summaryrefslogtreecommitdiffstats
path: root/docs/security_advisories/security-advisory-tfv-3.rst
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--docs/security_advisories/security-advisory-tfv-3.rst86
1 files changed, 86 insertions, 0 deletions
diff --git a/docs/security_advisories/security-advisory-tfv-3.rst b/docs/security_advisories/security-advisory-tfv-3.rst
new file mode 100644
index 0000000..b395f13
--- /dev/null
+++ b/docs/security_advisories/security-advisory-tfv-3.rst
@@ -0,0 +1,86 @@
+Advisory TFV-3 (CVE-2017-7563)
+==============================
+
++----------------+-------------------------------------------------------------+
+| Title | RO memory is always executable at AArch64 Secure EL1 |
++================+=============================================================+
+| CVE ID | `CVE-2017-7563`_ |
++----------------+-------------------------------------------------------------+
+| Date | 06 Apr 2017 |
++----------------+-------------------------------------------------------------+
+| Versions | v1.3 (since `Pull Request #662`_) |
+| Affected | |
++----------------+-------------------------------------------------------------+
+| Configurations | AArch64 BL2, TSP or other users of xlat_tables library |
+| Affected | executing at AArch64 Secure EL1 |
++----------------+-------------------------------------------------------------+
+| Impact | Unexpected Privilege Escalation |
++----------------+-------------------------------------------------------------+
+| Fix Version | `Pull Request #924`_ |
++----------------+-------------------------------------------------------------+
+| Credit | ARM |
++----------------+-------------------------------------------------------------+
+
+The translation table library in ARM Trusted Firmware (TF) (under
+``lib/xlat_tables`` and ``lib/xlat_tables_v2``) provides APIs to help program
+translation tables in the MMU. The xlat\_tables client specifies its required
+memory mappings in the form of ``mmap_region`` structures. Each ``mmap_region``
+has memory attributes represented by the ``mmap_attr_t`` enumeration type. This
+contains flags to control data access permissions (``MT_RO``/``MT_RW``) and
+instruction execution permissions (``MT_EXECUTE``/``MT_EXECUTE_NEVER``). Thus a
+mapping specifying both ``MT_RO`` and ``MT_EXECUTE_NEVER`` should result in a
+Read-Only (RO), non-executable memory region.
+
+This feature does not work correctly for AArch64 images executing at Secure EL1.
+Any memory region mapped as RO will always be executable, regardless of whether
+the client specified ``MT_EXECUTE`` or ``MT_EXECUTE_NEVER``.
+
+The vulnerability is known to affect the BL2 and Test Secure Payload (TSP)
+images on platforms that enable the ``SEPARATE_CODE_AND_RODATA`` build option,
+which includes all ARM standard platforms, and the upstream Xilinx and NVidia
+platforms. The RO data section for these images on these platforms is
+unexpectedly executable instead of non-executable. Other platforms or
+``xlat_tables`` clients may also be affected.
+
+The vulnerability primarily manifests itself after `Pull Request #662`_. Before
+that, ``xlat_tables`` clients could not specify instruction execution
+permissions separately to data access permissions. All RO normal memory regions
+were implicitly executable. Before `Pull Request #662`_. the vulnerability
+would only manifest itself for device memory mapped as RO; use of this mapping
+is considered rare, although the upstream QEMU platform uses this mapping when
+the ``DEVICE2_BASE`` build option is used.
+
+Note that one or more separate vulnerabilities are also required to exploit this
+vulnerability.
+
+The vulnerability is due to incorrect handling of the execute-never bits in the
+translation tables. The EL3 translation regime uses a single ``XN`` bit to
+determine whether a region is executable. The Secure EL1&0 translation regime
+handles 2 Virtual Address (VA) ranges and so uses 2 bits, ``UXN`` and ``PXN``.
+The ``xlat_tables`` library only handles the ``XN`` bit, which maps to ``UXN``
+in the Secure EL1&0 regime. As a result, this programs the Secure EL0 execution
+permissions but always leaves the memory as executable at Secure EL1.
+
+The vulnerability is mitigated by the following factors:
+
+- The xlat\_tables library ensures that all Read-Write (RW) memory regions are
+ non-executable by setting the ``SCTLR_ELx.WXN`` bit. This overrides any value
+ of the ``XN``, ``UXN`` or ``PXN`` bits in the translation tables. See the
+ ``enable_mmu()`` function:
+
+ ::
+
+ sctlr = read_sctlr_el##_el(); \
+ sctlr |= SCTLR_WXN_BIT | SCTLR_M_BIT; \
+
+- AArch32 configurations are unaffected. Here the ``XN`` bit controls execution
+ privileges of the currently executing translation regime, which is the desired
+ behaviour.
+
+- ARM TF EL3 code (for example BL1 and BL31) ensures that all non-secure memory
+ mapped into the secure world is non-executable by setting the ``SCR_EL3.SIF``
+ bit. See the ``el3_arch_init_common`` macro in ``el3_common_macros.S``.
+
+.. _CVE-2017-7563: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7563
+.. _Pull Request #662: https://github.com/ARM-software/arm-trusted-firmware/pull/662
+.. _Pull Request #924: https://github.com/ARM-software/arm-trusted-firmware/pull/924