``) you should see some +text. In the case of an AArch32 kernel, you should see something like this: + +:: + + NOTICE: Booting Trusted Firmware + NOTICE: BL1: v1.4(release):v1.4-329-g61e94684-dirty + NOTICE: BL1: Built : 00:09:25, Nov 6 2017 + NOTICE: BL1: Booting BL2 + NOTICE: BL2: v1.4(release):v1.4-329-g61e94684-dirty + NOTICE: BL2: Built : 00:09:25, Nov 6 2017 + NOTICE: BL1: Booting BL31 + NOTICE: BL31: v1.4(release):v1.4-329-g61e94684-dirty + NOTICE: BL31: Built : 00:09:25, Nov 6 2017 + [ 0.266484] bcm2835-aux-uart 3f215040.serial: could not get clk: -517 + + Raspbian GNU/Linux 9 raspberrypi ttyS0 + raspberrypi login: + +Just enter your credentials, everything should work as expected. Note that the +HDMI output won't show any text during boot. + +.. _default Arm stub: https://github.com/raspberrypi/tools/blob/master/armstubs/armstub7.S +.. _default AArch64 stub: https://github.com/raspberrypi/tools/blob/master/armstubs/armstub8.S +.. _Linux kernel tree: https://github.com/torvalds/linux +.. _Linux tree fork: https://github.com/raspberrypi/linux +.. _Raspberry Pi 3: https://www.raspberrypi.org/products/raspberry-pi-3-model-b/ +.. _Raspberry Pi 3 TF-A bootstrap: https://github.com/AntonioND/rpi3-arm-tf-bootstrap +.. _Raspberry Pi 3 documentation: https://www.raspberrypi.org/documentation/ +.. _Raspbian: https://www.raspberrypi.org/downloads/raspbian/ |