summaryrefslogtreecommitdiffstats
path: root/lib/locks/bakery/bakery_lock_coherent.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/locks/bakery/bakery_lock_coherent.c')
-rw-r--r--lib/locks/bakery/bakery_lock_coherent.c168
1 files changed, 168 insertions, 0 deletions
diff --git a/lib/locks/bakery/bakery_lock_coherent.c b/lib/locks/bakery/bakery_lock_coherent.c
new file mode 100644
index 0000000..748eedd
--- /dev/null
+++ b/lib/locks/bakery/bakery_lock_coherent.c
@@ -0,0 +1,168 @@
+/*
+ * Copyright (c) 2013-2018, ARM Limited and Contributors. All rights reserved.
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include <assert.h>
+#include <string.h>
+
+#include <arch_helpers.h>
+#include <lib/bakery_lock.h>
+#include <lib/el3_runtime/cpu_data.h>
+#include <plat/common/platform.h>
+
+/*
+ * Functions in this file implement Bakery Algorithm for mutual exclusion with the
+ * bakery lock data structures in coherent memory.
+ *
+ * ARM architecture offers a family of exclusive access instructions to
+ * efficiently implement mutual exclusion with hardware support. However, as
+ * well as depending on external hardware, the these instructions have defined
+ * behavior only on certain memory types (cacheable and Normal memory in
+ * particular; see ARMv8 Architecture Reference Manual section B2.10). Use cases
+ * in trusted firmware are such that mutual exclusion implementation cannot
+ * expect that accesses to the lock have the specific type required by the
+ * architecture for these primitives to function (for example, not all
+ * contenders may have address translation enabled).
+ *
+ * This implementation does not use mutual exclusion primitives. It expects
+ * memory regions where the locks reside to be fully ordered and coherent
+ * (either by disabling address translation, or by assigning proper attributes
+ * when translation is enabled).
+ *
+ * Note that the ARM architecture guarantees single-copy atomicity for aligned
+ * accesses regardless of status of address translation.
+ */
+
+#define assert_bakery_entry_valid(_entry, _bakery) do { \
+ assert((_bakery) != NULL); \
+ assert((_entry) < BAKERY_LOCK_MAX_CPUS); \
+} while (false)
+
+/* Obtain a ticket for a given CPU */
+static unsigned int bakery_get_ticket(bakery_lock_t *bakery, unsigned int me)
+{
+ unsigned int my_ticket, their_ticket;
+ unsigned int they;
+
+ /* Prevent recursive acquisition */
+ assert(bakery_ticket_number(bakery->lock_data[me]) == 0U);
+
+ /*
+ * Flag that we're busy getting our ticket. All CPUs are iterated in the
+ * order of their ordinal position to decide the maximum ticket value
+ * observed so far. Our priority is set to be greater than the maximum
+ * observed priority
+ *
+ * Note that it's possible that more than one contender gets the same
+ * ticket value. That's OK as the lock is acquired based on the priority
+ * value, not the ticket value alone.
+ */
+ my_ticket = 0U;
+ bakery->lock_data[me] = make_bakery_data(CHOOSING_TICKET, my_ticket);
+ for (they = 0U; they < BAKERY_LOCK_MAX_CPUS; they++) {
+ their_ticket = bakery_ticket_number(bakery->lock_data[they]);
+ if (their_ticket > my_ticket)
+ my_ticket = their_ticket;
+ }
+
+ /*
+ * Compute ticket; then signal to other contenders waiting for us to
+ * finish calculating our ticket value that we're done
+ */
+ ++my_ticket;
+ bakery->lock_data[me] = make_bakery_data(CHOSEN_TICKET, my_ticket);
+
+ return my_ticket;
+}
+
+
+/*
+ * Acquire bakery lock
+ *
+ * Contending CPUs need first obtain a non-zero ticket and then calculate
+ * priority value. A contending CPU iterate over all other CPUs in the platform,
+ * which may be contending for the same lock, in the order of their ordinal
+ * position (CPU0, CPU1 and so on). A non-contending CPU will have its ticket
+ * (and priority) value as 0. The contending CPU compares its priority with that
+ * of others'. The CPU with the highest priority (lowest numerical value)
+ * acquires the lock
+ */
+void bakery_lock_get(bakery_lock_t *bakery)
+{
+ unsigned int they, me;
+ unsigned int my_ticket, my_prio, their_ticket;
+ unsigned int their_bakery_data;
+
+ me = plat_my_core_pos();
+
+ assert_bakery_entry_valid(me, bakery);
+
+ /* Get a ticket */
+ my_ticket = bakery_get_ticket(bakery, me);
+
+ /*
+ * Now that we got our ticket, compute our priority value, then compare
+ * with that of others, and proceed to acquire the lock
+ */
+ my_prio = bakery_get_priority(my_ticket, me);
+ for (they = 0U; they < BAKERY_LOCK_MAX_CPUS; they++) {
+ if (me == they)
+ continue;
+
+ /* Wait for the contender to get their ticket */
+ do {
+ their_bakery_data = bakery->lock_data[they];
+ } while (bakery_is_choosing(their_bakery_data));
+
+ /*
+ * If the other party is a contender, they'll have non-zero
+ * (valid) ticket value. If they do, compare priorities
+ */
+ their_ticket = bakery_ticket_number(their_bakery_data);
+ if ((their_ticket != 0U) &&
+ (bakery_get_priority(their_ticket, they) < my_prio)) {
+ /*
+ * They have higher priority (lower value). Wait for
+ * their ticket value to change (either release the lock
+ * to have it dropped to 0; or drop and probably content
+ * again for the same lock to have an even higher value)
+ */
+ do {
+ wfe();
+ } while (their_ticket ==
+ bakery_ticket_number(bakery->lock_data[they]));
+ }
+ }
+
+ /*
+ * Lock acquired. Ensure that any reads and writes from a shared
+ * resource in the critical section read/write values after the lock is
+ * acquired.
+ */
+ dmbish();
+}
+
+
+/* Release the lock and signal contenders */
+void bakery_lock_release(bakery_lock_t *bakery)
+{
+ unsigned int me = plat_my_core_pos();
+
+ assert_bakery_entry_valid(me, bakery);
+ assert(bakery_ticket_number(bakery->lock_data[me]) != 0U);
+
+ /*
+ * Ensure that other observers see any stores in the critical section
+ * before releasing the lock. Also ensure all loads in the critical
+ * section are complete before releasing the lock. Release the lock by
+ * resetting ticket. Then signal other waiting contenders.
+ */
+ dmbish();
+ bakery->lock_data[me] = 0U;
+
+ /* Required to ensure ordering of the following sev */
+ dsb();
+ sev();
+}