summaryrefslogtreecommitdiffstats
path: root/lib/el3_runtime/aarch64/context_mgmt.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--lib/el3_runtime/aarch64/context_mgmt.c1098
1 files changed, 1098 insertions, 0 deletions
diff --git a/lib/el3_runtime/aarch64/context_mgmt.c b/lib/el3_runtime/aarch64/context_mgmt.c
new file mode 100644
index 0000000..866ac41
--- /dev/null
+++ b/lib/el3_runtime/aarch64/context_mgmt.c
@@ -0,0 +1,1098 @@
+/*
+ * Copyright (c) 2013-2022, Arm Limited and Contributors. All rights reserved.
+ * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include <assert.h>
+#include <stdbool.h>
+#include <string.h>
+
+#include <platform_def.h>
+
+#include <arch.h>
+#include <arch_helpers.h>
+#include <arch_features.h>
+#include <bl31/interrupt_mgmt.h>
+#include <common/bl_common.h>
+#include <common/debug.h>
+#include <context.h>
+#include <drivers/arm/gicv3.h>
+#include <lib/el3_runtime/context_mgmt.h>
+#include <lib/el3_runtime/pubsub_events.h>
+#include <lib/extensions/amu.h>
+#include <lib/extensions/brbe.h>
+#include <lib/extensions/mpam.h>
+#include <lib/extensions/sme.h>
+#include <lib/extensions/spe.h>
+#include <lib/extensions/sve.h>
+#include <lib/extensions/sys_reg_trace.h>
+#include <lib/extensions/trbe.h>
+#include <lib/extensions/trf.h>
+#include <lib/utils.h>
+
+#if ENABLE_FEAT_TWED
+/* Make sure delay value fits within the range(0-15) */
+CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
+#endif /* ENABLE_FEAT_TWED */
+
+static void manage_extensions_secure(cpu_context_t *ctx);
+
+static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
+{
+ u_register_t sctlr_elx, actlr_elx;
+
+ /*
+ * Initialise SCTLR_EL1 to the reset value corresponding to the target
+ * execution state setting all fields rather than relying on the hw.
+ * Some fields have architecturally UNKNOWN reset values and these are
+ * set to zero.
+ *
+ * SCTLR.EE: Endianness is taken from the entrypoint attributes.
+ *
+ * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
+ * required by PSCI specification)
+ */
+ sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
+ if (GET_RW(ep->spsr) == MODE_RW_64) {
+ sctlr_elx |= SCTLR_EL1_RES1;
+ } else {
+ /*
+ * If the target execution state is AArch32 then the following
+ * fields need to be set.
+ *
+ * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
+ * instructions are not trapped to EL1.
+ *
+ * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
+ * instructions are not trapped to EL1.
+ *
+ * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
+ * CP15DMB, CP15DSB, and CP15ISB instructions.
+ */
+ sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
+ | SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
+ }
+
+#if ERRATA_A75_764081
+ /*
+ * If workaround of errata 764081 for Cortex-A75 is used then set
+ * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
+ */
+ sctlr_elx |= SCTLR_IESB_BIT;
+#endif
+ /* Store the initialised SCTLR_EL1 value in the cpu_context */
+ write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
+
+ /*
+ * Base the context ACTLR_EL1 on the current value, as it is
+ * implementation defined. The context restore process will write
+ * the value from the context to the actual register and can cause
+ * problems for processor cores that don't expect certain bits to
+ * be zero.
+ */
+ actlr_elx = read_actlr_el1();
+ write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
+}
+
+/******************************************************************************
+ * This function performs initializations that are specific to SECURE state
+ * and updates the cpu context specified by 'ctx'.
+ *****************************************************************************/
+static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
+{
+ u_register_t scr_el3;
+ el3_state_t *state;
+
+ state = get_el3state_ctx(ctx);
+ scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
+
+#if defined(IMAGE_BL31) && !defined(SPD_spmd)
+ /*
+ * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
+ * indicated by the interrupt routing model for BL31.
+ */
+ scr_el3 |= get_scr_el3_from_routing_model(SECURE);
+#endif
+
+#if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
+ /* Get Memory Tagging Extension support level */
+ unsigned int mte = get_armv8_5_mte_support();
+#endif
+ /*
+ * Allow access to Allocation Tags when CTX_INCLUDE_MTE_REGS
+ * is set, or when MTE is only implemented at EL0.
+ */
+#if CTX_INCLUDE_MTE_REGS
+ assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
+ scr_el3 |= SCR_ATA_BIT;
+#else
+ if (mte == MTE_IMPLEMENTED_EL0) {
+ scr_el3 |= SCR_ATA_BIT;
+ }
+#endif /* CTX_INCLUDE_MTE_REGS */
+
+ /* Enable S-EL2 if the next EL is EL2 and S-EL2 is present */
+ if ((GET_EL(ep->spsr) == MODE_EL2) && is_armv8_4_sel2_present()) {
+ if (GET_RW(ep->spsr) != MODE_RW_64) {
+ ERROR("S-EL2 can not be used in AArch32\n.");
+ panic();
+ }
+
+ scr_el3 |= SCR_EEL2_BIT;
+ }
+
+ write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
+
+ /*
+ * Initialize EL1 context registers unless SPMC is running
+ * at S-EL2.
+ */
+#if !SPMD_SPM_AT_SEL2
+ setup_el1_context(ctx, ep);
+#endif
+
+ manage_extensions_secure(ctx);
+}
+
+#if ENABLE_RME
+/******************************************************************************
+ * This function performs initializations that are specific to REALM state
+ * and updates the cpu context specified by 'ctx'.
+ *****************************************************************************/
+static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
+{
+ u_register_t scr_el3;
+ el3_state_t *state;
+
+ state = get_el3state_ctx(ctx);
+ scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
+
+ scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT | SCR_EnSCXT_BIT;
+
+ write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
+}
+#endif /* ENABLE_RME */
+
+/******************************************************************************
+ * This function performs initializations that are specific to NON-SECURE state
+ * and updates the cpu context specified by 'ctx'.
+ *****************************************************************************/
+static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
+{
+ u_register_t scr_el3;
+ el3_state_t *state;
+
+ state = get_el3state_ctx(ctx);
+ scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
+
+ /* SCR_NS: Set the NS bit */
+ scr_el3 |= SCR_NS_BIT;
+
+#if !CTX_INCLUDE_PAUTH_REGS
+ /*
+ * If the pointer authentication registers aren't saved during world
+ * switches the value of the registers can be leaked from the Secure to
+ * the Non-secure world. To prevent this, rather than enabling pointer
+ * authentication everywhere, we only enable it in the Non-secure world.
+ *
+ * If the Secure world wants to use pointer authentication,
+ * CTX_INCLUDE_PAUTH_REGS must be set to 1.
+ */
+ scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
+#endif /* !CTX_INCLUDE_PAUTH_REGS */
+
+ /* Allow access to Allocation Tags when MTE is implemented. */
+ scr_el3 |= SCR_ATA_BIT;
+
+#if HANDLE_EA_EL3_FIRST_NS
+ /* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
+ scr_el3 |= SCR_EA_BIT;
+#endif
+
+#if RAS_TRAP_NS_ERR_REC_ACCESS
+ /*
+ * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
+ * and RAS ERX registers from EL1 and EL2(from any security state)
+ * are trapped to EL3.
+ * Set here to trap only for NS EL1/EL2
+ *
+ */
+ scr_el3 |= SCR_TERR_BIT;
+#endif
+
+#ifdef IMAGE_BL31
+ /*
+ * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
+ * indicated by the interrupt routing model for BL31.
+ */
+ scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
+#endif
+ write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
+
+ /* Initialize EL1 context registers */
+ setup_el1_context(ctx, ep);
+
+ /* Initialize EL2 context registers */
+#if CTX_INCLUDE_EL2_REGS
+
+ /*
+ * Initialize SCTLR_EL2 context register using Endianness value
+ * taken from the entrypoint attribute.
+ */
+ u_register_t sctlr_el2 = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
+ sctlr_el2 |= SCTLR_EL2_RES1;
+ write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_SCTLR_EL2,
+ sctlr_el2);
+
+ /*
+ * Program the ICC_SRE_EL2 to make sure the correct bits are set
+ * when restoring NS context.
+ */
+ u_register_t icc_sre_el2 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
+ ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
+ write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_ICC_SRE_EL2,
+ icc_sre_el2);
+
+ /*
+ * Initialize MDCR_EL2.HPMN to its hardware reset value so we don't
+ * throw anyone off who expects this to be sensible.
+ * TODO: A similar thing happens in cm_prepare_el3_exit. They should be
+ * unified with the proper PMU implementation
+ */
+ u_register_t mdcr_el2 = ((read_pmcr_el0() >> PMCR_EL0_N_SHIFT) &
+ PMCR_EL0_N_MASK);
+ write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_MDCR_EL2, mdcr_el2);
+#endif /* CTX_INCLUDE_EL2_REGS */
+}
+
+/*******************************************************************************
+ * The following function performs initialization of the cpu_context 'ctx'
+ * for first use that is common to all security states, and sets the
+ * initial entrypoint state as specified by the entry_point_info structure.
+ *
+ * The EE and ST attributes are used to configure the endianness and secure
+ * timer availability for the new execution context.
+ ******************************************************************************/
+static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
+{
+ u_register_t scr_el3;
+ el3_state_t *state;
+ gp_regs_t *gp_regs;
+
+ /* Clear any residual register values from the context */
+ zeromem(ctx, sizeof(*ctx));
+
+ /*
+ * SCR_EL3 was initialised during reset sequence in macro
+ * el3_arch_init_common. This code modifies the SCR_EL3 fields that
+ * affect the next EL.
+ *
+ * The following fields are initially set to zero and then updated to
+ * the required value depending on the state of the SPSR_EL3 and the
+ * Security state and entrypoint attributes of the next EL.
+ */
+ scr_el3 = read_scr();
+ scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_EA_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
+ SCR_ST_BIT | SCR_HCE_BIT | SCR_NSE_BIT);
+
+ /*
+ * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
+ * Exception level as specified by SPSR.
+ */
+ if (GET_RW(ep->spsr) == MODE_RW_64) {
+ scr_el3 |= SCR_RW_BIT;
+ }
+
+ /*
+ * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
+ * Secure timer registers to EL3, from AArch64 state only, if specified
+ * by the entrypoint attributes. If SEL2 is present and enabled, the ST
+ * bit always behaves as 1 (i.e. secure physical timer register access
+ * is not trapped)
+ */
+ if (EP_GET_ST(ep->h.attr) != 0U) {
+ scr_el3 |= SCR_ST_BIT;
+ }
+
+ /*
+ * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
+ * SCR_EL3.HXEn.
+ */
+#if ENABLE_FEAT_HCX
+ scr_el3 |= SCR_HXEn_BIT;
+#endif
+
+ /*
+ * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
+ * registers are trapped to EL3.
+ */
+#if ENABLE_FEAT_RNG_TRAP
+ scr_el3 |= SCR_TRNDR_BIT;
+#endif
+
+#if FAULT_INJECTION_SUPPORT
+ /* Enable fault injection from lower ELs */
+ scr_el3 |= SCR_FIEN_BIT;
+#endif
+
+ /*
+ * CPTR_EL3 was initialized out of reset, copy that value to the
+ * context register.
+ */
+ write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, read_cptr_el3());
+
+ /*
+ * SCR_EL3.HCE: Enable HVC instructions if next execution state is
+ * AArch64 and next EL is EL2, or if next execution state is AArch32 and
+ * next mode is Hyp.
+ * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
+ * same conditions as HVC instructions and when the processor supports
+ * ARMv8.6-FGT.
+ * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
+ * CNTPOFF_EL2 register under the same conditions as HVC instructions
+ * and when the processor supports ECV.
+ */
+ if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
+ || ((GET_RW(ep->spsr) != MODE_RW_64)
+ && (GET_M32(ep->spsr) == MODE32_hyp))) {
+ scr_el3 |= SCR_HCE_BIT;
+
+ if (is_armv8_6_fgt_present()) {
+ scr_el3 |= SCR_FGTEN_BIT;
+ }
+
+ if (get_armv8_6_ecv_support()
+ == ID_AA64MMFR0_EL1_ECV_SELF_SYNCH) {
+ scr_el3 |= SCR_ECVEN_BIT;
+ }
+ }
+
+#if ENABLE_FEAT_TWED
+ /* Enable WFE trap delay in SCR_EL3 if supported and configured */
+ /* Set delay in SCR_EL3 */
+ scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
+ scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
+ << SCR_TWEDEL_SHIFT);
+
+ /* Enable WFE delay */
+ scr_el3 |= SCR_TWEDEn_BIT;
+#endif /* ENABLE_FEAT_TWED */
+
+ /*
+ * Populate EL3 state so that we've the right context
+ * before doing ERET
+ */
+ state = get_el3state_ctx(ctx);
+ write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
+ write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
+ write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
+
+ /*
+ * Store the X0-X7 value from the entrypoint into the context
+ * Use memcpy as we are in control of the layout of the structures
+ */
+ gp_regs = get_gpregs_ctx(ctx);
+ memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
+}
+
+/*******************************************************************************
+ * Context management library initialization routine. This library is used by
+ * runtime services to share pointers to 'cpu_context' structures for secure
+ * non-secure and realm states. Management of the structures and their associated
+ * memory is not done by the context management library e.g. the PSCI service
+ * manages the cpu context used for entry from and exit to the non-secure state.
+ * The Secure payload dispatcher service manages the context(s) corresponding to
+ * the secure state. It also uses this library to get access to the non-secure
+ * state cpu context pointers.
+ * Lastly, this library provides the API to make SP_EL3 point to the cpu context
+ * which will be used for programming an entry into a lower EL. The same context
+ * will be used to save state upon exception entry from that EL.
+ ******************************************************************************/
+void __init cm_init(void)
+{
+ /*
+ * The context management library has only global data to intialize, but
+ * that will be done when the BSS is zeroed out.
+ */
+}
+
+/*******************************************************************************
+ * This is the high-level function used to initialize the cpu_context 'ctx' for
+ * first use. It performs initializations that are common to all security states
+ * and initializations specific to the security state specified in 'ep'
+ ******************************************************************************/
+void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
+{
+ unsigned int security_state;
+
+ assert(ctx != NULL);
+
+ /*
+ * Perform initializations that are common
+ * to all security states
+ */
+ setup_context_common(ctx, ep);
+
+ security_state = GET_SECURITY_STATE(ep->h.attr);
+
+ /* Perform security state specific initializations */
+ switch (security_state) {
+ case SECURE:
+ setup_secure_context(ctx, ep);
+ break;
+#if ENABLE_RME
+ case REALM:
+ setup_realm_context(ctx, ep);
+ break;
+#endif
+ case NON_SECURE:
+ setup_ns_context(ctx, ep);
+ break;
+ default:
+ ERROR("Invalid security state\n");
+ panic();
+ break;
+ }
+}
+
+/*******************************************************************************
+ * Enable architecture extensions on first entry to Non-secure world.
+ * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
+ * it is zero.
+ ******************************************************************************/
+static void manage_extensions_nonsecure(bool el2_unused, cpu_context_t *ctx)
+{
+#if IMAGE_BL31
+#if ENABLE_SPE_FOR_LOWER_ELS
+ spe_enable(el2_unused);
+#endif
+
+#if ENABLE_AMU
+ amu_enable(el2_unused, ctx);
+#endif
+
+#if ENABLE_SME_FOR_NS
+ /* Enable SME, SVE, and FPU/SIMD for non-secure world. */
+ sme_enable(ctx);
+#elif ENABLE_SVE_FOR_NS
+ /* Enable SVE and FPU/SIMD for non-secure world. */
+ sve_enable(ctx);
+#endif
+
+#if ENABLE_MPAM_FOR_LOWER_ELS
+ mpam_enable(el2_unused);
+#endif
+
+#if ENABLE_TRBE_FOR_NS
+ trbe_enable();
+#endif /* ENABLE_TRBE_FOR_NS */
+
+#if ENABLE_BRBE_FOR_NS
+ brbe_enable();
+#endif /* ENABLE_BRBE_FOR_NS */
+
+#if ENABLE_SYS_REG_TRACE_FOR_NS
+ sys_reg_trace_enable(ctx);
+#endif /* ENABLE_SYS_REG_TRACE_FOR_NS */
+
+#if ENABLE_TRF_FOR_NS
+ trf_enable();
+#endif /* ENABLE_TRF_FOR_NS */
+#endif
+}
+
+/*******************************************************************************
+ * Enable architecture extensions on first entry to Secure world.
+ ******************************************************************************/
+static void manage_extensions_secure(cpu_context_t *ctx)
+{
+#if IMAGE_BL31
+ #if ENABLE_SME_FOR_NS
+ #if ENABLE_SME_FOR_SWD
+ /*
+ * Enable SME, SVE, FPU/SIMD in secure context, secure manager must
+ * ensure SME, SVE, and FPU/SIMD context properly managed.
+ */
+ sme_enable(ctx);
+ #else /* ENABLE_SME_FOR_SWD */
+ /*
+ * Disable SME, SVE, FPU/SIMD in secure context so non-secure world can
+ * safely use the associated registers.
+ */
+ sme_disable(ctx);
+ #endif /* ENABLE_SME_FOR_SWD */
+ #elif ENABLE_SVE_FOR_NS
+ #if ENABLE_SVE_FOR_SWD
+ /*
+ * Enable SVE and FPU in secure context, secure manager must ensure that
+ * the SVE and FPU register contexts are properly managed.
+ */
+ sve_enable(ctx);
+ #else /* ENABLE_SVE_FOR_SWD */
+ /*
+ * Disable SVE and FPU in secure context so non-secure world can safely
+ * use them.
+ */
+ sve_disable(ctx);
+ #endif /* ENABLE_SVE_FOR_SWD */
+ #endif /* ENABLE_SVE_FOR_NS */
+#endif /* IMAGE_BL31 */
+}
+
+/*******************************************************************************
+ * The following function initializes the cpu_context for a CPU specified by
+ * its `cpu_idx` for first use, and sets the initial entrypoint state as
+ * specified by the entry_point_info structure.
+ ******************************************************************************/
+void cm_init_context_by_index(unsigned int cpu_idx,
+ const entry_point_info_t *ep)
+{
+ cpu_context_t *ctx;
+ ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
+ cm_setup_context(ctx, ep);
+}
+
+/*******************************************************************************
+ * The following function initializes the cpu_context for the current CPU
+ * for first use, and sets the initial entrypoint state as specified by the
+ * entry_point_info structure.
+ ******************************************************************************/
+void cm_init_my_context(const entry_point_info_t *ep)
+{
+ cpu_context_t *ctx;
+ ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
+ cm_setup_context(ctx, ep);
+}
+
+/*******************************************************************************
+ * Prepare the CPU system registers for first entry into realm, secure, or
+ * normal world.
+ *
+ * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
+ * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
+ * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
+ * For all entries, the EL1 registers are initialized from the cpu_context
+ ******************************************************************************/
+void cm_prepare_el3_exit(uint32_t security_state)
+{
+ u_register_t sctlr_elx, scr_el3, mdcr_el2;
+ cpu_context_t *ctx = cm_get_context(security_state);
+ bool el2_unused = false;
+ uint64_t hcr_el2 = 0U;
+
+ assert(ctx != NULL);
+
+ if (security_state == NON_SECURE) {
+ scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
+ CTX_SCR_EL3);
+ if ((scr_el3 & SCR_HCE_BIT) != 0U) {
+ /* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
+ sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
+ CTX_SCTLR_EL1);
+ sctlr_elx &= SCTLR_EE_BIT;
+ sctlr_elx |= SCTLR_EL2_RES1;
+#if ERRATA_A75_764081
+ /*
+ * If workaround of errata 764081 for Cortex-A75 is used
+ * then set SCTLR_EL2.IESB to enable Implicit Error
+ * Synchronization Barrier.
+ */
+ sctlr_elx |= SCTLR_IESB_BIT;
+#endif
+ write_sctlr_el2(sctlr_elx);
+ } else if (el_implemented(2) != EL_IMPL_NONE) {
+ el2_unused = true;
+
+ /*
+ * EL2 present but unused, need to disable safely.
+ * SCTLR_EL2 can be ignored in this case.
+ *
+ * Set EL2 register width appropriately: Set HCR_EL2
+ * field to match SCR_EL3.RW.
+ */
+ if ((scr_el3 & SCR_RW_BIT) != 0U)
+ hcr_el2 |= HCR_RW_BIT;
+
+ /*
+ * For Armv8.3 pointer authentication feature, disable
+ * traps to EL2 when accessing key registers or using
+ * pointer authentication instructions from lower ELs.
+ */
+ hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
+
+ write_hcr_el2(hcr_el2);
+
+ /*
+ * Initialise CPTR_EL2 setting all fields rather than
+ * relying on the hw. All fields have architecturally
+ * UNKNOWN reset values.
+ *
+ * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
+ * accesses to the CPACR_EL1 or CPACR from both
+ * Execution states do not trap to EL2.
+ *
+ * CPTR_EL2.TTA: Set to zero so that Non-secure System
+ * register accesses to the trace registers from both
+ * Execution states do not trap to EL2.
+ * If PE trace unit System registers are not implemented
+ * then this bit is reserved, and must be set to zero.
+ *
+ * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
+ * to SIMD and floating-point functionality from both
+ * Execution states do not trap to EL2.
+ */
+ write_cptr_el2(CPTR_EL2_RESET_VAL &
+ ~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
+ | CPTR_EL2_TFP_BIT));
+
+ /*
+ * Initialise CNTHCTL_EL2. All fields are
+ * architecturally UNKNOWN on reset and are set to zero
+ * except for field(s) listed below.
+ *
+ * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to
+ * Hyp mode of Non-secure EL0 and EL1 accesses to the
+ * physical timer registers.
+ *
+ * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
+ * Hyp mode of Non-secure EL0 and EL1 accesses to the
+ * physical counter registers.
+ */
+ write_cnthctl_el2(CNTHCTL_RESET_VAL |
+ EL1PCEN_BIT | EL1PCTEN_BIT);
+
+ /*
+ * Initialise CNTVOFF_EL2 to zero as it resets to an
+ * architecturally UNKNOWN value.
+ */
+ write_cntvoff_el2(0);
+
+ /*
+ * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
+ * MPIDR_EL1 respectively.
+ */
+ write_vpidr_el2(read_midr_el1());
+ write_vmpidr_el2(read_mpidr_el1());
+
+ /*
+ * Initialise VTTBR_EL2. All fields are architecturally
+ * UNKNOWN on reset.
+ *
+ * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
+ * 2 address translation is disabled, cache maintenance
+ * operations depend on the VMID.
+ *
+ * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
+ * translation is disabled.
+ */
+ write_vttbr_el2(VTTBR_RESET_VAL &
+ ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
+ | (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
+
+ /*
+ * Initialise MDCR_EL2, setting all fields rather than
+ * relying on hw. Some fields are architecturally
+ * UNKNOWN on reset.
+ *
+ * MDCR_EL2.HLP: Set to one so that event counter
+ * overflow, that is recorded in PMOVSCLR_EL0[0-30],
+ * occurs on the increment that changes
+ * PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
+ * implemented. This bit is RES0 in versions of the
+ * architecture earlier than ARMv8.5, setting it to 1
+ * doesn't have any effect on them.
+ *
+ * MDCR_EL2.TTRF: Set to zero so that access to Trace
+ * Filter Control register TRFCR_EL1 at EL1 is not
+ * trapped to EL2. This bit is RES0 in versions of
+ * the architecture earlier than ARMv8.4.
+ *
+ * MDCR_EL2.HPMD: Set to one so that event counting is
+ * prohibited at EL2. This bit is RES0 in versions of
+ * the architecture earlier than ARMv8.1, setting it
+ * to 1 doesn't have any effect on them.
+ *
+ * MDCR_EL2.TPMS: Set to zero so that accesses to
+ * Statistical Profiling control registers from EL1
+ * do not trap to EL2. This bit is RES0 when SPE is
+ * not implemented.
+ *
+ * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
+ * EL1 System register accesses to the Debug ROM
+ * registers are not trapped to EL2.
+ *
+ * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
+ * System register accesses to the powerdown debug
+ * registers are not trapped to EL2.
+ *
+ * MDCR_EL2.TDA: Set to zero so that System register
+ * accesses to the debug registers do not trap to EL2.
+ *
+ * MDCR_EL2.TDE: Set to zero so that debug exceptions
+ * are not routed to EL2.
+ *
+ * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
+ * Monitors.
+ *
+ * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
+ * EL1 accesses to all Performance Monitors registers
+ * are not trapped to EL2.
+ *
+ * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
+ * and EL1 accesses to the PMCR_EL0 or PMCR are not
+ * trapped to EL2.
+ *
+ * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
+ * architecturally-defined reset value.
+ *
+ * MDCR_EL2.E2TB: Set to zero so that the trace Buffer
+ * owning exception level is NS-EL1 and, tracing is
+ * prohibited at NS-EL2. These bits are RES0 when
+ * FEAT_TRBE is not implemented.
+ */
+ mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
+ MDCR_EL2_HPMD) |
+ ((read_pmcr_el0() & PMCR_EL0_N_BITS)
+ >> PMCR_EL0_N_SHIFT)) &
+ ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
+ MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
+ MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
+ MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
+ MDCR_EL2_TPMCR_BIT |
+ MDCR_EL2_E2TB(MDCR_EL2_E2TB_EL1));
+
+ write_mdcr_el2(mdcr_el2);
+
+ /*
+ * Initialise HSTR_EL2. All fields are architecturally
+ * UNKNOWN on reset.
+ *
+ * HSTR_EL2.T<n>: Set all these fields to zero so that
+ * Non-secure EL0 or EL1 accesses to System registers
+ * do not trap to EL2.
+ */
+ write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
+ /*
+ * Initialise CNTHP_CTL_EL2. All fields are
+ * architecturally UNKNOWN on reset.
+ *
+ * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
+ * physical timer and prevent timer interrupts.
+ */
+ write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
+ ~(CNTHP_CTL_ENABLE_BIT));
+ }
+ manage_extensions_nonsecure(el2_unused, ctx);
+ }
+
+ cm_el1_sysregs_context_restore(security_state);
+ cm_set_next_eret_context(security_state);
+}
+
+#if CTX_INCLUDE_EL2_REGS
+/*******************************************************************************
+ * Save EL2 sysreg context
+ ******************************************************************************/
+void cm_el2_sysregs_context_save(uint32_t security_state)
+{
+ u_register_t scr_el3 = read_scr();
+
+ /*
+ * Always save the non-secure and realm EL2 context, only save the
+ * S-EL2 context if S-EL2 is enabled.
+ */
+ if ((security_state != SECURE) ||
+ ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
+ cpu_context_t *ctx;
+ el2_sysregs_t *el2_sysregs_ctx;
+
+ ctx = cm_get_context(security_state);
+ assert(ctx != NULL);
+
+ el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
+
+ el2_sysregs_context_save_common(el2_sysregs_ctx);
+#if ENABLE_SPE_FOR_LOWER_ELS
+ el2_sysregs_context_save_spe(el2_sysregs_ctx);
+#endif
+#if CTX_INCLUDE_MTE_REGS
+ el2_sysregs_context_save_mte(el2_sysregs_ctx);
+#endif
+#if ENABLE_MPAM_FOR_LOWER_ELS
+ el2_sysregs_context_save_mpam(el2_sysregs_ctx);
+#endif
+#if ENABLE_FEAT_FGT
+ el2_sysregs_context_save_fgt(el2_sysregs_ctx);
+#endif
+#if ENABLE_FEAT_ECV
+ el2_sysregs_context_save_ecv(el2_sysregs_ctx);
+#endif
+#if ENABLE_FEAT_VHE
+ el2_sysregs_context_save_vhe(el2_sysregs_ctx);
+#endif
+#if RAS_EXTENSION
+ el2_sysregs_context_save_ras(el2_sysregs_ctx);
+#endif
+#if CTX_INCLUDE_NEVE_REGS
+ el2_sysregs_context_save_nv2(el2_sysregs_ctx);
+#endif
+#if ENABLE_TRF_FOR_NS
+ el2_sysregs_context_save_trf(el2_sysregs_ctx);
+#endif
+#if ENABLE_FEAT_CSV2_2
+ el2_sysregs_context_save_csv2(el2_sysregs_ctx);
+#endif
+#if ENABLE_FEAT_HCX
+ el2_sysregs_context_save_hcx(el2_sysregs_ctx);
+#endif
+ }
+}
+
+/*******************************************************************************
+ * Restore EL2 sysreg context
+ ******************************************************************************/
+void cm_el2_sysregs_context_restore(uint32_t security_state)
+{
+ u_register_t scr_el3 = read_scr();
+
+ /*
+ * Always restore the non-secure and realm EL2 context, only restore the
+ * S-EL2 context if S-EL2 is enabled.
+ */
+ if ((security_state != SECURE) ||
+ ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
+ cpu_context_t *ctx;
+ el2_sysregs_t *el2_sysregs_ctx;
+
+ ctx = cm_get_context(security_state);
+ assert(ctx != NULL);
+
+ el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
+
+ el2_sysregs_context_restore_common(el2_sysregs_ctx);
+#if ENABLE_SPE_FOR_LOWER_ELS
+ el2_sysregs_context_restore_spe(el2_sysregs_ctx);
+#endif
+#if CTX_INCLUDE_MTE_REGS
+ el2_sysregs_context_restore_mte(el2_sysregs_ctx);
+#endif
+#if ENABLE_MPAM_FOR_LOWER_ELS
+ el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
+#endif
+#if ENABLE_FEAT_FGT
+ el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
+#endif
+#if ENABLE_FEAT_ECV
+ el2_sysregs_context_restore_ecv(el2_sysregs_ctx);
+#endif
+#if ENABLE_FEAT_VHE
+ el2_sysregs_context_restore_vhe(el2_sysregs_ctx);
+#endif
+#if RAS_EXTENSION
+ el2_sysregs_context_restore_ras(el2_sysregs_ctx);
+#endif
+#if CTX_INCLUDE_NEVE_REGS
+ el2_sysregs_context_restore_nv2(el2_sysregs_ctx);
+#endif
+#if ENABLE_TRF_FOR_NS
+ el2_sysregs_context_restore_trf(el2_sysregs_ctx);
+#endif
+#if ENABLE_FEAT_CSV2_2
+ el2_sysregs_context_restore_csv2(el2_sysregs_ctx);
+#endif
+#if ENABLE_FEAT_HCX
+ el2_sysregs_context_restore_hcx(el2_sysregs_ctx);
+#endif
+ }
+}
+#endif /* CTX_INCLUDE_EL2_REGS */
+
+/*******************************************************************************
+ * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
+ * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
+ * updating EL1 and EL2 registers. Otherwise, it calls the generic
+ * cm_prepare_el3_exit function.
+ ******************************************************************************/
+void cm_prepare_el3_exit_ns(void)
+{
+#if CTX_INCLUDE_EL2_REGS
+ cpu_context_t *ctx = cm_get_context(NON_SECURE);
+ assert(ctx != NULL);
+
+ /* Assert that EL2 is used. */
+#if ENABLE_ASSERTIONS
+ el3_state_t *state = get_el3state_ctx(ctx);
+ u_register_t scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
+#endif
+ assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
+ (el_implemented(2U) != EL_IMPL_NONE));
+
+ /*
+ * Currently some extensions are configured using
+ * direct register updates. Therefore, do this here
+ * instead of when setting up context.
+ */
+ manage_extensions_nonsecure(0, ctx);
+
+ /*
+ * Set the NS bit to be able to access the ICC_SRE_EL2
+ * register when restoring context.
+ */
+ write_scr_el3(read_scr_el3() | SCR_NS_BIT);
+
+ /*
+ * Ensure the NS bit change is committed before the EL2/EL1
+ * state restoration.
+ */
+ isb();
+
+ /* Restore EL2 and EL1 sysreg contexts */
+ cm_el2_sysregs_context_restore(NON_SECURE);
+ cm_el1_sysregs_context_restore(NON_SECURE);
+ cm_set_next_eret_context(NON_SECURE);
+#else
+ cm_prepare_el3_exit(NON_SECURE);
+#endif /* CTX_INCLUDE_EL2_REGS */
+}
+
+/*******************************************************************************
+ * The next four functions are used by runtime services to save and restore
+ * EL1 context on the 'cpu_context' structure for the specified security
+ * state.
+ ******************************************************************************/
+void cm_el1_sysregs_context_save(uint32_t security_state)
+{
+ cpu_context_t *ctx;
+
+ ctx = cm_get_context(security_state);
+ assert(ctx != NULL);
+
+ el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
+
+#if IMAGE_BL31
+ if (security_state == SECURE)
+ PUBLISH_EVENT(cm_exited_secure_world);
+ else
+ PUBLISH_EVENT(cm_exited_normal_world);
+#endif
+}
+
+void cm_el1_sysregs_context_restore(uint32_t security_state)
+{
+ cpu_context_t *ctx;
+
+ ctx = cm_get_context(security_state);
+ assert(ctx != NULL);
+
+ el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
+
+#if IMAGE_BL31
+ if (security_state == SECURE)
+ PUBLISH_EVENT(cm_entering_secure_world);
+ else
+ PUBLISH_EVENT(cm_entering_normal_world);
+#endif
+}
+
+/*******************************************************************************
+ * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
+ * given security state with the given entrypoint
+ ******************************************************************************/
+void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
+{
+ cpu_context_t *ctx;
+ el3_state_t *state;
+
+ ctx = cm_get_context(security_state);
+ assert(ctx != NULL);
+
+ /* Populate EL3 state so that ERET jumps to the correct entry */
+ state = get_el3state_ctx(ctx);
+ write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
+}
+
+/*******************************************************************************
+ * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
+ * pertaining to the given security state
+ ******************************************************************************/
+void cm_set_elr_spsr_el3(uint32_t security_state,
+ uintptr_t entrypoint, uint32_t spsr)
+{
+ cpu_context_t *ctx;
+ el3_state_t *state;
+
+ ctx = cm_get_context(security_state);
+ assert(ctx != NULL);
+
+ /* Populate EL3 state so that ERET jumps to the correct entry */
+ state = get_el3state_ctx(ctx);
+ write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
+ write_ctx_reg(state, CTX_SPSR_EL3, spsr);
+}
+
+/*******************************************************************************
+ * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
+ * pertaining to the given security state using the value and bit position
+ * specified in the parameters. It preserves all other bits.
+ ******************************************************************************/
+void cm_write_scr_el3_bit(uint32_t security_state,
+ uint32_t bit_pos,
+ uint32_t value)
+{
+ cpu_context_t *ctx;
+ el3_state_t *state;
+ u_register_t scr_el3;
+
+ ctx = cm_get_context(security_state);
+ assert(ctx != NULL);
+
+ /* Ensure that the bit position is a valid one */
+ assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
+
+ /* Ensure that the 'value' is only a bit wide */
+ assert(value <= 1U);
+
+ /*
+ * Get the SCR_EL3 value from the cpu context, clear the desired bit
+ * and set it to its new value.
+ */
+ state = get_el3state_ctx(ctx);
+ scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
+ scr_el3 &= ~(1UL << bit_pos);
+ scr_el3 |= (u_register_t)value << bit_pos;
+ write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
+}
+
+/*******************************************************************************
+ * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
+ * given security state.
+ ******************************************************************************/
+u_register_t cm_get_scr_el3(uint32_t security_state)
+{
+ cpu_context_t *ctx;
+ el3_state_t *state;
+
+ ctx = cm_get_context(security_state);
+ assert(ctx != NULL);
+
+ /* Populate EL3 state so that ERET jumps to the correct entry */
+ state = get_el3state_ctx(ctx);
+ return read_ctx_reg(state, CTX_SCR_EL3);
+}
+
+/*******************************************************************************
+ * This function is used to program the context that's used for exception
+ * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
+ * the required security state
+ ******************************************************************************/
+void cm_set_next_eret_context(uint32_t security_state)
+{
+ cpu_context_t *ctx;
+
+ ctx = cm_get_context(security_state);
+ assert(ctx != NULL);
+
+ cm_set_next_context(ctx);
+}