summaryrefslogtreecommitdiffstats
path: root/drivers/nxp/ddr/phy-gen2/phy.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--drivers/nxp/ddr/phy-gen2/phy.c2678
1 files changed, 2678 insertions, 0 deletions
diff --git a/drivers/nxp/ddr/phy-gen2/phy.c b/drivers/nxp/ddr/phy-gen2/phy.c
new file mode 100644
index 0000000..9e52145
--- /dev/null
+++ b/drivers/nxp/ddr/phy-gen2/phy.c
@@ -0,0 +1,2678 @@
+/*
+ * Copyright 2021-2022 NXP
+ * SPDX-License-Identifier: BSD-3-Clause
+ *
+ */
+
+#include <errno.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+#include <common/debug.h>
+#include "csr.h"
+#include <ddr.h>
+#include "ddr4fw.h"
+#include <drivers/delay_timer.h>
+#ifdef NXP_WARM_BOOT
+#include <fspi_api.h>
+#endif
+#include "input.h"
+#include <lib/mmio.h>
+#include <lib/utils.h>
+#include <lib/xlat_tables/xlat_tables_v2.h>
+#ifdef DDR_PHY_DEBUG
+#include "messages.h"
+#endif
+#ifdef NXP_WARM_BOOT
+#include "phy.h"
+#endif
+#include "pie.h"
+
+#define TIMEOUTDEFAULT 500
+#define MAP_PHY_ADDR(pstate, n, instance, offset, c) \
+ ((((pstate * n) + instance + c) << 12) + offset)
+
+static uint32_t map_phy_addr_space(uint32_t addr)
+{
+ /* 23 bit addressing */
+ uint32_t pstate = (addr & U(0x700000)) >> 20U; /* bit 22:20 */
+ uint32_t block_type = (addr & U(0x0f0000)) >> 16U; /* bit 19:16 */
+ uint32_t instance = (addr & U(0x00f000)) >> 12U; /* bit 15:12 */
+ uint32_t offset = (addr & U(0x000fff)); /* bit 11:0 */
+
+ switch (block_type) {
+ case 0x0: /* 0x0 : ANIB */
+ return MAP_PHY_ADDR(pstate, 12, instance, offset, 0);
+ case 0x1: /* 0x1 : DBYTE */
+ return MAP_PHY_ADDR(pstate, 10, instance, offset, 0x30);
+ case 0x2: /* 0x2 : MASTER */
+ return MAP_PHY_ADDR(pstate, 1, 0, offset, 0x58);
+ case 0x4: /* 0x4 : ACSM */
+ return MAP_PHY_ADDR(pstate, 1, 0, offset, 0x5c);
+ case 0x5: /* 0x5 : μCTL Memory */
+ return MAP_PHY_ADDR(pstate, 0, instance, offset, 0x60);
+ case 0x7: /* 0x7 : PPGC */
+ return MAP_PHY_ADDR(pstate, 0, 0, offset, 0x68);
+ case 0x9: /* 0x9 : INITENG */
+ return MAP_PHY_ADDR(pstate, 1, 0, offset, 0x69);
+ case 0xc: /* 0xC : DRTUB */
+ return MAP_PHY_ADDR(pstate, 0, 0, offset, 0x6d);
+ case 0xd: /* 0xD : APB Only */
+ return MAP_PHY_ADDR(pstate, 0, 0, offset, 0x6e);
+ default:
+ printf("ERR: Invalid block_type = 0x%x\n", block_type);
+ return 0;
+ }
+}
+
+static inline uint16_t *phy_io_addr(void *phy, uint32_t addr)
+{
+ return phy + (map_phy_addr_space(addr) << 2);
+}
+
+static inline void phy_io_write16(uint16_t *phy, uint32_t addr, uint16_t data)
+{
+ mmio_write_16((uintptr_t)phy_io_addr(phy, addr), data);
+#ifdef DEBUG_PHY_IO
+ printf("0x%06x,0x%x\n", addr, data);
+#endif
+}
+
+static inline uint16_t phy_io_read16(uint16_t *phy, uint32_t addr)
+{
+ uint16_t reg = mmio_read_16((uintptr_t) phy_io_addr(phy, addr));
+
+#ifdef DEBUG_PHY_IO
+ printf("R: 0x%06x,0x%x\n", addr, reg);
+#endif
+
+ return reg;
+}
+
+#ifdef NXP_APPLY_MAX_CDD
+
+#define CDD_VAL_READ_ADDR (0x054012)
+#define CDD_DATA_LEN (60)
+
+static void read_phy_reg(uint16_t *phy, uint32_t addr,
+ uint16_t *buf, uint32_t len)
+{
+ uint32_t i = 0U;
+
+ for (i = 0U; i < len/2; i++) {
+ buf[i] = phy_io_read16(phy, (addr + i));
+ }
+}
+
+static uint32_t findrank(uint32_t cs_in_use)
+{
+ uint32_t val = 0U;
+
+ switch (cs_in_use) {
+ case U(0xf):
+ val = 4U;
+ break;
+ case U(0x3):
+ val = 2U;
+ break;
+ case U(0x1):
+ val = 1U;
+ break;
+ default:
+ printf("Error - Invalid cs_in_use value\n");
+ }
+ return val;
+}
+
+static uint8_t findmax(uint8_t *buf, uint32_t len)
+{
+ uint8_t max = 0U;
+ uint32_t i = 0U;
+
+ for (i = 0U; i < len; i++) {
+ if (buf[i] > max) {
+ max = buf[i];
+ }
+ }
+
+ return max;
+}
+
+static void get_cdd_val(uint16_t **phy_ptr, uint32_t rank, uint32_t freq,
+ uint32_t *tcfg0, uint32_t *tcfg4)
+{
+ uint8_t cdd[CDD_DATA_LEN+4] = {0U};
+ uint32_t i, val = 0U;
+ uint16_t *phy;
+ uint8_t buf[16] = {U(0x0)};
+ uint8_t trr = 0U, tww = 0U, trw = 0U, twr = 0U;
+ uint8_t rrmax = 0U, wwmax = 0U, rwmax = 0U, wrmax = 0U;
+ uint8_t tmp = U(0x0);
+ uint8_t *c = NULL;
+
+ for (i = 0U; i < NUM_OF_DDRC; i++) {
+
+ phy = phy_ptr[i];
+ if (phy == NULL) {
+ continue;
+ }
+
+ phy_io_write16(phy, t_apbonly |
+ csr_micro_cont_mux_sel_addr, U(0x0));
+
+ read_phy_reg(phy, CDD_VAL_READ_ADDR,
+ (uint16_t *)&cdd, CDD_DATA_LEN);
+
+ phy_io_write16(phy, t_apbonly |
+ csr_micro_cont_mux_sel_addr, U(0x1));
+
+ /* CDD values and address
+ *
+ * 0x054012 0x24 cdd[0] CDD[X][X]
+ * 0x054012 0x25 cdd[1] RR[3][2]
+ * 0x054013 0x26 cdd[2] RR[3][1]
+ * 0x054013 0x27 cdd[3] RR[3][0]
+ * 0x054014 0x28 cdd[4] RR[2][3]
+ * 0x054014 0x29 cdd[5] RR[2][1]
+ * 0x054015 0x2a cdd[6] RR[2][0]
+ * 0x054015 0x2b cdd[7] RR[1][3]
+ * 0x054016 0x2c cdd[8] RR[1][2]
+ * 0x054016 0x2d cdd[9] RR[1][0]
+ * 0x054017 0x2e cdd[10] RR[0][3]
+ * 0x054017 0x2f cdd[11] RR[0][2]
+ * 0x054018 0x30 cdd[12] RR[0][1]
+
+ * 0x054018 0x31 cdd[13] WW[3][2]
+ * 0x054019 0x32 cdd[14] WW[3][1]
+ * 0x054019 0x33 cdd[15] WW[3][0]
+ * 0x05401a 0x34 cdd[16] WW[2][3]
+ * 0x05401a 0x35 cdd[17] WW[2][1]
+ * 0x05401b 0x36 cdd[18] WW[2][0]
+ * 0x05401b 0x37 cdd[19] WW[1][3]
+ * 0x05401c 0x38 cdd[20] WW[1][2]
+ * 0x05401c 0x39 cdd[21] WW[1][0]
+ * 0x05401d 0x3a cdd[22] WW[0][3]
+ * 0x05401d 0x3b cdd[23] WW[0][2]
+ * 0x05401e 0x3c cdd[24] WW[0][1]
+
+ * 0x05401e 0x3d cdd[25] RW[3][3]
+ * 0x05401f 0x3e cdd[26] RW[3][2]
+ * 0x05401f 0x3f cdd[27] RW[3][1]
+ * 0x054020 0x40 cdd[28] RW[3][0]
+ * 0x054020 0x41 cdd[29] RW[2][3]
+ * 0x054021 0x42 cdd[30] RW[2][2]
+ * 0x054021 0x43 cdd[31] RW[2][1]
+ * 0x054022 0x44 cdd[32] RW[2][0]
+ * 0x054022 0x45 cdd[33] RW[1][3]
+ * 0x054023 0x46 cdd[34] RW[1][2]
+ * 0x054023 0x47 cdd[35] RW[1][1]
+ * 0x054024 0x48 cdd[36] RW[1][0]
+ * 0x054024 0x49 cdd[37] RW[0][3]
+ * 0x054025 0x4a cdd[38] RW[0][2]
+ * 0x054025 0x4b cdd[39] RW[0][1]
+ * 0x054026 0x4c cdd[40] RW[0][0]
+
+ * 0x054026 0x4d cdd[41] WR[3][3]
+ * 0x054027 0x4e cdd[42] WR[3][2]
+ * 0x054027 0x4f cdd[43] WR[3][1]
+ * 0x054028 0x50 cdd[44] WR[3][0]
+ * 0x054028 0x51 cdd[45] WR[2][3]
+ * 0x054029 0x52 cdd[46] WR[2][2]
+ * 0x054029 0x53 cdd[47] WR[2][1]
+ * 0x05402a 0x54 cdd[48] WR[2][0]
+ * 0x05402a 0x55 cdd[49] WR[1][3]
+ * 0x05402b 0x56 cdd[50] WR[1][2]
+ * 0x05402b 0x57 cdd[51] WR[1][1]
+ * 0x05402c 0x58 cdd[52] WR[1][0]
+ * 0x05402c 0x59 cdd[53] WR[0][3]
+ * 0x05402d 0x5a cdd[54] WR[0][2]
+ * 0x05402d 0x5b cdd[55] WR[0][1]
+ * 0x05402e 0x5c cdd[56] WR[0][0]
+ * 0x05402e 0x5d cdd[57] CDD[Y][Y]
+ */
+
+ switch (rank) {
+ case 1U:
+ tmp = rwmax;
+ rwmax = cdd[40];
+ if (tmp > rwmax) {
+ rwmax = tmp;
+ }
+
+ tmp = wrmax;
+ wrmax = cdd[56];
+ if (tmp > wrmax) {
+ wrmax = tmp;
+ }
+
+ break;
+
+ case 2U:
+ buf[0] = cdd[12];
+ buf[1] = cdd[9];
+ tmp = rrmax;
+ rrmax = findmax(buf, 2U);
+ if (tmp > rrmax) {
+ rrmax = tmp;
+ }
+
+ buf[0] = cdd[24];
+ buf[1] = cdd[21];
+ tmp = wwmax;
+ wwmax = findmax(buf, 2U);
+ if (tmp > wwmax) {
+ wwmax = tmp;
+ }
+
+ buf[0] = cdd[40];
+ buf[1] = cdd[39];
+ buf[2] = cdd[36];
+ buf[3] = cdd[35];
+ tmp = rwmax;
+ rwmax = findmax(buf, 4U);
+ if (tmp > rwmax) {
+ rwmax = tmp;
+ }
+
+ buf[0] = cdd[56];
+ buf[1] = cdd[55];
+ buf[2] = cdd[52];
+ buf[3] = cdd[51];
+ tmp = wrmax;
+ wrmax = findmax(buf, 4U);
+ if (tmp > wrmax) {
+ wrmax = tmp;
+ }
+
+ break;
+
+ case 4U:
+ tmp = rrmax;
+ c = &cdd[1];
+ rrmax = findmax(c, 12U);
+ if (tmp > rrmax) {
+ rrmax = tmp;
+ }
+
+ tmp = wwmax;
+ c = &cdd[13];
+ wwmax = findmax(c, 12U);
+ if (tmp > wwmax) {
+ wwmax = tmp;
+ }
+
+ tmp = rwmax;
+ c = &cdd[25];
+ rwmax = findmax(c, 16U);
+ if (tmp > rwmax) {
+ rwmax = tmp;
+ }
+
+ tmp = wrmax;
+ c = &cdd[41];
+ wrmax = findmax(c, 16U);
+ if (tmp > wrmax) {
+ wrmax = tmp;
+ }
+
+ break;
+
+ }
+ }
+
+ rrmax += 3U;
+ wwmax += 4U;
+
+ if (wwmax > 7U) {
+ wwmax = 7U;
+ }
+
+ if (rrmax > 7U) {
+ rrmax = 7U;
+ }
+
+ if (wrmax > U(0xf)) {
+ wrmax = 0U;
+ }
+
+ if (rwmax > U(0x7)) {
+ rwmax = U(0x7);
+ }
+
+ val = *tcfg0;
+ tww = (val >> 24U) & U(0x3);
+ trr = (val >> 26U) & U(0x3);
+ twr = (val >> 28U) & U(0x3);
+ trw = (val >> 30U) & U(0x3);
+
+ val = *tcfg4;
+ tww = tww | (((val >> 8U) & U(0x1)) << 2U);
+ trr = trr | (((val >> 10U) & U(0x1)) << 2U);
+ twr = twr | (((val >> 12U) & U(0x1)) << 2U);
+ trw = trw | (((val >> 14U) & U(0x3)) << 2U);
+
+ if (trr > rrmax) {
+ rrmax = trr;
+ }
+
+ if (tww > wwmax) {
+ wwmax = tww;
+ }
+
+ if (trw > rwmax) {
+ rwmax = trw;
+ }
+
+ if (twr > wrmax) {
+ wrmax = twr;
+ }
+
+ debug("CDD rrmax %x wwmax %x rwmax %x wrmax %x\n",
+ rrmax, wwmax, rwmax, wrmax);
+
+ val = ((wwmax & U(0x3)) << 24U)
+ | ((rrmax & U(0x3)) << 26U)
+ | ((wrmax & U(0x3)) << 28U)
+ | ((rwmax & U(0x3)) << 30U);
+
+ *tcfg0 = (*tcfg0 & U(0x00FFFFFF)) | (val);
+
+ val = (((wwmax >> 2U) & U(0x1)) << 8U)
+ | (((rrmax >> 2U) & U(0x1)) << 10U)
+ | (((wrmax >> 2U) & U(0x1)) << 12U)
+ | (((rwmax >> 2U) & U(0x3)) << 14U);
+
+ *tcfg4 = (*tcfg4 & U(0xffff00ff)) | val;
+}
+#endif
+
+#ifdef NXP_WARM_BOOT
+int save_phy_training_values(uint16_t **phy_ptr, uint32_t address_to_store,
+ uint32_t num_of_phy, int train2d)
+{
+ uint16_t *phy = NULL, value = 0x0;
+ uint32_t size = 1U, num_of_regs = 1U, phy_store = 0U;
+ int i = 0, j = 0, ret = -EINVAL;
+
+ ret = xspi_sector_erase(address_to_store, PHY_ERASE_SIZE);
+ if (ret != 0) {
+ return -EINVAL;
+ }
+
+ for (j = 0; j < num_of_phy; j++) {
+ /* Save training values of all PHYs */
+ phy = phy_ptr[j];
+ size = sizeof(training_1D_values);
+ num_of_regs = ARRAY_SIZE(training_1D_values);
+
+ /* Enable access to the internal CSRs */
+ phy_io_write16(phy, t_apbonly |
+ csr_micro_cont_mux_sel_addr, 0x0);
+ /* Enable clocks in case they were disabled. */
+ phy_io_write16(phy, t_drtub |
+ csr_ucclk_hclk_enables_addr, 0x3);
+ if (train2d != 0) {
+ /* Address to store training values is
+ * to be appended for next PHY
+ */
+ phy_store = address_to_store + (j *
+ (sizeof(training_1D_values) +
+ sizeof(training_2D_values)));
+ } else {
+ phy_store = address_to_store + (j *
+ (sizeof(training_1D_values)));
+ }
+ debug("Saving 1D Training reg val at: %d\n", phy_store);
+ for (i = 0; i < num_of_regs; i++) {
+ value = phy_io_read16(phy, training_1D_values[i].addr);
+#ifdef DEBUG_WARM_RESET
+ debug("%d. Reg: %x, value: %x PHY: %p\n", i,
+ training_1D_values[i].addr, value,
+ phy_io_addr(phy,
+ training_1D_values[i].addr));
+#endif
+ training_1D_values[i].data = value;
+ }
+ /* Storing 1D training values on flash */
+ ret = xspi_write(phy_store, (void *)training_1D_values, size);
+ if (train2d != 0) {
+ phy_store = phy_store+size;
+ size = sizeof(training_2D_values);
+ num_of_regs = ARRAY_SIZE(training_2D_values);
+ debug("Saving 2D Training reg val at:%d\n", phy_store);
+ for (i = 0; i < num_of_regs; i++) {
+ value = phy_io_read16(phy,
+ training_2D_values[i].addr);
+ training_2D_values[i].data = value;
+#ifdef DEBUG_WARM_RESET
+ debug("%d.2D addr:0x%x,val:0x%x,PHY:0x%p\n",
+ i, training_2D_values[i].addr,
+ value, phy_io_addr(phy,
+ training_2D_values[i].addr));
+#endif
+ }
+ /* Storing 2D training values on flash */
+ ret = xspi_write(phy_store, training_2D_values,
+ size);
+ }
+ /* Disable clocks in case they were disabled. */
+ phy_io_write16(phy, t_drtub |
+ csr_ucclk_hclk_enables_addr, 0x0);
+ /* Disable access to the internal CSRs */
+ phy_io_write16(phy, t_apbonly |
+ csr_micro_cont_mux_sel_addr, 0x1);
+ }
+ if (ret != 0) {
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+int restore_phy_training_values(uint16_t **phy_ptr, uint32_t address_to_restore,
+ uint32_t num_of_phy, int train2d)
+{
+ uint16_t *phy = NULL;
+ uint32_t size = 1U, num_of_regs = 1U, phy_store = 0U;
+ int i = 0, j = 0, ret = -EINVAL;
+
+ debug("Restoring Training register values\n");
+ for (j = 0; j < num_of_phy; j++) {
+ phy = phy_ptr[j];
+ size = sizeof(training_1D_values);
+ num_of_regs = ARRAY_SIZE(training_1D_values);
+ if (train2d != 0) {
+ /* The address to restore training values is
+ * to be appended for next PHY
+ */
+ phy_store = address_to_restore + (j *
+ (sizeof(training_1D_values) +
+ sizeof(training_2D_values)));
+ } else {
+ phy_store = address_to_restore + (j *
+ (sizeof(training_1D_values)));
+ }
+ /* Enable access to the internal CSRs */
+ phy_io_write16(phy, t_apbonly |
+ csr_micro_cont_mux_sel_addr, 0x0);
+ /* Enable clocks in case they were disabled. */
+ phy_io_write16(phy, t_drtub |
+ csr_ucclk_hclk_enables_addr, 0x3);
+
+ /* Reading 1D training values from flash*/
+ ret = xspi_read(phy_store, (uint32_t *)training_1D_values,
+ size);
+ debug("Restoring 1D Training reg val at:%08x\n", phy_store);
+ for (i = 0; i < num_of_regs; i++) {
+ phy_io_write16(phy, training_1D_values[i].addr,
+ training_1D_values[i].data);
+#ifdef DEBUG_WARM_RESET
+ debug("%d. Reg: %x, value: %x PHY: %p\n", i,
+ training_1D_values[i].addr,
+ training_1D_values[i].data,
+ phy_io_addr(phy,
+ training_1D_values[i].addr));
+#endif
+ }
+ if (train2d != 0) {
+ phy_store = phy_store + size;
+ size = sizeof(training_2D_values);
+ num_of_regs = ARRAY_SIZE(training_2D_values);
+ /* Reading 2D training values from flash */
+ ret = xspi_read(phy_store,
+ (uint32_t *)training_2D_values, size);
+ debug("Restoring 2D Training reg val at:%08x\n",
+ phy_store);
+ for (i = 0; i < num_of_regs; i++) {
+ phy_io_write16(phy, training_2D_values[i].addr,
+ training_2D_values[i].data);
+#ifdef DEBUG_WARM_RESET
+ debug("%d. Reg: %x, value: %x PHY: %p\n", i,
+ training_2D_values[i].addr,
+ training_2D_values[i].data,
+ phy_io_addr(phy,
+ training_1D_values[i].addr));
+#endif
+ }
+ }
+ /* Disable clocks in case they were disabled. */
+ phy_io_write16(phy, t_drtub |
+ csr_ucclk_hclk_enables_addr, 0x0);
+ /* Disable access to the internal CSRs */
+ phy_io_write16(phy, t_apbonly |
+ csr_micro_cont_mux_sel_addr, 0x1);
+ }
+ if (ret != 0) {
+ return -EINVAL;
+ }
+ return 0;
+}
+#endif
+
+static void load_pieimage(uint16_t *phy,
+ enum dimm_types dimm_type)
+{
+ int i;
+ int size;
+ const struct pie *image = NULL;
+
+ switch (dimm_type) {
+ case UDIMM:
+ case SODIMM:
+ case NODIMM:
+ image = pie_udimm;
+ size = ARRAY_SIZE(pie_udimm);
+ break;
+ case RDIMM:
+ image = pie_rdimm;
+ size = ARRAY_SIZE(pie_rdimm);
+ break;
+ case LRDIMM:
+ image = pie_lrdimm;
+ size = ARRAY_SIZE(pie_lrdimm);
+ break;
+ default:
+ printf("Unsupported DIMM type\n");
+ break;
+ }
+
+ if (image != NULL) {
+ for (i = 0; i < size; i++)
+ phy_io_write16(phy, image[i].addr, image[i].data);
+ }
+}
+
+static void prog_acsm_playback(uint16_t *phy,
+ const struct input *input, const void *msg)
+{
+ int vec;
+ const struct ddr4r1d *msg_blk;
+ uint16_t acsmplayback[2][3];
+ uint32_t f0rc0a;
+ uint32_t f0rc3x;
+ uint32_t f0rc5x;
+
+ if (input->basic.dimm_type != RDIMM) {
+ return;
+ }
+
+ msg_blk = msg;
+ f0rc0a = (msg_blk->f0rc0a_d0 & U(0xf)) | U(0xa0);
+ f0rc3x = (msg_blk->f0rc3x_d0 & U(0xff)) | U(0x300);
+ f0rc5x = (input->adv.phy_gen2_umctl_f0rc5x & U(0xff)) | U(0x500);
+
+ acsmplayback[0][0] = U(0x3ff) & f0rc0a;
+ acsmplayback[1][0] = (U(0x1c00) & f0rc0a) >> 10U;
+ acsmplayback[0][1] = U(0x3ff) & f0rc3x;
+ acsmplayback[1][1] = (U(0x1c00) & f0rc3x) >> 10U;
+ acsmplayback[0][2] = U(0x3ff) & f0rc5x;
+ acsmplayback[1][2] = (U(0x1c00) & f0rc5x) >> 10U;
+ for (vec = 0; vec < 3; vec++) {
+ phy_io_write16(phy, t_acsm | (csr_acsm_playback0x0_addr +
+ (vec << 1)), acsmplayback[0][vec]);
+ phy_io_write16(phy, t_acsm | (csr_acsm_playback1x0_addr +
+ (vec << 1)), acsmplayback[1][vec]);
+ }
+}
+
+static void prog_acsm_ctr(uint16_t *phy,
+ const struct input *input)
+{
+ if (input->basic.dimm_type != RDIMM) {
+ return;
+ }
+
+ phy_io_write16(phy, t_acsm | csr_acsm_ctrl13_addr,
+ 0xf << csr_acsm_cke_enb_lsb);
+
+ phy_io_write16(phy, t_acsm | csr_acsm_ctrl0_addr,
+ csr_acsm_par_mode_mask | csr_acsm_2t_mode_mask);
+}
+
+static void prog_cal_rate_run(uint16_t *phy,
+ const struct input *input)
+{
+ int cal_rate;
+ int cal_interval;
+ int cal_once;
+ uint32_t addr;
+
+ cal_interval = input->adv.cal_interval;
+ cal_once = input->adv.cal_once;
+ cal_rate = 0x1 << csr_cal_run_lsb |
+ cal_once << csr_cal_once_lsb |
+ cal_interval << csr_cal_interval_lsb;
+ addr = t_master | csr_cal_rate_addr;
+ phy_io_write16(phy, addr, cal_rate);
+}
+
+static void prog_seq0bdly0(uint16_t *phy,
+ const struct input *input)
+{
+ int ps_count[4];
+ int frq;
+ uint32_t addr;
+ int lower_freq_opt = 0;
+
+ __unused const soc_info_t *soc_info;
+
+ frq = input->basic.frequency >> 1;
+ ps_count[0] = frq >> 3; /* 0.5 * frq / 4*/
+ if (input->basic.frequency < 400) {
+ lower_freq_opt = (input->basic.dimm_type == RDIMM) ? 7 : 3;
+ } else if (input->basic.frequency < 533) {
+ lower_freq_opt = (input->basic.dimm_type == RDIMM) ? 14 : 11;
+ }
+
+ /* 1.0 * frq / 4 - lower_freq */
+ ps_count[1] = (frq >> 2) - lower_freq_opt;
+ ps_count[2] = (frq << 1) + (frq >> 1); /* 10.0 * frq / 4 */
+
+#ifdef DDR_PLL_FIX
+ soc_info = get_soc_info();
+ if (soc_info->svr_reg.bf.maj_ver == 1) {
+ ps_count[0] = 0x520; /* seq0bdly0 */
+ ps_count[1] = 0xa41; /* seq0bdly1 */
+ ps_count[2] = 0x668a; /* seq0bdly2 */
+ }
+#endif
+ if (frq > 266) {
+ ps_count[3] = 44;
+ } else if (frq > 200) {
+ ps_count[3] = 33;
+ } else {
+ ps_count[3] = 16;
+ }
+
+ addr = t_master | csr_seq0bdly0_addr;
+ phy_io_write16(phy, addr, ps_count[0]);
+
+ debug("seq0bdly0 = 0x%x\n", phy_io_read16(phy, addr));
+
+ addr = t_master | csr_seq0bdly1_addr;
+ phy_io_write16(phy, addr, ps_count[1]);
+
+ debug("seq0bdly1 = 0x%x\n", phy_io_read16(phy, addr));
+
+ addr = t_master | csr_seq0bdly2_addr;
+ phy_io_write16(phy, addr, ps_count[2]);
+
+ debug("seq0bdly2 = 0x%x\n", phy_io_read16(phy, addr));
+
+ addr = t_master | csr_seq0bdly3_addr;
+ phy_io_write16(phy, addr, ps_count[3]);
+
+ debug("seq0bdly3 = 0x%x\n", phy_io_read16(phy, addr));
+}
+
+/* Only RDIMM requires msg_blk */
+static void i_load_pie(uint16_t **phy_ptr,
+ const struct input *input,
+ const void *msg)
+{
+ int i;
+ uint16_t *phy;
+
+ for (i = 0; i < NUM_OF_DDRC; i++) {
+ phy = phy_ptr[i];
+ if (phy == NULL) {
+ continue;
+ }
+
+ phy_io_write16(phy,
+ t_apbonly | csr_micro_cont_mux_sel_addr,
+ 0U);
+
+ load_pieimage(phy, input->basic.dimm_type);
+
+ prog_seq0bdly0(phy, input);
+ phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag0_addr,
+ U(0x0000));
+ phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag1_addr,
+ U(0x0173));
+ phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag2_addr,
+ U(0x0060));
+ phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag3_addr,
+ U(0x6110));
+ phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag4_addr,
+ U(0x2152));
+ phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag5_addr,
+ U(0xdfbd));
+ phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag6_addr,
+ input->basic.dimm_type == RDIMM &&
+ input->adv.phy_gen2_umctl_opt == 1U ?
+ U(0x6000) : U(0xffff));
+ phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag7_addr,
+ U(0x6152));
+ prog_acsm_playback(phy, input, msg); /* rdimm */
+ prog_acsm_ctr(phy, input); /* rdimm */
+
+ phy_io_write16(phy, t_master | csr_cal_zap_addr, U(0x1));
+ prog_cal_rate_run(phy, input);
+
+ phy_io_write16(phy, t_drtub | csr_ucclk_hclk_enables_addr,
+ input->basic.dimm_type == RDIMM ? U(0x2) : 0U);
+
+ phy_io_write16(phy, t_apbonly | csr_micro_cont_mux_sel_addr, 1U);
+ }
+}
+
+static void phy_gen2_init_input(struct input *input)
+{
+ int i;
+
+ input->adv.dram_byte_swap = 0;
+ input->adv.ext_cal_res_val = 0;
+ input->adv.tx_slew_rise_dq = 0xf;
+ input->adv.tx_slew_fall_dq = 0xf;
+ input->adv.tx_slew_rise_ac = 0xf;
+ input->adv.tx_slew_fall_ac = 0xf;
+ input->adv.mem_alert_en = 0;
+ input->adv.mem_alert_puimp = 5;
+ input->adv.mem_alert_vref_level = 0x29;
+ input->adv.mem_alert_sync_bypass = 0;
+ input->adv.cal_interval = 0x9;
+ input->adv.cal_once = 0;
+ input->adv.dis_dyn_adr_tri = 0;
+ input->adv.is2ttiming = 0;
+ input->adv.d4rx_preamble_length = 0;
+ input->adv.d4tx_preamble_length = 0;
+
+ for (i = 0; i < 7; i++) {
+ debug("mr[%d] = 0x%x\n", i, input->mr[i]);
+ }
+
+ debug("input->cs_d0 = 0x%x\n", input->cs_d0);
+ debug("input->cs_d1 = 0x%x\n", input->cs_d1);
+ debug("input->mirror = 0x%x\n", input->mirror);
+ debug("PHY ODT impedance = %d ohm\n", input->adv.odtimpedance);
+ debug("PHY DQ driver impedance = %d ohm\n", input->adv.tx_impedance);
+ debug("PHY Addr driver impedance = %d ohm\n", input->adv.atx_impedance);
+
+ for (i = 0; i < 4; i++) {
+ debug("odt[%d] = 0x%x\n", i, input->odt[i]);
+ }
+
+ if (input->basic.dimm_type == RDIMM) {
+ for (i = 0; i < 16; i++) {
+ debug("input->rcw[%d] = 0x%x\n", i, input->rcw[i]);
+ }
+ debug("input->rcw3x = 0x%x\n", input->rcw3x);
+ }
+}
+
+/*
+ * All protocols share the same base structure of message block.
+ * RDIMM and LRDIMM have more entries defined than UDIMM.
+ * Create message blocks for 1D and 2D training.
+ * Update len with message block size.
+ */
+static int phy_gen2_msg_init(void *msg_1d,
+ void *msg_2d,
+ const struct input *input)
+{
+ struct ddr4u1d *msg_blk = msg_1d;
+ struct ddr4u2d *msg_blk_2d = msg_2d;
+ struct ddr4r1d *msg_blk_r;
+ struct ddr4lr1d *msg_blk_lr;
+
+ switch (input->basic.dimm_type) {
+ case UDIMM:
+ case SODIMM:
+ case NODIMM:
+ msg_blk->dram_type = U(0x2);
+ break;
+ case RDIMM:
+ msg_blk->dram_type = U(0x4);
+ break;
+ case LRDIMM:
+ msg_blk->dram_type = U(0x5);
+ break;
+ default:
+ ERROR("Unsupported DIMM type\n");
+ return -EINVAL;
+ }
+ msg_blk->pstate = 0U;
+
+ /*Enable quickRd2D, a substage of read deskew, to 1D training.*/
+ msg_blk->reserved00 = U(0x20);
+
+ /*Enable High-Effort WrDQ1D.*/
+ msg_blk->reserved00 |= U(0x40);
+
+ /* Enable 1D extra effort training.*/
+ msg_blk->reserved1c[3] = U(0x3);
+
+ if (input->basic.dimm_type == LRDIMM) {
+ msg_blk->sequence_ctrl = U(0x3f1f);
+ } else {
+ msg_blk->sequence_ctrl = U(0x031f);
+ }
+ msg_blk->phy_config_override = 0U;
+#ifdef DDR_PHY_DEBUG
+ msg_blk->hdt_ctrl = U(0x5);
+#else
+ msg_blk->hdt_ctrl = U(0xc9);
+#endif
+ msg_blk->msg_misc = U(0x0);
+ msg_blk->dfimrlmargin = U(0x1);
+ msg_blk->phy_vref = input->vref ? input->vref : U(0x61);
+ msg_blk->cs_present = input->cs_d0 | input->cs_d1;
+ msg_blk->cs_present_d0 = input->cs_d0;
+ msg_blk->cs_present_d1 = input->cs_d1;
+ if (input->mirror != 0) {
+ msg_blk->addr_mirror = U(0x0a); /* odd CS are mirrored */
+ }
+ msg_blk->share2dvref_result = 1U;
+
+ msg_blk->acsm_odt_ctrl0 = input->odt[0];
+ msg_blk->acsm_odt_ctrl1 = input->odt[1];
+ msg_blk->acsm_odt_ctrl2 = input->odt[2];
+ msg_blk->acsm_odt_ctrl3 = input->odt[3];
+ msg_blk->enabled_dqs = (input->basic.num_active_dbyte_dfi0 +
+ input->basic.num_active_dbyte_dfi1) * 8;
+ msg_blk->x16present = input->basic.dram_data_width == 0x10 ?
+ msg_blk->cs_present : 0;
+ msg_blk->d4misc = U(0x1);
+ msg_blk->cs_setup_gddec = U(0x1);
+ msg_blk->rtt_nom_wr_park0 = 0U;
+ msg_blk->rtt_nom_wr_park1 = 0U;
+ msg_blk->rtt_nom_wr_park2 = 0U;
+ msg_blk->rtt_nom_wr_park3 = 0U;
+ msg_blk->rtt_nom_wr_park4 = 0U;
+ msg_blk->rtt_nom_wr_park5 = 0U;
+ msg_blk->rtt_nom_wr_park6 = 0U;
+ msg_blk->rtt_nom_wr_park7 = 0U;
+ msg_blk->mr0 = input->mr[0];
+ msg_blk->mr1 = input->mr[1];
+ msg_blk->mr2 = input->mr[2];
+ msg_blk->mr3 = input->mr[3];
+ msg_blk->mr4 = input->mr[4];
+ msg_blk->mr5 = input->mr[5];
+ msg_blk->mr6 = input->mr[6];
+ if ((msg_blk->mr4 & U(0x1c0)) != 0U) {
+ ERROR("Setting DRAM CAL mode is not supported\n");
+ }
+
+ msg_blk->alt_cas_l = 0U;
+ msg_blk->alt_wcas_l = 0U;
+
+ msg_blk->dramfreq = input->basic.frequency * 2U;
+ msg_blk->pll_bypass_en = input->basic.pll_bypass;
+ msg_blk->dfi_freq_ratio = input->basic.dfi_freq_ratio == 0U ? 1U :
+ input->basic.dfi_freq_ratio == 1U ? 2U :
+ 4U;
+ msg_blk->bpznres_val = input->adv.ext_cal_res_val;
+ msg_blk->disabled_dbyte = 0U;
+
+ debug("msg_blk->dram_type = 0x%x\n", msg_blk->dram_type);
+ debug("msg_blk->sequence_ctrl = 0x%x\n", msg_blk->sequence_ctrl);
+ debug("msg_blk->phy_cfg = 0x%x\n", msg_blk->phy_cfg);
+ debug("msg_blk->x16present = 0x%x\n", msg_blk->x16present);
+ debug("msg_blk->dramfreq = 0x%x\n", msg_blk->dramfreq);
+ debug("msg_blk->pll_bypass_en = 0x%x\n", msg_blk->pll_bypass_en);
+ debug("msg_blk->dfi_freq_ratio = 0x%x\n", msg_blk->dfi_freq_ratio);
+ debug("msg_blk->phy_odt_impedance = 0x%x\n",
+ msg_blk->phy_odt_impedance);
+ debug("msg_blk->phy_drv_impedance = 0x%x\n",
+ msg_blk->phy_drv_impedance);
+ debug("msg_blk->bpznres_val = 0x%x\n", msg_blk->bpznres_val);
+ debug("msg_blk->enabled_dqs = 0x%x\n", msg_blk->enabled_dqs);
+ debug("msg_blk->acsm_odt_ctrl0 = 0x%x\n", msg_blk->acsm_odt_ctrl0);
+ debug("msg_blk->acsm_odt_ctrl1 = 0x%x\n", msg_blk->acsm_odt_ctrl1);
+ debug("msg_blk->acsm_odt_ctrl2 = 0x%x\n", msg_blk->acsm_odt_ctrl2);
+ debug("msg_blk->acsm_odt_ctrl3 = 0x%x\n", msg_blk->acsm_odt_ctrl3);
+
+ /* RDIMM only */
+ if (input->basic.dimm_type == RDIMM ||
+ input->basic.dimm_type == LRDIMM) {
+ msg_blk_r = (struct ddr4r1d *)msg_blk;
+ if (msg_blk_r->cs_present_d0 != 0U) {
+ msg_blk_r->f0rc00_d0 = input->rcw[0];
+ msg_blk_r->f0rc01_d0 = input->rcw[1];
+ msg_blk_r->f0rc02_d0 = input->rcw[2];
+ msg_blk_r->f0rc03_d0 = input->rcw[3];
+ msg_blk_r->f0rc04_d0 = input->rcw[4];
+ msg_blk_r->f0rc05_d0 = input->rcw[5];
+ msg_blk_r->f0rc06_d0 = input->rcw[6];
+ msg_blk_r->f0rc07_d0 = input->rcw[7];
+ msg_blk_r->f0rc08_d0 = input->rcw[8];
+ msg_blk_r->f0rc09_d0 = input->rcw[9];
+ msg_blk_r->f0rc0a_d0 = input->rcw[10];
+ msg_blk_r->f0rc0b_d0 = input->rcw[11];
+ msg_blk_r->f0rc0c_d0 = input->rcw[12];
+ msg_blk_r->f0rc0d_d0 = input->rcw[13];
+ msg_blk_r->f0rc0e_d0 = input->rcw[14];
+ msg_blk_r->f0rc0f_d0 = input->rcw[15];
+ msg_blk_r->f0rc3x_d0 = input->rcw3x;
+ }
+ if (msg_blk_r->cs_present_d1 != 0) {
+ msg_blk_r->f0rc00_d1 = input->rcw[0];
+ msg_blk_r->f0rc01_d1 = input->rcw[1];
+ msg_blk_r->f0rc02_d1 = input->rcw[2];
+ msg_blk_r->f0rc03_d1 = input->rcw[3];
+ msg_blk_r->f0rc04_d1 = input->rcw[4];
+ msg_blk_r->f0rc05_d1 = input->rcw[5];
+ msg_blk_r->f0rc06_d1 = input->rcw[6];
+ msg_blk_r->f0rc07_d1 = input->rcw[7];
+ msg_blk_r->f0rc08_d1 = input->rcw[8];
+ msg_blk_r->f0rc09_d1 = input->rcw[9];
+ msg_blk_r->f0rc0a_d1 = input->rcw[10];
+ msg_blk_r->f0rc0b_d1 = input->rcw[11];
+ msg_blk_r->f0rc0c_d1 = input->rcw[12];
+ msg_blk_r->f0rc0d_d1 = input->rcw[13];
+ msg_blk_r->f0rc0e_d1 = input->rcw[14];
+ msg_blk_r->f0rc0f_d1 = input->rcw[15];
+ msg_blk_r->f0rc3x_d1 = input->rcw3x;
+ }
+ if (input->basic.dimm_type == LRDIMM) {
+ msg_blk_lr = (struct ddr4lr1d *)msg_blk;
+ msg_blk_lr->bc0a_d0 = msg_blk_lr->f0rc0a_d0;
+ msg_blk_lr->bc0a_d1 = msg_blk_lr->f0rc0a_d1;
+ msg_blk_lr->f0bc6x_d0 = msg_blk_lr->f0rc3x_d0;
+ msg_blk_lr->f0bc6x_d1 = msg_blk_lr->f0rc3x_d1;
+ }
+ }
+
+ /* below is different for 1D and 2D message block */
+ if (input->basic.train2d != 0) {
+ memcpy(msg_blk_2d, msg_blk, sizeof(struct ddr4u1d));
+ /*High-Effort WrDQ1D is applicable to 2D traning also*/
+ msg_blk_2d->reserved00 |= U(0x40);
+ msg_blk_2d->sequence_ctrl = U(0x0061);
+ msg_blk_2d->rx2d_train_opt = 0U;
+ msg_blk_2d->tx2d_train_opt = 0U;
+ msg_blk_2d->share2dvref_result = 1U;
+ msg_blk_2d->delay_weight2d = U(0x20);
+ msg_blk_2d->voltage_weight2d = U(0x80);
+ debug("rx2d_train_opt %d, tx2d_train_opt %d\n",
+ msg_blk_2d->rx2d_train_opt,
+ msg_blk_2d->tx2d_train_opt);
+ }
+
+ msg_blk->phy_cfg = (((msg_blk->mr3 & U(0x8)) != 0U) ||
+ ((msg_blk_2d->mr3 & 0x8) != 0U)) ? 0U
+ : input->adv.is2ttiming;
+
+ return 0;
+}
+
+static void prog_tx_pre_drv_mode(uint16_t *phy,
+ const struct input *input)
+{
+ int lane, byte, b_addr, c_addr, p_addr;
+ int tx_slew_rate, tx_pre_p, tx_pre_n;
+ int tx_pre_drv_mode = 0x2;
+ uint32_t addr;
+
+ /* Program TxPreDrvMode with 0x2 */
+ /* FIXME: TxPreDrvMode depends on DramType? */
+ tx_pre_p = input->adv.tx_slew_rise_dq;
+ tx_pre_n = input->adv.tx_slew_fall_dq;
+ tx_slew_rate = tx_pre_drv_mode << csr_tx_pre_drv_mode_lsb |
+ tx_pre_p << csr_tx_pre_p_lsb |
+ tx_pre_n << csr_tx_pre_n_lsb;
+ p_addr = 0;
+ for (byte = 0; byte < input->basic.num_dbyte; byte++) {
+ c_addr = byte << 12;
+ for (lane = 0; lane <= 1; lane++) {
+ b_addr = lane << 8;
+ addr = p_addr | t_dbyte | c_addr | b_addr |
+ csr_tx_slew_rate_addr;
+ phy_io_write16(phy, addr, tx_slew_rate);
+ }
+ }
+}
+
+static void prog_atx_pre_drv_mode(uint16_t *phy,
+ const struct input *input)
+{
+ int anib, c_addr;
+ int atx_slew_rate, atx_pre_p, atx_pre_n, atx_pre_drv_mode,
+ ck_anib_inst[2];
+ uint32_t addr;
+
+ atx_pre_n = input->adv.tx_slew_fall_ac;
+ atx_pre_p = input->adv.tx_slew_rise_ac;
+
+ if (input->basic.num_anib == 8) {
+ ck_anib_inst[0] = 1;
+ ck_anib_inst[1] = 1;
+ } else if (input->basic.num_anib == 10 || input->basic.num_anib == 12 ||
+ input->basic.num_anib == 13) {
+ ck_anib_inst[0] = 4;
+ ck_anib_inst[1] = 5;
+ } else {
+ ERROR("Invalid number of aNIBs: %d\n", input->basic.num_anib);
+ return;
+ }
+
+ for (anib = 0; anib < input->basic.num_anib; anib++) {
+ c_addr = anib << 12;
+ if (anib == ck_anib_inst[0] || anib == ck_anib_inst[1]) {
+ atx_pre_drv_mode = 0;
+ } else {
+ atx_pre_drv_mode = 3;
+ }
+ atx_slew_rate = atx_pre_drv_mode << csr_atx_pre_drv_mode_lsb |
+ atx_pre_n << csr_atx_pre_n_lsb |
+ atx_pre_p << csr_atx_pre_p_lsb;
+ addr = t_anib | c_addr | csr_atx_slew_rate_addr;
+ phy_io_write16(phy, addr, atx_slew_rate);
+ }
+}
+
+static void prog_enable_cs_multicast(uint16_t *phy,
+ const struct input *input)
+{
+ uint32_t addr = t_master | csr_enable_cs_multicast_addr;
+
+ if (input->basic.dimm_type != RDIMM &&
+ input->basic.dimm_type != LRDIMM) {
+ return;
+ }
+
+ phy_io_write16(phy, addr, input->adv.cast_cs_to_cid);
+}
+
+static void prog_dfi_rd_data_cs_dest_map(uint16_t *phy,
+ unsigned int ip_rev,
+ const struct input *input,
+ const struct ddr4lr1d *msg)
+{
+ const struct ddr4lr1d *msg_blk;
+ uint16_t dfi_xxdestm0 = 0U;
+ uint16_t dfi_xxdestm1 = 0U;
+ uint16_t dfi_xxdestm2 = 0U;
+ uint16_t dfi_xxdestm3 = 0U;
+ uint16_t dfi_rd_data_cs_dest_map;
+ uint16_t dfi_wr_data_cs_dest_map;
+ __unused const soc_info_t *soc_info;
+
+#ifdef ERRATA_DDR_A011396
+ /* Only apply to DDRC 5.05.00 */
+ soc_info = get_soc_info();
+ if ((soc_info->svr_reg.bf.maj_ver == 1U) && (ip_rev == U(0x50500))) {
+ phy_io_write16(phy,
+ t_master | csr_dfi_rd_data_cs_dest_map_addr,
+ 0U);
+ return;
+ }
+#endif
+
+ msg_blk = msg;
+
+ switch (input->basic.dimm_type) {
+ case UDIMM:
+ case SODIMM:
+ case NODIMM:
+ if ((msg_blk->msg_misc & U(0x40)) != 0U) {
+ dfi_rd_data_cs_dest_map = U(0xa0);
+ dfi_wr_data_cs_dest_map = U(0xa0);
+
+ phy_io_write16(phy,
+ t_master | csr_dfi_rd_data_cs_dest_map_addr,
+ dfi_rd_data_cs_dest_map);
+ phy_io_write16(phy,
+ t_master | csr_dfi_wr_data_cs_dest_map_addr,
+ dfi_wr_data_cs_dest_map);
+ }
+ break;
+ case LRDIMM:
+ if (msg->cs_present_d1 != 0U) {
+ dfi_xxdestm2 = 1U;
+ dfi_xxdestm3 = 1U;
+ }
+
+ dfi_rd_data_cs_dest_map =
+ dfi_xxdestm0 << csr_dfi_rd_destm0_lsb |
+ dfi_xxdestm1 << csr_dfi_rd_destm1_lsb |
+ dfi_xxdestm2 << csr_dfi_rd_destm2_lsb |
+ dfi_xxdestm3 << csr_dfi_rd_destm3_lsb;
+ dfi_wr_data_cs_dest_map =
+ dfi_xxdestm0 << csr_dfi_wr_destm0_lsb |
+ dfi_xxdestm1 << csr_dfi_wr_destm1_lsb |
+ dfi_xxdestm2 << csr_dfi_wr_destm2_lsb |
+ dfi_xxdestm3 << csr_dfi_wr_destm3_lsb;
+ phy_io_write16(phy, t_master | csr_dfi_rd_data_cs_dest_map_addr,
+ dfi_rd_data_cs_dest_map);
+ phy_io_write16(phy, t_master | csr_dfi_wr_data_cs_dest_map_addr,
+ dfi_wr_data_cs_dest_map);
+
+ break;
+ default:
+ break;
+ }
+}
+
+static void prog_pll_ctrl(uint16_t *phy,
+ const struct input *input)
+{
+ uint32_t addr;
+ int pll_ctrl1 = 0x21; /* 000100001b */
+ int pll_ctrl4 = 0x17f; /* 101111111b */
+ int pll_test_mode = 0x24; /* 00100100b */
+
+ addr = t_master | csr_pll_ctrl1_addr;
+ phy_io_write16(phy, addr, pll_ctrl1);
+
+ debug("pll_ctrl1 = 0x%x\n", phy_io_read16(phy, addr));
+
+ addr = t_master | csr_pll_test_mode_addr;
+ phy_io_write16(phy, addr, pll_test_mode);
+
+ debug("pll_test_mode = 0x%x\n", phy_io_read16(phy, addr));
+
+ addr = t_master | csr_pll_ctrl4_addr;
+ phy_io_write16(phy, addr, pll_ctrl4);
+
+ debug("pll_ctrl4 = 0x%x\n", phy_io_read16(phy, addr));
+}
+
+static void prog_pll_ctrl2(uint16_t *phy,
+ const struct input *input)
+{
+ int pll_ctrl2;
+ uint32_t addr = t_master | csr_pll_ctrl2_addr;
+
+ if (input->basic.frequency / 2 < 235) {
+ pll_ctrl2 = 0x7;
+ } else if (input->basic.frequency / 2 < 313) {
+ pll_ctrl2 = 0x6;
+ } else if (input->basic.frequency / 2 < 469) {
+ pll_ctrl2 = 0xb;
+ } else if (input->basic.frequency / 2 < 625) {
+ pll_ctrl2 = 0xa;
+ } else if (input->basic.frequency / 2 < 938) {
+ pll_ctrl2 = 0x19;
+ } else if (input->basic.frequency / 2 < 1067) {
+ pll_ctrl2 = 0x18;
+ } else {
+ pll_ctrl2 = 0x19;
+ }
+
+ phy_io_write16(phy, addr, pll_ctrl2);
+
+ debug("pll_ctrl2 = 0x%x\n", phy_io_read16(phy, addr));
+}
+
+static void prog_dll_lck_param(uint16_t *phy, const struct input *input)
+{
+ uint32_t addr = t_master | csr_dll_lockparam_addr;
+
+ phy_io_write16(phy, addr, U(0x212));
+ debug("dll_lck_param = 0x%x\n", phy_io_read16(phy, addr));
+}
+
+static void prog_dll_gain_ctl(uint16_t *phy, const struct input *input)
+{
+ uint32_t addr = t_master | csr_dll_gain_ctl_addr;
+
+ phy_io_write16(phy, addr, U(0x61));
+ debug("dll_gain_ctl = 0x%x\n", phy_io_read16(phy, addr));
+}
+
+static void prog_pll_pwr_dn(uint16_t *phy,
+ const struct input *input)
+{
+ uint32_t addr;
+
+ addr = t_master | csr_pll_pwr_dn_addr;
+ phy_io_write16(phy, addr, 0U);
+
+ debug("pll_pwrdn = 0x%x\n", phy_io_read16(phy, addr));
+}
+
+static void prog_ard_ptr_init_val(uint16_t *phy,
+ const struct input *input)
+{
+ int ard_ptr_init_val;
+ uint32_t addr = t_master | csr_ard_ptr_init_val_addr;
+
+ if (input->basic.frequency >= 933) {
+ ard_ptr_init_val = 0x2;
+ } else {
+ ard_ptr_init_val = 0x1;
+ }
+
+ phy_io_write16(phy, addr, ard_ptr_init_val);
+}
+
+static void prog_dqs_preamble_control(uint16_t *phy,
+ const struct input *input)
+{
+ int data;
+ uint32_t addr = t_master | csr_dqs_preamble_control_addr;
+ const int wdqsextension = 0;
+ const int lp4sttc_pre_bridge_rx_en = 0;
+ const int lp4postamble_ext = 0;
+ const int lp4tgl_two_tck_tx_dqs_pre = 0;
+ const int position_dfe_init = 2;
+ const int dll_rx_preamble_mode = 1;
+ int two_tck_tx_dqs_pre = input->adv.d4tx_preamble_length;
+ int two_tck_rx_dqs_pre = input->adv.d4rx_preamble_length;
+
+ data = wdqsextension << csr_wdqsextension_lsb |
+ lp4sttc_pre_bridge_rx_en << csr_lp4sttc_pre_bridge_rx_en_lsb |
+ lp4postamble_ext << csr_lp4postamble_ext_lsb |
+ lp4tgl_two_tck_tx_dqs_pre << csr_lp4tgl_two_tck_tx_dqs_pre_lsb |
+ position_dfe_init << csr_position_dfe_init_lsb |
+ two_tck_tx_dqs_pre << csr_two_tck_tx_dqs_pre_lsb |
+ two_tck_rx_dqs_pre << csr_two_tck_rx_dqs_pre_lsb;
+ phy_io_write16(phy, addr, data);
+
+ data = dll_rx_preamble_mode << csr_dll_rx_preamble_mode_lsb;
+ addr = t_master | csr_dbyte_dll_mode_cntrl_addr;
+ phy_io_write16(phy, addr, data);
+}
+
+static void prog_proc_odt_time_ctl(uint16_t *phy,
+ const struct input *input)
+{
+ int proc_odt_time_ctl;
+ uint32_t addr = t_master | csr_proc_odt_time_ctl_addr;
+
+ if (input->adv.wdqsext != 0) {
+ proc_odt_time_ctl = 0x3;
+ } else if (input->basic.frequency <= 933) {
+ proc_odt_time_ctl = 0xa;
+ } else if (input->basic.frequency <= 1200) {
+ if (input->adv.d4rx_preamble_length == 1) {
+ proc_odt_time_ctl = 0x2;
+ } else {
+ proc_odt_time_ctl = 0x6;
+ }
+ } else {
+ if (input->adv.d4rx_preamble_length == 1) {
+ proc_odt_time_ctl = 0x3;
+ } else {
+ proc_odt_time_ctl = 0x7;
+ }
+ }
+ phy_io_write16(phy, addr, proc_odt_time_ctl);
+}
+
+static const struct impedance_mapping map[] = {
+ { 29, 0x3f },
+ { 31, 0x3e },
+ { 33, 0x3b },
+ { 36, 0x3a },
+ { 39, 0x39 },
+ { 42, 0x38 },
+ { 46, 0x1b },
+ { 51, 0x1a },
+ { 57, 0x19 },
+ { 64, 0x18 },
+ { 74, 0x0b },
+ { 88, 0x0a },
+ { 108, 0x09 },
+ { 140, 0x08 },
+ { 200, 0x03 },
+ { 360, 0x02 },
+ { 481, 0x01 },
+ {}
+};
+
+static int map_impedance(int strength)
+{
+ const struct impedance_mapping *tbl = map;
+ int val = 0;
+
+ if (strength == 0) {
+ return 0;
+ }
+
+ while (tbl->ohm != 0U) {
+ if (strength < tbl->ohm) {
+ val = tbl->code;
+ break;
+ }
+ tbl++;
+ }
+
+ return val;
+}
+
+static int map_odtstren_p(int strength, int hard_macro_ver)
+{
+ int val = -1;
+
+ if (hard_macro_ver == 4) {
+ if (strength == 0) {
+ val = 0;
+ } else if (strength == 120) {
+ val = 0x8;
+ } else if (strength == 60) {
+ val = 0x18;
+ } else if (strength == 40) {
+ val = 0x38;
+ } else {
+ printf("error: unsupported ODTStrenP %d\n", strength);
+ }
+ } else {
+ val = map_impedance(strength);
+ }
+
+ return val;
+}
+
+static void prog_tx_odt_drv_stren(uint16_t *phy,
+ const struct input *input)
+{
+ int lane, byte, b_addr, c_addr;
+ int tx_odt_drv_stren;
+ int odtstren_p, odtstren_n;
+ uint32_t addr;
+
+ odtstren_p = map_odtstren_p(input->adv.odtimpedance,
+ input->basic.hard_macro_ver);
+ if (odtstren_p < 0) {
+ return;
+ }
+
+ odtstren_n = 0; /* always high-z */
+ tx_odt_drv_stren = odtstren_n << csr_odtstren_n_lsb | odtstren_p;
+ for (byte = 0; byte < input->basic.num_dbyte; byte++) {
+ c_addr = byte << 12;
+ for (lane = 0; lane <= 1; lane++) {
+ b_addr = lane << 8;
+ addr = t_dbyte | c_addr | b_addr |
+ csr_tx_odt_drv_stren_addr;
+ phy_io_write16(phy, addr, tx_odt_drv_stren);
+ }
+ }
+}
+
+static int map_drvstren_fsdq_p(int strength, int hard_macro_ver)
+{
+ int val = -1;
+
+ if (hard_macro_ver == 4) {
+ if (strength == 0) {
+ val = 0x07;
+ } else if (strength == 120) {
+ val = 0x0F;
+ } else if (strength == 60) {
+ val = 0x1F;
+ } else if (strength == 40) {
+ val = 0x3F;
+ } else {
+ printf("error: unsupported drv_stren_fSDq_p %d\n",
+ strength);
+ }
+ } else {
+ val = map_impedance(strength);
+ }
+
+ return val;
+}
+
+static int map_drvstren_fsdq_n(int strength, int hard_macro_ver)
+{
+ int val = -1;
+
+ if (hard_macro_ver == 4) {
+ if (strength == 0) {
+ val = 0x00;
+ } else if (strength == 120) {
+ val = 0x08;
+ } else if (strength == 60) {
+ val = 0x18;
+ } else if (strength == 40) {
+ val = 0x38;
+ } else {
+ printf("error: unsupported drvStrenFSDqN %d\n",
+ strength);
+ }
+ } else {
+ val = map_impedance(strength);
+ }
+
+ return val;
+}
+
+static void prog_tx_impedance_ctrl1(uint16_t *phy,
+ const struct input *input)
+{
+ int lane, byte, b_addr, c_addr;
+ int tx_impedance_ctrl1;
+ int drv_stren_fsdq_p, drv_stren_fsdq_n;
+ uint32_t addr;
+
+ drv_stren_fsdq_p = map_drvstren_fsdq_p(input->adv.tx_impedance,
+ input->basic.hard_macro_ver);
+ drv_stren_fsdq_n = map_drvstren_fsdq_n(input->adv.tx_impedance,
+ input->basic.hard_macro_ver);
+ tx_impedance_ctrl1 = drv_stren_fsdq_n << csr_drv_stren_fsdq_n_lsb |
+ drv_stren_fsdq_p << csr_drv_stren_fsdq_p_lsb;
+
+ for (byte = 0; byte < input->basic.num_dbyte; byte++) {
+ c_addr = byte << 12;
+ for (lane = 0; lane <= 1; lane++) {
+ b_addr = lane << 8;
+ addr = t_dbyte | c_addr | b_addr |
+ csr_tx_impedance_ctrl1_addr;
+ phy_io_write16(phy, addr, tx_impedance_ctrl1);
+ }
+ }
+}
+
+static int map_adrv_stren_p(int strength, int hard_macro_ver)
+{
+ int val = -1;
+
+ if (hard_macro_ver == 4) {
+ if (strength == 120) {
+ val = 0x1c;
+ } else if (strength == 60) {
+ val = 0x1d;
+ } else if (strength == 40) {
+ val = 0x1f;
+ } else {
+ printf("error: unsupported aDrv_stren_p %d\n",
+ strength);
+ }
+ } else {
+ if (strength == 120) {
+ val = 0x00;
+ } else if (strength == 60) {
+ val = 0x01;
+ } else if (strength == 40) {
+ val = 0x03;
+ } else if (strength == 30) {
+ val = 0x07;
+ } else if (strength == 24) {
+ val = 0x0f;
+ } else if (strength == 20) {
+ val = 0x1f;
+ } else {
+ printf("error: unsupported aDrv_stren_p %d\n",
+ strength);
+ }
+ }
+
+ return val;
+}
+
+static int map_adrv_stren_n(int strength, int hard_macro_ver)
+{
+ int val = -1;
+
+ if (hard_macro_ver == 4) {
+ if (strength == 120) {
+ val = 0x00;
+ } else if (strength == 60) {
+ val = 0x01;
+ } else if (strength == 40) {
+ val = 0x03;
+ } else {
+ printf("Error: unsupported ADrvStrenP %d\n", strength);
+ }
+ } else {
+ if (strength == 120) {
+ val = 0x00;
+ } else if (strength == 60) {
+ val = 0x01;
+ } else if (strength == 40) {
+ val = 0x03;
+ } else if (strength == 30) {
+ val = 0x07;
+ } else if (strength == 24) {
+ val = 0x0f;
+ } else if (strength == 20) {
+ val = 0x1f;
+ } else {
+ printf("Error: unsupported ADrvStrenP %d\n", strength);
+ }
+ }
+
+ return val;
+}
+
+static void prog_atx_impedance(uint16_t *phy,
+ const struct input *input)
+{
+ int anib, c_addr;
+ int atx_impedance;
+ int adrv_stren_p;
+ int adrv_stren_n;
+ uint32_t addr;
+
+ if (input->basic.hard_macro_ver == 4 &&
+ input->adv.atx_impedance == 20) {
+ printf("Error:ATxImpedance has to be 40 for HardMacroVer 4\n");
+ return;
+ }
+
+ adrv_stren_p = map_adrv_stren_p(input->adv.atx_impedance,
+ input->basic.hard_macro_ver);
+ adrv_stren_n = map_adrv_stren_n(input->adv.atx_impedance,
+ input->basic.hard_macro_ver);
+ atx_impedance = adrv_stren_n << csr_adrv_stren_n_lsb |
+ adrv_stren_p << csr_adrv_stren_p_lsb;
+ for (anib = 0; anib < input->basic.num_anib; anib++) {
+ c_addr = anib << 12;
+ addr = t_anib | c_addr | csr_atx_impedance_addr;
+ phy_io_write16(phy, addr, atx_impedance);
+ }
+}
+
+static void prog_dfi_mode(uint16_t *phy,
+ const struct input *input)
+{
+ int dfi_mode;
+ uint32_t addr;
+
+ if (input->basic.dfi1exists == 1) {
+ dfi_mode = 0x5; /* DFI1 exists but disabled */
+ } else {
+ dfi_mode = 0x1; /* DFI1 does not physically exists */
+ }
+ addr = t_master | csr_dfi_mode_addr;
+ phy_io_write16(phy, addr, dfi_mode);
+}
+
+static void prog_acx4_anib_dis(uint16_t *phy, const struct input *input)
+{
+ uint32_t addr;
+
+ addr = t_master | csr_acx4_anib_dis_addr;
+ phy_io_write16(phy, addr, 0x0);
+ debug("%s 0x%x\n", __func__, phy_io_read16(phy, addr));
+}
+
+static void prog_dfi_camode(uint16_t *phy,
+ const struct input *input)
+{
+ int dfi_camode = 2;
+ uint32_t addr = t_master | csr_dfi_camode_addr;
+
+ phy_io_write16(phy, addr, dfi_camode);
+}
+
+static void prog_cal_drv_str0(uint16_t *phy,
+ const struct input *input)
+{
+ int cal_drv_str0;
+ int cal_drv_str_pd50;
+ int cal_drv_str_pu50;
+ uint32_t addr;
+
+ cal_drv_str_pu50 = input->adv.ext_cal_res_val;
+ cal_drv_str_pd50 = cal_drv_str_pu50;
+ cal_drv_str0 = cal_drv_str_pu50 << csr_cal_drv_str_pu50_lsb |
+ cal_drv_str_pd50;
+ addr = t_master | csr_cal_drv_str0_addr;
+ phy_io_write16(phy, addr, cal_drv_str0);
+}
+
+static void prog_cal_uclk_info(uint16_t *phy,
+ const struct input *input)
+{
+ int cal_uclk_ticks_per1u_s;
+ uint32_t addr;
+
+ cal_uclk_ticks_per1u_s = input->basic.frequency >> 1;
+ if (cal_uclk_ticks_per1u_s < 24) {
+ cal_uclk_ticks_per1u_s = 24;
+ }
+
+ addr = t_master | csr_cal_uclk_info_addr;
+ phy_io_write16(phy, addr, cal_uclk_ticks_per1u_s);
+}
+
+static void prog_cal_rate(uint16_t *phy,
+ const struct input *input)
+{
+ int cal_rate;
+ int cal_interval;
+ int cal_once;
+ uint32_t addr;
+
+ cal_interval = input->adv.cal_interval;
+ cal_once = input->adv.cal_once;
+ cal_rate = cal_once << csr_cal_once_lsb |
+ cal_interval << csr_cal_interval_lsb;
+ addr = t_master | csr_cal_rate_addr;
+ phy_io_write16(phy, addr, cal_rate);
+}
+
+static void prog_vref_in_global(uint16_t *phy,
+ const struct input *input,
+ const struct ddr4u1d *msg)
+{
+ int vref_in_global;
+ int global_vref_in_dac = 0;
+ int global_vref_in_sel = 0;
+ uint32_t addr;
+
+ /*
+ * phy_vref_prcnt = msg->phy_vref / 128.0
+ * global_vref_in_dac = (phy_vref_prcnt - 0.345) / 0.005;
+ */
+ global_vref_in_dac = (msg->phy_vref * 1000 - 345 * 128 + 320) /
+ (5 * 128);
+
+ vref_in_global = global_vref_in_dac << csr_global_vref_in_dac_lsb |
+ global_vref_in_sel;
+ addr = t_master | csr_vref_in_global_addr;
+ phy_io_write16(phy, addr, vref_in_global);
+}
+
+static void prog_dq_dqs_rcv_cntrl(uint16_t *phy,
+ const struct input *input)
+{
+ int lane, byte, b_addr, c_addr;
+ int dq_dqs_rcv_cntrl;
+ int gain_curr_adj_defval = 0xb;
+ int major_mode_dbyte = 3;
+ int dfe_ctrl_defval = 0;
+ int ext_vref_range_defval = 0;
+ int sel_analog_vref = 1;
+ uint32_t addr;
+
+#ifdef ERRATA_DDR_A050958
+ gain_curr_adj_defval = 0x1f;
+#endif
+
+ dq_dqs_rcv_cntrl = gain_curr_adj_defval << csr_gain_curr_adj_lsb |
+ major_mode_dbyte << csr_major_mode_dbyte_lsb |
+ dfe_ctrl_defval << csr_dfe_ctrl_lsb |
+ ext_vref_range_defval << csr_ext_vref_range_lsb |
+ sel_analog_vref << csr_sel_analog_vref_lsb;
+ for (byte = 0; byte < input->basic.num_dbyte; byte++) {
+ c_addr = byte << 12;
+ for (lane = 0; lane <= 1; lane++) {
+ b_addr = lane << 8;
+ addr = t_dbyte | c_addr | b_addr |
+ csr_dq_dqs_rcv_cntrl_addr;
+ phy_io_write16(phy, addr, dq_dqs_rcv_cntrl);
+ }
+ }
+}
+
+static void prog_mem_alert_control(uint16_t *phy,
+ const struct input *input)
+{
+ int mem_alert_control;
+ int mem_alert_control2;
+ int malertpu_en;
+ int malertrx_en;
+ int malertvref_level;
+ int malertpu_stren;
+ int malertsync_bypass;
+ int malertdisable_val_defval = 1;
+ uint32_t addr;
+
+ if (input->basic.dram_type == DDR4 && input->adv.mem_alert_en == 1) {
+ malertpu_en = 1;
+ malertrx_en = 1;
+ malertpu_stren = input->adv.mem_alert_puimp;
+ malertvref_level = input->adv.mem_alert_vref_level;
+ malertsync_bypass = input->adv.mem_alert_sync_bypass;
+ mem_alert_control = malertdisable_val_defval << 14 |
+ malertrx_en << 13 |
+ malertpu_en << 12 |
+ malertpu_stren << 8 |
+ malertvref_level;
+ mem_alert_control2 = malertsync_bypass <<
+ csr_malertsync_bypass_lsb;
+ addr = t_master | csr_mem_alert_control_addr;
+ phy_io_write16(phy, addr, mem_alert_control);
+ addr = t_master | csr_mem_alert_control2_addr;
+ phy_io_write16(phy, addr, mem_alert_control2);
+ }
+}
+
+static void prog_dfi_freq_ratio(uint16_t *phy,
+ const struct input *input)
+{
+ int dfi_freq_ratio;
+ uint32_t addr = t_master | csr_dfi_freq_ratio_addr;
+
+ dfi_freq_ratio = input->basic.dfi_freq_ratio;
+ phy_io_write16(phy, addr, dfi_freq_ratio);
+}
+
+static void prog_tristate_mode_ca(uint16_t *phy,
+ const struct input *input)
+{
+ int tristate_mode_ca;
+ int dis_dyn_adr_tri;
+ int ddr2tmode;
+ int ck_dis_val_def = 1;
+ uint32_t addr = t_master | csr_tristate_mode_ca_addr;
+
+ dis_dyn_adr_tri = input->adv.dis_dyn_adr_tri;
+ ddr2tmode = input->adv.is2ttiming;
+ tristate_mode_ca = ck_dis_val_def << csr_ck_dis_val_lsb |
+ ddr2tmode << csr_ddr2tmode_lsb |
+ dis_dyn_adr_tri << csr_dis_dyn_adr_tri_lsb;
+ phy_io_write16(phy, addr, tristate_mode_ca);
+}
+
+static void prog_dfi_xlat(uint16_t *phy,
+ const struct input *input)
+{
+ uint16_t loop_vector;
+ int dfifreqxlat_dat;
+ int pllbypass_dat;
+ uint32_t addr;
+
+ /* fIXME: Shall unused P1, P2, P3 be bypassed? */
+ pllbypass_dat = input->basic.pll_bypass; /* only [0] is used */
+ for (loop_vector = 0; loop_vector < 8; loop_vector++) {
+ if (loop_vector == 0) {
+ dfifreqxlat_dat = pllbypass_dat + 0x5555;
+ } else if (loop_vector == 7) {
+ dfifreqxlat_dat = 0xf000;
+ } else {
+ dfifreqxlat_dat = 0x5555;
+ }
+ addr = t_master | (csr_dfi_freq_xlat0_addr + loop_vector);
+ phy_io_write16(phy, addr, dfifreqxlat_dat);
+ }
+}
+
+static void prog_dbyte_misc_mode(uint16_t *phy,
+ const struct input *input,
+ const struct ddr4u1d *msg)
+{
+ int dbyte_misc_mode;
+ int dq_dqs_rcv_cntrl1;
+ int dq_dqs_rcv_cntrl1_1;
+ int byte, c_addr;
+ uint32_t addr;
+
+ dbyte_misc_mode = 0x1 << csr_dbyte_disable_lsb;
+ dq_dqs_rcv_cntrl1 = 0x1ff << csr_power_down_rcvr_lsb |
+ 0x1 << csr_power_down_rcvr_dqs_lsb |
+ 0x1 << csr_rx_pad_standby_en_lsb;
+ dq_dqs_rcv_cntrl1_1 = (0x100 << csr_power_down_rcvr_lsb |
+ csr_rx_pad_standby_en_mask);
+ for (byte = 0; byte < input->basic.num_dbyte; byte++) {
+ c_addr = byte << 12;
+ if (byte <= input->basic.num_active_dbyte_dfi0 - 1) {
+ /* disable RDBI lane if not used. */
+ if ((input->basic.dram_data_width != 4) &&
+ (((msg->mr5 >> 12) & 0x1) == 0)) {
+ addr = t_dbyte
+ | c_addr
+ | csr_dq_dqs_rcv_cntrl1_addr;
+ phy_io_write16(phy, addr, dq_dqs_rcv_cntrl1_1);
+ }
+ } else {
+ addr = t_dbyte | c_addr | csr_dbyte_misc_mode_addr;
+ phy_io_write16(phy, addr, dbyte_misc_mode);
+ addr = t_dbyte | c_addr | csr_dq_dqs_rcv_cntrl1_addr;
+ phy_io_write16(phy, addr, dq_dqs_rcv_cntrl1);
+ }
+ }
+}
+
+static void prog_master_x4config(uint16_t *phy,
+ const struct input *input)
+{
+ int master_x4config;
+ int x4tg;
+ uint32_t addr = t_master | csr_master_x4config_addr;
+
+ x4tg = input->basic.dram_data_width == 4 ? 0xf : 0;
+ master_x4config = x4tg << csr_x4tg_lsb;
+ phy_io_write16(phy, addr, master_x4config);
+}
+
+static void prog_dmipin_present(uint16_t *phy,
+ const struct input *input,
+ const struct ddr4u1d *msg)
+{
+ int dmipin_present;
+ uint32_t addr = t_master | csr_dmipin_present_addr;
+
+ dmipin_present = (msg->mr5 >> 12) & 0x1;
+ phy_io_write16(phy, addr, dmipin_present);
+}
+
+static void prog_dfi_phyupd(uint16_t *phy,
+ const struct input *input)
+{
+ int dfiphyupd_dat;
+ uint32_t addr;
+
+ addr = t_master | (csr_dfiphyupd_addr);
+ dfiphyupd_dat = phy_io_read16(phy, addr) &
+ ~csr_dfiphyupd_threshold_mask;
+
+ phy_io_write16(phy, addr, dfiphyupd_dat);
+}
+
+static void prog_cal_misc2(uint16_t *phy,
+ const struct input *input)
+{
+ int cal_misc2_dat, cal_drv_pdth_data, cal_offsets_dat;
+ uint32_t addr;
+
+ addr = t_master | (csr_cal_misc2_addr);
+ cal_misc2_dat = phy_io_read16(phy, addr) |
+ (1 << csr_cal_misc2_err_dis);
+
+ phy_io_write16(phy, addr, cal_misc2_dat);
+
+ addr = t_master | (csr_cal_offsets_addr);
+
+ cal_drv_pdth_data = 0x9 << 6;
+ cal_offsets_dat = (phy_io_read16(phy, addr) & ~csr_cal_drv_pdth_mask)
+ | cal_drv_pdth_data;
+
+ phy_io_write16(phy, addr, cal_offsets_dat);
+}
+
+static int c_init_phy_config(uint16_t **phy_ptr,
+ unsigned int ip_rev,
+ const struct input *input,
+ const void *msg)
+{
+ int i;
+ uint16_t *phy;
+ __unused const soc_info_t *soc_info;
+
+ for (i = 0; i < NUM_OF_DDRC; i++) {
+ phy = phy_ptr[i];
+ if (phy == NULL) {
+ continue;
+ }
+
+ debug("Initialize PHY %d config\n", i);
+ prog_dfi_phyupd(phy, input);
+ prog_cal_misc2(phy, input);
+ prog_tx_pre_drv_mode(phy, input);
+ prog_atx_pre_drv_mode(phy, input);
+ prog_enable_cs_multicast(phy, input); /* rdimm and lrdimm */
+ prog_dfi_rd_data_cs_dest_map(phy, ip_rev, input, msg);
+ prog_pll_ctrl2(phy, input);
+#ifdef DDR_PLL_FIX
+ soc_info = get_soc_info();
+ debug("SOC_SI_REV = %x\n", soc_info->svr_reg.bf.maj_ver);
+ if (soc_info->svr_reg.bf.maj_ver == 1) {
+ prog_pll_pwr_dn(phy, input);
+
+ /*Enable FFE aka TxEqualizationMode for rev1 SI*/
+ phy_io_write16(phy, 0x010048, 0x1);
+ }
+#endif
+ prog_ard_ptr_init_val(phy, input);
+ prog_dqs_preamble_control(phy, input);
+ prog_dll_lck_param(phy, input);
+ prog_dll_gain_ctl(phy, input);
+ prog_proc_odt_time_ctl(phy, input);
+ prog_tx_odt_drv_stren(phy, input);
+ prog_tx_impedance_ctrl1(phy, input);
+ prog_atx_impedance(phy, input);
+ prog_dfi_mode(phy, input);
+ prog_dfi_camode(phy, input);
+ prog_cal_drv_str0(phy, input);
+ prog_cal_uclk_info(phy, input);
+ prog_cal_rate(phy, input);
+ prog_vref_in_global(phy, input, msg);
+ prog_dq_dqs_rcv_cntrl(phy, input);
+ prog_mem_alert_control(phy, input);
+ prog_dfi_freq_ratio(phy, input);
+ prog_tristate_mode_ca(phy, input);
+ prog_dfi_xlat(phy, input);
+ prog_dbyte_misc_mode(phy, input, msg);
+ prog_master_x4config(phy, input);
+ prog_dmipin_present(phy, input, msg);
+ prog_acx4_anib_dis(phy, input);
+ }
+
+ return 0;
+}
+
+static uint32_t get_mail(uint16_t *phy, int stream)
+{
+ int timeout;
+ uint32_t mail = 0U;
+
+ timeout = TIMEOUTDEFAULT;
+ while (((--timeout) != 0) &&
+ ((phy_io_read16(phy, t_apbonly | csr_uct_shadow_regs)
+ & uct_write_prot_shadow_mask) != 0)) {
+ mdelay(10);
+ }
+ if (timeout == 0) {
+ ERROR("Timeout getting mail from PHY\n");
+ return 0xFFFF;
+ }
+
+ mail = phy_io_read16(phy, t_apbonly |
+ csr_uct_write_only_shadow);
+ if (stream != 0) {
+ mail |= phy_io_read16(phy, t_apbonly |
+ csr_uct_dat_write_only_shadow) << 16;
+ }
+
+ /* Ack */
+ phy_io_write16(phy, t_apbonly | csr_dct_write_prot, 0);
+
+ timeout = TIMEOUTDEFAULT;
+ while (((--timeout) != 0) &&
+ ((phy_io_read16(phy, t_apbonly | csr_uct_shadow_regs)
+ & uct_write_prot_shadow_mask) == 0)) {
+ mdelay(1);
+ }
+ if (timeout == 0) {
+ ERROR("Timeout ack PHY mail\n");
+ }
+
+ /* completed */
+ phy_io_write16(phy, t_apbonly | csr_dct_write_prot, 1U);
+
+ return mail;
+}
+
+#ifdef DDR_PHY_DEBUG
+static const char *lookup_msg(uint32_t index, int train2d)
+{
+ int i;
+ int size;
+ const struct phy_msg *messages;
+ const char *ptr = NULL;
+
+ if (train2d != 0) {
+ messages = messages_2d;
+ size = ARRAY_SIZE(messages_2d);
+ } else {
+ messages = messages_1d;
+ size = ARRAY_SIZE(messages_1d);
+ }
+ for (i = 0; i < size; i++) {
+ if (messages[i].index == index) {
+ ptr = messages[i].msg;
+ break;
+ }
+ }
+
+ return ptr;
+}
+#endif
+
+#define MAX_ARGS 32
+static void decode_stream_message(uint16_t *phy, int train2d)
+{
+ uint32_t index __unused;
+
+ __unused const char *format;
+ __unused uint32_t args[MAX_ARGS];
+ __unused int i;
+
+#ifdef DDR_PHY_DEBUG
+ index = get_mail(phy, 1);
+ if ((index & 0xffff) > MAX_ARGS) { /* up to MAX_ARGS args so far */
+ printf("Program error in %s\n", __func__);
+ }
+ for (i = 0; i < (index & 0xffff) && i < MAX_ARGS; i++) {
+ args[i] = get_mail(phy, 1);
+ }
+
+ format = lookup_msg(index, train2d);
+ if (format != NULL) {
+ printf("0x%08x: ", index);
+ printf(format, args[0], args[1], args[2], args[3], args[4],
+ args[5], args[6], args[7], args[8], args[9], args[10],
+ args[11], args[12], args[13], args[14], args[15],
+ args[16], args[17], args[18], args[19], args[20],
+ args[21], args[22], args[23], args[24], args[25],
+ args[26], args[27], args[28], args[29], args[30],
+ args[31]);
+ }
+#endif
+}
+
+static int wait_fw_done(uint16_t *phy, int train2d)
+{
+ uint32_t mail = 0U;
+
+ while (mail == U(0x0)) {
+ mail = get_mail(phy, 0);
+ switch (mail) {
+ case U(0x7):
+ debug("%s Training completed\n", train2d ? "2D" : "1D");
+ break;
+ case U(0xff):
+ debug("%s Training failure\n", train2d ? "2D" : "1D");
+ break;
+ case U(0x0):
+ debug("End of initialization\n");
+ mail = 0U;
+ break;
+ case U(0x1):
+ debug("End of fine write leveling\n");
+ mail = 0U;
+ break;
+ case U(0x2):
+ debug("End of read enable training\n");
+ mail = 0U;
+ break;
+ case U(0x3):
+ debug("End of read delay center optimization\n");
+ mail = 0U;
+ break;
+ case U(0x4):
+ debug("End of write delay center optimization\n");
+ mail = 0U;
+ break;
+ case U(0x5):
+ debug("End of 2D read delay/voltage center optimztn\n");
+ mail = 0U;
+ break;
+ case U(0x6):
+ debug("End of 2D write delay/voltage center optmztn\n");
+ mail = 0U;
+ break;
+ case U(0x8):
+ decode_stream_message(phy, train2d);
+ mail = 0U;
+ break;
+ case U(0x9):
+ debug("End of max read latency training\n");
+ mail = 0U;
+ break;
+ case U(0xa):
+ debug("End of read dq deskew training\n");
+ mail = 0U;
+ break;
+ case U(0xc):
+ debug("End of LRDIMM Specific training, including:\n");
+ debug("/tDWL, MREP, MRD and MWD\n");
+ mail = 0U;
+ break;
+ case U(0xd):
+ debug("End of CA training\n");
+ mail = 0U;
+ break;
+ case U(0xfd):
+ debug("End of MPR read delay center optimization\n");
+ mail = 0U;
+ break;
+ case U(0xfe):
+ debug("End of Write leveling coarse delay\n");
+ mail = 0U;
+ break;
+ case U(0xffff):
+ debug("Timed out\n");
+ break;
+ default:
+ mail = 0U;
+ break;
+ }
+ }
+
+ if (mail == U(0x7)) {
+ return 0;
+ } else if (mail == U(0xff)) {
+ return -EIO;
+ } else if (mail == U(0xffff)) {
+ return -ETIMEDOUT;
+ }
+
+ debug("PHY_GEN2 FW: Unxpected mail = 0x%x\n", mail);
+
+ return -EINVAL;
+}
+
+static int g_exec_fw(uint16_t **phy_ptr, int train2d, struct input *input)
+{
+ int ret = -EINVAL;
+ int i;
+ uint16_t *phy;
+
+ for (i = 0; i < NUM_OF_DDRC; i++) {
+ phy = phy_ptr[i];
+ if (phy == NULL) {
+ continue;
+ }
+ debug("Applying PLL optimal settings\n");
+ prog_pll_ctrl2(phy, input);
+ prog_pll_ctrl(phy, input);
+ phy_io_write16(phy,
+ t_apbonly | csr_micro_cont_mux_sel_addr,
+ 0x1);
+ phy_io_write16(phy,
+ t_apbonly | csr_micro_reset_addr,
+ csr_reset_to_micro_mask |
+ csr_stall_to_micro_mask);
+ phy_io_write16(phy,
+ t_apbonly | csr_micro_reset_addr,
+ csr_stall_to_micro_mask);
+ phy_io_write16(phy,
+ t_apbonly | csr_micro_reset_addr,
+ 0);
+
+ ret = wait_fw_done(phy, train2d);
+ if (ret == -ETIMEDOUT) {
+ ERROR("Wait timed out: Firmware execution on PHY %d\n",
+ i);
+ }
+ }
+ return ret;
+}
+
+static inline int send_fw(uint16_t *phy,
+ uint32_t dst,
+ uint16_t *img,
+ uint32_t size)
+{
+ uint32_t i;
+
+ if ((size % 2U) != 0U) {
+ ERROR("Wrong image size 0x%x\n", size);
+ return -EINVAL;
+ }
+
+ for (i = 0U; i < size / 2; i++) {
+ phy_io_write16(phy, dst + i, *(img + i));
+ }
+
+ return 0;
+}
+
+static int load_fw(uint16_t **phy_ptr,
+ struct input *input,
+ int train2d,
+ void *msg,
+ size_t len,
+ uintptr_t phy_gen2_fw_img_buf,
+ int (*img_loadr)(unsigned int, uintptr_t *, uint32_t *),
+ uint32_t warm_boot_flag)
+{
+ uint32_t imem_id, dmem_id;
+ uintptr_t image_buf;
+ uint32_t size;
+ int ret;
+ int i;
+ uint16_t *phy;
+
+ switch (input->basic.dimm_type) {
+ case UDIMM:
+ case SODIMM:
+ case NODIMM:
+ imem_id = train2d ? DDR_IMEM_UDIMM_2D_IMAGE_ID :
+ DDR_IMEM_UDIMM_1D_IMAGE_ID;
+ dmem_id = train2d ? DDR_DMEM_UDIMM_2D_IMAGE_ID :
+ DDR_DMEM_UDIMM_1D_IMAGE_ID;
+ break;
+ case RDIMM:
+ imem_id = train2d ? DDR_IMEM_RDIMM_2D_IMAGE_ID :
+ DDR_IMEM_RDIMM_1D_IMAGE_ID;
+ dmem_id = train2d ? DDR_DMEM_RDIMM_2D_IMAGE_ID :
+ DDR_DMEM_RDIMM_1D_IMAGE_ID;
+ break;
+ default:
+ ERROR("Unsupported DIMM type\n");
+ return -EINVAL;
+ }
+
+ size = PHY_GEN2_MAX_IMAGE_SIZE;
+ image_buf = (uintptr_t)phy_gen2_fw_img_buf;
+ ret = img_loadr(imem_id, &image_buf, &size);
+ if (ret != 0) {
+ ERROR("Failed to load %d firmware.\n", imem_id);
+ return ret;
+ }
+ debug("Loaded Imaged id %d of size %x at address %lx\n",
+ imem_id, size, image_buf);
+
+ for (i = 0; i < NUM_OF_DDRC; i++) {
+ phy = phy_ptr[i];
+ if (phy == NULL) {
+ continue;
+ }
+
+ if (warm_boot_flag != DDR_WARM_BOOT) {
+ if (train2d == 0) {
+ phy_io_write16(phy, t_master |
+ csr_mem_reset_l_addr,
+ csr_protect_mem_reset_mask);
+ }
+ }
+ /* Enable access to the internal CSRs */
+ phy_io_write16(phy, t_apbonly | csr_micro_cont_mux_sel_addr, 0);
+
+ ret = send_fw(phy, PHY_GEN2_IMEM_ADDR,
+ (uint16_t *)image_buf, size);
+ if (ret != 0) {
+ return ret;
+ }
+ }
+
+ size = PHY_GEN2_MAX_IMAGE_SIZE;
+ image_buf = (uintptr_t)phy_gen2_fw_img_buf;
+ ret = img_loadr(dmem_id, &image_buf, &size);
+ if (ret != 0) {
+ ERROR("Failed to load %d firmware.\n", dmem_id);
+ return ret;
+ }
+ debug("Loaded Imaged id %d of size %x at address %lx\n",
+ dmem_id, size, image_buf);
+ image_buf += len;
+ size -= len;
+
+ for (i = 0; i < NUM_OF_DDRC; i++) {
+ phy = phy_ptr[i];
+ if (phy == NULL) {
+ continue;
+ }
+
+ ret = send_fw(phy, PHY_GEN2_DMEM_ADDR, msg, len);
+ if (ret != 0) {
+ return ret;
+ }
+
+ ret = send_fw(phy, PHY_GEN2_DMEM_ADDR + len / 2,
+ (uint16_t *)image_buf, size);
+ if (ret != 0) {
+ return ret;
+ }
+ }
+
+ return ret;
+}
+
+static void parse_odt(const unsigned int val,
+ const int read,
+ const int i,
+ const unsigned int cs_d0,
+ const unsigned int cs_d1,
+ unsigned int *odt)
+{
+ int shift = read ? 4 : 0;
+ int j;
+
+ if (i < 0 || i > 3) {
+ printf("Error: invalid chip-select value\n");
+ }
+ switch (val) {
+ case DDR_ODT_CS:
+ odt[i] |= (1 << i) << shift;
+ break;
+ case DDR_ODT_ALL_OTHER_CS:
+ for (j = 0; j < DDRC_NUM_CS; j++) {
+ if (i == j) {
+ continue;
+ }
+ if (((cs_d0 | cs_d1) & (1 << j)) == 0) {
+ continue;
+ }
+ odt[j] |= (1 << i) << shift;
+ }
+ break;
+ case DDR_ODT_CS_AND_OTHER_DIMM:
+ odt[i] |= (1 << i) << 4;
+ /* fallthrough */
+ case DDR_ODT_OTHER_DIMM:
+ for (j = 0; j < DDRC_NUM_CS; j++) {
+ if ((((cs_d0 & (1 << i)) != 0) &&
+ ((cs_d1 & (1 << j)) != 0)) ||
+ (((cs_d1 & (1 << i)) != 0) &&
+ ((cs_d0 & (1 << j)) != 0))) {
+ odt[j] |= (1 << i) << shift;
+ }
+ }
+ break;
+ case DDR_ODT_ALL:
+ for (j = 0; j < DDRC_NUM_CS; j++) {
+ if (((cs_d0 | cs_d1) & (1 << j)) == 0) {
+ continue;
+ }
+ odt[j] |= (1 << i) << shift;
+ }
+ break;
+ case DDR_ODT_SAME_DIMM:
+ for (j = 0; j < DDRC_NUM_CS; j++) {
+ if ((((cs_d0 & (1 << i)) != 0) &&
+ ((cs_d0 & (1 << j)) != 0)) ||
+ (((cs_d1 & (1 << i)) != 0) &&
+ ((cs_d1 & (1 << j)) != 0))) {
+ odt[j] |= (1 << i) << shift;
+ }
+ }
+ break;
+ case DDR_ODT_OTHER_CS_ONSAMEDIMM:
+ for (j = 0; j < DDRC_NUM_CS; j++) {
+ if (i == j) {
+ continue;
+ }
+ if ((((cs_d0 & (1 << i)) != 0) &&
+ ((cs_d0 & (1 << j)) != 0)) ||
+ (((cs_d1 & (1 << i)) != 0) &&
+ ((cs_d1 & (1 << j)) != 0))) {
+ odt[j] |= (1 << i) << shift;
+ }
+ }
+ break;
+ case DDR_ODT_NEVER:
+ break;
+ default:
+ break;
+ }
+}
+
+#ifdef DEBUG_DDR_INPUT_CONFIG
+char *dram_types_str[] = {
+ "DDR4",
+ "DDR3",
+ "LDDDR4",
+ "LPDDR3",
+ "LPDDR2",
+ "DDR5"
+};
+
+char *dimm_types_str[] = {
+ "UDIMM",
+ "SODIMM",
+ "RDIMM",
+ "LRDIMM",
+ "NODIMM",
+};
+
+
+static void print_jason_format(struct input *input,
+ struct ddr4u1d *msg_1d,
+ struct ddr4u2d *msg_2d)
+{
+
+ printf("\n{");
+ printf("\n \"dram_type\": \"%s\",", dram_types_str[input->basic.dram_type]);
+ printf("\n \"dimm_type\": \"%s\",", dimm_types_str[input->basic.dimm_type]);
+ printf("\n \"hard_macro_ver\": \"%d\",", input->basic.hard_macro_ver);
+ printf("\n \"num_dbyte\": \"0x%04x\",", (unsigned int)input->basic.num_dbyte);
+ printf("\n \"num_active_dbyte_dfi0\": \"0x%04x\",", (unsigned int)input->basic.num_active_dbyte_dfi0);
+ printf("\n \"num_anib\": \"0x%04x\",", (unsigned int)input->basic.num_anib);
+ printf("\n \"num_rank_dfi0\": \"0x%04x\",", (unsigned int)input->basic.num_rank_dfi0);
+ printf("\n \"num_pstates\": \"0x%04x\",", (unsigned int)input->basic.num_pstates);
+ printf("\n \"frequency\": \"%d\",", input->basic.frequency);
+ printf("\n \"pll_bypass\": \"0x%04x\",", (unsigned int)input->basic.dfi_freq_ratio);
+ printf("\n \"dfi_freq_ratio\": \"0x%04x\",", (unsigned int)input->basic.dfi_freq_ratio);
+ printf("\n \"dfi1_exists\": \"0x%04x\",", (unsigned int)input->basic.dfi1exists);
+ printf("\n \"dram_data_width\": \"0x%04x\",", (unsigned int)input->basic.dram_data_width);
+ printf("\n \"dram_byte_swap\": \"0x%04x\",", (unsigned int)input->adv.dram_byte_swap);
+ printf("\n \"ext_cal_res_val\": \"0x%04x\",", (unsigned int)input->adv.ext_cal_res_val);
+ printf("\n \"tx_slew_rise_dq\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_rise_dq);
+ printf("\n \"tx_slew_fall_dq\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_fall_dq);
+ printf("\n \"tx_slew_rise_ac\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_rise_ac);
+ printf("\n \"tx_slew_fall_ac\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_fall_ac);
+ printf("\n \"odt_impedance\": \"%d\",", input->adv.odtimpedance);
+ printf("\n \"tx_impedance\": \"%d\",", input->adv.tx_impedance);
+ printf("\n \"atx_impedance\": \"%d\",", input->adv.atx_impedance);
+ printf("\n \"mem_alert_en\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_en);
+ printf("\n \"mem_alert_pu_imp\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_puimp);
+ printf("\n \"mem_alert_vref_level\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_vref_level);
+ printf("\n \"mem_alert_sync_bypass\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_sync_bypass);
+ printf("\n \"cal_interval\": \"0x%04x\",", (unsigned int)input->adv.cal_interval);
+ printf("\n \"cal_once\": \"0x%04x\",", (unsigned int)input->adv.cal_once);
+ printf("\n \"dis_dyn_adr_tri\": \"0x%04x\",", (unsigned int)input->adv.dis_dyn_adr_tri);
+ printf("\n \"is2t_timing\": \"0x%04x\",", (unsigned int)input->adv.is2ttiming);
+ printf("\n \"d4rx_preabmle_length\": \"0x%04x\",", (unsigned int)input->adv.d4rx_preamble_length);
+ printf("\n \"d4tx_preamble_length\": \"0x%04x\",", (unsigned int)input->adv.d4tx_preamble_length);
+ printf("\n \"msg_misc\": \"0x%02x\",", (unsigned int)msg_1d->msg_misc);
+ printf("\n \"reserved00\": \"0x%01x\",", (unsigned int)msg_1d->reserved00);
+ printf("\n \"hdt_ctrl\": \"0x%02x\",", (unsigned int)msg_1d->hdt_ctrl);
+ printf("\n \"cs_present\": \"0x%02x\",", (unsigned int)msg_1d->cs_present);
+ printf("\n \"phy_vref\": \"0x%02x\",", (unsigned int)msg_1d->phy_vref);
+ printf("\n \"dfi_mrl_margin\": \"0x%02x\",", (unsigned int)msg_1d->dfimrlmargin);
+ printf("\n \"addr_mirror\": \"0x%02x\",", (unsigned int)msg_1d->addr_mirror);
+ printf("\n \"wr_odt_pat_rank0\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl0 & 0x0f));
+ printf("\n \"wr_odt_pat_rank1\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl1 & 0x0f));
+ printf("\n \"wr_odt_pat_rank2\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl2 & 0x0f));
+ printf("\n \"wr_odt_pat_rank3\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl3 & 0x0f));
+ printf("\n \"rd_odt_pat_rank0\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl0 & 0xf0));
+ printf("\n \"rd_odt_pat_rank1\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl1 & 0xf0));
+ printf("\n \"rd_odt_pat_rank2\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl2 & 0xf0));
+ printf("\n \"rd_odt_pat_rank3\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl3 & 0xf0));
+ printf("\n \"d4_misc\": \"0x%01x\",", (unsigned int)msg_1d->d4misc);
+ printf("\n \"share_2d_vref_results\": \"0x%01x\",", (unsigned int)msg_1d->share2dvref_result);
+ printf("\n \"sequence_ctrl\": \"0x%04x\",", (unsigned int)msg_1d->sequence_ctrl);
+ printf("\n \"mr0\": \"0x%04x\",", (unsigned int)msg_1d->mr0);
+ printf("\n \"mr1\": \"0x%04x\",", (unsigned int)msg_1d->mr1);
+ printf("\n \"mr2\": \"0x%04x\",", (unsigned int)msg_1d->mr2);
+ printf("\n \"mr3\": \"0x%04x\",", (unsigned int)msg_1d->mr3);
+ printf("\n \"mr4\": \"0x%04x\",", (unsigned int)msg_1d->mr4);
+ printf("\n \"mr5\": \"0x%04x\",", (unsigned int)msg_1d->mr5);
+ printf("\n \"mr6\": \"0x%04x\",", (unsigned int)msg_1d->mr6);
+ printf("\n \"alt_cal_l\": \"0x%04x\",", (unsigned int)msg_1d->alt_cas_l);
+ printf("\n \"alt_wcal_l\": \"0x%04x\",", (unsigned int)msg_1d->alt_wcas_l);
+ printf("\n \"sequence_ctrl_2d\": \"0x%04x\",", (unsigned int)msg_2d->sequence_ctrl);
+ printf("\n \"rtt_nom_wr_park0\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park0);
+ printf("\n \"rtt_nom_wr_park1\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park1);
+ printf("\n \"rtt_nom_wr_park2\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park2);
+ printf("\n \"rtt_nom_wr_park3\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park3);
+ printf("\n \"rtt_nom_wr_park4\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park4);
+ printf("\n \"rtt_nom_wr_park5\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park5);
+ printf("\n \"rtt_nom_wr_park6\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park6);
+ printf("\n \"rtt_nom_wr_park7\": \"0x%01x\"", (unsigned int)msg_1d->rtt_nom_wr_park7);
+ printf("\n}");
+ printf("\n");
+}
+#endif
+
+int compute_ddr_phy(struct ddr_info *priv)
+{
+ const unsigned long clk = priv->clk;
+ const struct memctl_opt *popts = &priv->opt;
+ const struct ddr_conf *conf = &priv->conf;
+ const struct dimm_params *dimm_param = &priv->dimm;
+ struct ddr_cfg_regs *regs = &priv->ddr_reg;
+ int ret;
+ static struct input input;
+ static struct ddr4u1d msg_1d;
+ static struct ddr4u2d msg_2d;
+ unsigned int i;
+ unsigned int odt_rd, odt_wr;
+ __unused const soc_info_t *soc_info;
+#ifdef NXP_APPLY_MAX_CDD
+ unsigned int tcfg0, tcfg4, rank;
+#endif
+
+ if (dimm_param == NULL) {
+ ERROR("Empty DIMM parameters.\n");
+ return -EINVAL;
+ }
+
+ zeromem(&input, sizeof(input));
+ zeromem(&msg_1d, sizeof(msg_1d));
+ zeromem(&msg_2d, sizeof(msg_2d));
+
+ input.basic.dram_type = DDR4;
+ /* FIXME: Add condition for LRDIMM */
+ input.basic.dimm_type = (dimm_param->rdimm != 0) ? RDIMM : UDIMM;
+ input.basic.num_dbyte = dimm_param->primary_sdram_width / 8 +
+ dimm_param->ec_sdram_width / 8;
+ input.basic.num_active_dbyte_dfi0 = input.basic.num_dbyte;
+ input.basic.num_rank_dfi0 = dimm_param->n_ranks;
+ input.basic.dram_data_width = dimm_param->device_width;
+ input.basic.hard_macro_ver = 0xa;
+ input.basic.num_pstates = 1;
+ input.basic.dfi_freq_ratio = 1;
+ input.basic.num_anib = 0xc;
+ input.basic.train2d = popts->skip2d ? 0 : 1;
+ input.basic.frequency = (int) (clk / 2000000ul);
+ debug("frequency = %dMHz\n", input.basic.frequency);
+ input.cs_d0 = conf->cs_on_dimm[0];
+#if DDRC_NUM_DIMM > 1
+ input.cs_d1 = conf->cs_on_dimm[1];
+#endif
+ input.mirror = dimm_param->mirrored_dimm;
+ input.mr[0] = regs->sdram_mode[0] & U(0xffff);
+ input.mr[1] = regs->sdram_mode[0] >> 16U;
+ input.mr[2] = regs->sdram_mode[1] >> 16U;
+ input.mr[3] = regs->sdram_mode[1] & U(0xffff);
+ input.mr[4] = regs->sdram_mode[8] >> 16U;
+ input.mr[5] = regs->sdram_mode[8] & U(0xffff);
+ input.mr[6] = regs->sdram_mode[9] >> 16U;
+ input.vref = popts->vref_phy;
+ debug("Vref_phy = %d percent\n", (input.vref * 100U) >> 7U);
+ for (i = 0U; i < DDRC_NUM_CS; i++) {
+ if ((regs->cs[i].config & SDRAM_CS_CONFIG_EN) == 0U) {
+ continue;
+ }
+ odt_rd = (regs->cs[i].config >> 20U) & U(0x7);
+ odt_wr = (regs->cs[i].config >> 16U) & U(0x7);
+ parse_odt(odt_rd, true, i, input.cs_d0, input.cs_d1,
+ input.odt);
+ parse_odt(odt_wr, false, i, input.cs_d0, input.cs_d1,
+ input.odt);
+ }
+
+ /* Do not set sdram_cfg[RD_EN] or sdram_cfg2[RCW_EN] for RDIMM */
+ if (dimm_param->rdimm != 0U) {
+ regs->sdram_cfg[0] &= ~(1 << 28U);
+ regs->sdram_cfg[1] &= ~(1 << 2U);
+ input.rcw[0] = (regs->sdram_rcw[0] >> 28U) & U(0xf);
+ input.rcw[1] = (regs->sdram_rcw[0] >> 24U) & U(0xf);
+ input.rcw[2] = (regs->sdram_rcw[0] >> 20U) & U(0xf);
+ input.rcw[3] = (regs->sdram_rcw[0] >> 16U) & U(0xf);
+ input.rcw[4] = (regs->sdram_rcw[0] >> 12U) & U(0xf);
+ input.rcw[5] = (regs->sdram_rcw[0] >> 8U) & U(0xf);
+ input.rcw[6] = (regs->sdram_rcw[0] >> 4U) & U(0xf);
+ input.rcw[7] = (regs->sdram_rcw[0] >> 0U) & U(0xf);
+ input.rcw[8] = (regs->sdram_rcw[1] >> 28U) & U(0xf);
+ input.rcw[9] = (regs->sdram_rcw[1] >> 24U) & U(0xf);
+ input.rcw[10] = (regs->sdram_rcw[1] >> 20U) & U(0xf);
+ input.rcw[11] = (regs->sdram_rcw[1] >> 16U) & U(0xf);
+ input.rcw[12] = (regs->sdram_rcw[1] >> 12U) & U(0xf);
+ input.rcw[13] = (regs->sdram_rcw[1] >> 8U) & U(0xf);
+ input.rcw[14] = (regs->sdram_rcw[1] >> 4U) & U(0xf);
+ input.rcw[15] = (regs->sdram_rcw[1] >> 0U) & U(0xf);
+ input.rcw3x = (regs->sdram_rcw[2] >> 8U) & U(0xff);
+ }
+
+ input.adv.odtimpedance = popts->odt ? popts->odt : 60;
+ input.adv.tx_impedance = popts->phy_tx_impedance ?
+ popts->phy_tx_impedance : 28;
+ input.adv.atx_impedance = popts->phy_atx_impedance ?
+ popts->phy_atx_impedance : 30;
+
+ debug("Initializing input adv data structure\n");
+ phy_gen2_init_input(&input);
+
+ debug("Initializing message block\n");
+ ret = phy_gen2_msg_init(&msg_1d, &msg_2d, &input);
+ if (ret != 0) {
+ ERROR("Init msg failed (error code %d)\n", ret);
+ return ret;
+ }
+
+ ret = c_init_phy_config(priv->phy, priv->ip_rev, &input, &msg_1d);
+ if (ret != 0) {
+ ERROR("Init PHY failed (error code %d)\n", ret);
+ return ret;
+ }
+#ifdef NXP_WARM_BOOT
+ debug("Warm boot flag value %0x\n", priv->warm_boot_flag);
+ if (priv->warm_boot_flag == DDR_WARM_BOOT) {
+ debug("Restoring the Phy training data\n");
+ // Restore the training data
+ ret = restore_phy_training_values(priv->phy,
+ PHY_TRAINING_REGS_ON_FLASH,
+ priv->num_ctlrs,
+ input.basic.train2d);
+ if (ret != 0) {
+ ERROR("Restoring of training data failed %d\n", ret);
+ return ret;
+ }
+ } else {
+#endif
+ /* Mapping IMG buffer firstly */
+ ret = mmap_add_dynamic_region(priv->phy_gen2_fw_img_buf,
+ priv->phy_gen2_fw_img_buf,
+ PHY_GEN2_MAX_IMAGE_SIZE,
+ MT_MEMORY | MT_RW | MT_SECURE);
+ if (ret != 0) {
+ ERROR("Failed to add dynamic memory region.\n");
+ return ret;
+ }
+
+ debug("Load 1D firmware\n");
+ ret = load_fw(priv->phy, &input, 0, &msg_1d,
+ sizeof(struct ddr4u1d), priv->phy_gen2_fw_img_buf,
+ priv->img_loadr, priv->warm_boot_flag);
+ if (ret != 0) {
+ ERROR("Loading firmware failed (error code %d)\n", ret);
+ return ret;
+ }
+
+ debug("Execute firmware\n");
+ ret = g_exec_fw(priv->phy, 0, &input);
+ if (ret != 0) {
+ ERROR("Execution FW failed (error code %d)\n", ret);
+ }
+
+#ifdef NXP_APPLY_MAX_CDD
+ soc_info = get_soc_info();
+ if (soc_info->svr_reg.bf.maj_ver == 2) {
+ tcfg0 = regs->timing_cfg[0];
+ tcfg4 = regs->timing_cfg[4];
+ rank = findrank(conf->cs_in_use);
+ get_cdd_val(priv->phy, rank, input.basic.frequency,
+ &tcfg0, &tcfg4);
+ regs->timing_cfg[0] = tcfg0;
+ regs->timing_cfg[4] = tcfg4;
+ }
+#endif
+
+ if ((ret == 0) && (input.basic.train2d != 0)) {
+ /* 2D training starts here */
+ debug("Load 2D firmware\n");
+ ret = load_fw(priv->phy, &input, 1, &msg_2d,
+ sizeof(struct ddr4u2d),
+ priv->phy_gen2_fw_img_buf,
+ priv->img_loadr,
+ priv->warm_boot_flag);
+ if (ret != 0) {
+ ERROR("Loading fw failed (err code %d)\n", ret);
+ } else {
+ debug("Execute 2D firmware\n");
+ ret = g_exec_fw(priv->phy, 1, &input);
+ if (ret != 0) {
+ ERROR("Execution FW failed (err %d)\n",
+ ret);
+ }
+ }
+ }
+#ifdef NXP_WARM_BOOT
+ if (priv->warm_boot_flag != DDR_WRM_BOOT_NT_SUPPORTED &&
+ ret == 0) {
+ debug("save the phy training data\n");
+ //Save training data TBD
+ ret = save_phy_training_values(priv->phy,
+ PHY_TRAINING_REGS_ON_FLASH,
+ priv->num_ctlrs,
+ input.basic.train2d);
+ if (ret != 0) {
+ ERROR("Saving training data failed.");
+ ERROR("Warm boot will fail. Error=%d.\n", ret);
+ }
+ }
+ } /* else */
+#endif
+
+ if (ret == 0) {
+ debug("Load PIE\n");
+ i_load_pie(priv->phy, &input, &msg_1d);
+
+ NOTICE("DDR4 %s with %d-rank %d-bit bus (x%d)\n",
+ input.basic.dimm_type == RDIMM ? "RDIMM" :
+ input.basic.dimm_type == LRDIMM ? "LRDIMM" :
+ "UDIMM",
+ dimm_param->n_ranks,
+ dimm_param->primary_sdram_width,
+ dimm_param->device_width);
+ }
+#ifdef DEBUG_DDR_INPUT_CONFIG
+ print_jason_format(&input, &msg_1d, &msg_2d);
+#endif
+
+ return ret;
+}