diff options
Diffstat (limited to '')
-rw-r--r-- | lib/psci/psci_setup.c | 315 |
1 files changed, 315 insertions, 0 deletions
diff --git a/lib/psci/psci_setup.c b/lib/psci/psci_setup.c new file mode 100644 index 0000000..3cb4f7e --- /dev/null +++ b/lib/psci/psci_setup.c @@ -0,0 +1,315 @@ +/* + * Copyright (c) 2013-2020, ARM Limited and Contributors. All rights reserved. + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include <assert.h> +#include <stddef.h> + +#include <arch.h> +#include <arch_helpers.h> +#include <common/bl_common.h> +#include <context.h> +#include <lib/el3_runtime/context_mgmt.h> +#include <lib/cpus/errata_report.h> +#include <plat/common/platform.h> + +#include "psci_private.h" + +/* + * Check that PLATFORM_CORE_COUNT fits into the number of cores + * that can be represented by PSCI_MAX_CPUS_INDEX. + */ +CASSERT(PLATFORM_CORE_COUNT <= (PSCI_MAX_CPUS_INDEX + 1U), assert_psci_cores_overflow); + +/******************************************************************************* + * Per cpu non-secure contexts used to program the architectural state prior + * return to the normal world. + * TODO: Use the memory allocator to set aside memory for the contexts instead + * of relying on platform defined constants. + ******************************************************************************/ +static cpu_context_t psci_ns_context[PLATFORM_CORE_COUNT]; + +/****************************************************************************** + * Define the psci capability variable. + *****************************************************************************/ +unsigned int psci_caps; + +/******************************************************************************* + * Function which initializes the 'psci_non_cpu_pd_nodes' or the + * 'psci_cpu_pd_nodes' corresponding to the power level. + ******************************************************************************/ +static void __init psci_init_pwr_domain_node(uint16_t node_idx, + unsigned int parent_idx, + unsigned char level) +{ + if (level > PSCI_CPU_PWR_LVL) { + assert(node_idx < PSCI_NUM_NON_CPU_PWR_DOMAINS); + + psci_non_cpu_pd_nodes[node_idx].level = level; + psci_lock_init(psci_non_cpu_pd_nodes, node_idx); + psci_non_cpu_pd_nodes[node_idx].parent_node = parent_idx; + psci_non_cpu_pd_nodes[node_idx].local_state = + PLAT_MAX_OFF_STATE; + } else { + psci_cpu_data_t *svc_cpu_data; + + assert(node_idx < PLATFORM_CORE_COUNT); + + psci_cpu_pd_nodes[node_idx].parent_node = parent_idx; + + /* Initialize with an invalid mpidr */ + psci_cpu_pd_nodes[node_idx].mpidr = PSCI_INVALID_MPIDR; + + svc_cpu_data = + &(_cpu_data_by_index(node_idx)->psci_svc_cpu_data); + + /* Set the Affinity Info for the cores as OFF */ + svc_cpu_data->aff_info_state = AFF_STATE_OFF; + + /* Invalidate the suspend level for the cpu */ + svc_cpu_data->target_pwrlvl = PSCI_INVALID_PWR_LVL; + + /* Set the power state to OFF state */ + svc_cpu_data->local_state = PLAT_MAX_OFF_STATE; + + psci_flush_dcache_range((uintptr_t)svc_cpu_data, + sizeof(*svc_cpu_data)); + + cm_set_context_by_index(node_idx, + (void *) &psci_ns_context[node_idx], + NON_SECURE); + } +} + +/******************************************************************************* + * This functions updates cpu_start_idx and ncpus field for each of the node in + * psci_non_cpu_pd_nodes[]. It does so by comparing the parent nodes of each of + * the CPUs and check whether they match with the parent of the previous + * CPU. The basic assumption for this work is that children of the same parent + * are allocated adjacent indices. The platform should ensure this though proper + * mapping of the CPUs to indices via plat_core_pos_by_mpidr() and + * plat_my_core_pos() APIs. + *******************************************************************************/ +static void __init psci_update_pwrlvl_limits(void) +{ + unsigned int cpu_idx; + int j; + unsigned int nodes_idx[PLAT_MAX_PWR_LVL] = {0}; + unsigned int temp_index[PLAT_MAX_PWR_LVL]; + + for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) { + psci_get_parent_pwr_domain_nodes(cpu_idx, + PLAT_MAX_PWR_LVL, + temp_index); + for (j = (int)PLAT_MAX_PWR_LVL - 1; j >= 0; j--) { + if (temp_index[j] != nodes_idx[j]) { + nodes_idx[j] = temp_index[j]; + psci_non_cpu_pd_nodes[nodes_idx[j]].cpu_start_idx + = cpu_idx; + } + psci_non_cpu_pd_nodes[nodes_idx[j]].ncpus++; + } + } +} + +/******************************************************************************* + * Core routine to populate the power domain tree. The tree descriptor passed by + * the platform is populated breadth-first and the first entry in the map + * informs the number of root power domains. The parent nodes of the root nodes + * will point to an invalid entry(-1). + ******************************************************************************/ +static unsigned int __init populate_power_domain_tree(const unsigned char + *topology) +{ + unsigned int i, j = 0U, num_nodes_at_lvl = 1U, num_nodes_at_next_lvl; + unsigned int node_index = 0U, num_children; + unsigned int parent_node_index = 0U; + int level = (int)PLAT_MAX_PWR_LVL; + + /* + * For each level the inputs are: + * - number of nodes at this level in plat_array i.e. num_nodes_at_level + * This is the sum of values of nodes at the parent level. + * - Index of first entry at this level in the plat_array i.e. + * parent_node_index. + * - Index of first free entry in psci_non_cpu_pd_nodes[] or + * psci_cpu_pd_nodes[] i.e. node_index depending upon the level. + */ + while (level >= (int) PSCI_CPU_PWR_LVL) { + num_nodes_at_next_lvl = 0U; + /* + * For each entry (parent node) at this level in the plat_array: + * - Find the number of children + * - Allocate a node in a power domain array for each child + * - Set the parent of the child to the parent_node_index - 1 + * - Increment parent_node_index to point to the next parent + * - Accumulate the number of children at next level. + */ + for (i = 0U; i < num_nodes_at_lvl; i++) { + assert(parent_node_index <= + PSCI_NUM_NON_CPU_PWR_DOMAINS); + num_children = topology[parent_node_index]; + + for (j = node_index; + j < (node_index + num_children); j++) + psci_init_pwr_domain_node((uint16_t)j, + parent_node_index - 1U, + (unsigned char)level); + + node_index = j; + num_nodes_at_next_lvl += num_children; + parent_node_index++; + } + + num_nodes_at_lvl = num_nodes_at_next_lvl; + level--; + + /* Reset the index for the cpu power domain array */ + if (level == (int) PSCI_CPU_PWR_LVL) + node_index = 0; + } + + /* Validate the sanity of array exported by the platform */ + assert(j <= PLATFORM_CORE_COUNT); + return j; +} + +/******************************************************************************* + * This function does the architectural setup and takes the warm boot + * entry-point `mailbox_ep` as an argument. The function also initializes the + * power domain topology tree by querying the platform. The power domain nodes + * higher than the CPU are populated in the array psci_non_cpu_pd_nodes[] and + * the CPU power domains are populated in psci_cpu_pd_nodes[]. The platform + * exports its static topology map through the + * populate_power_domain_topology_tree() API. The algorithm populates the + * psci_non_cpu_pd_nodes and psci_cpu_pd_nodes iteratively by using this + * topology map. On a platform that implements two clusters of 2 cpus each, + * and supporting 3 domain levels, the populated psci_non_cpu_pd_nodes would + * look like this: + * + * --------------------------------------------------- + * | system node | cluster 0 node | cluster 1 node | + * --------------------------------------------------- + * + * And populated psci_cpu_pd_nodes would look like this : + * <- cpus cluster0 -><- cpus cluster1 -> + * ------------------------------------------------ + * | CPU 0 | CPU 1 | CPU 2 | CPU 3 | + * ------------------------------------------------ + ******************************************************************************/ +int __init psci_setup(const psci_lib_args_t *lib_args) +{ + const unsigned char *topology_tree; + + assert(VERIFY_PSCI_LIB_ARGS_V1(lib_args)); + + /* Do the Architectural initialization */ + psci_arch_setup(); + + /* Query the topology map from the platform */ + topology_tree = plat_get_power_domain_tree_desc(); + + /* Populate the power domain arrays using the platform topology map */ + psci_plat_core_count = populate_power_domain_tree(topology_tree); + + /* Update the CPU limits for each node in psci_non_cpu_pd_nodes */ + psci_update_pwrlvl_limits(); + + /* Populate the mpidr field of cpu node for this CPU */ + psci_cpu_pd_nodes[plat_my_core_pos()].mpidr = + read_mpidr() & MPIDR_AFFINITY_MASK; + + psci_init_req_local_pwr_states(); + + /* + * Set the requested and target state of this CPU and all the higher + * power domain levels for this CPU to run. + */ + psci_set_pwr_domains_to_run(PLAT_MAX_PWR_LVL); + + (void) plat_setup_psci_ops((uintptr_t)lib_args->mailbox_ep, + &psci_plat_pm_ops); + assert(psci_plat_pm_ops != NULL); + + /* + * Flush `psci_plat_pm_ops` as it will be accessed by secondary CPUs + * during warm boot, possibly before data cache is enabled. + */ + psci_flush_dcache_range((uintptr_t)&psci_plat_pm_ops, + sizeof(psci_plat_pm_ops)); + + /* Initialize the psci capability */ + psci_caps = PSCI_GENERIC_CAP; + + if (psci_plat_pm_ops->pwr_domain_off != NULL) + psci_caps |= define_psci_cap(PSCI_CPU_OFF); + if ((psci_plat_pm_ops->pwr_domain_on != NULL) && + (psci_plat_pm_ops->pwr_domain_on_finish != NULL)) + psci_caps |= define_psci_cap(PSCI_CPU_ON_AARCH64); + if ((psci_plat_pm_ops->pwr_domain_suspend != NULL) && + (psci_plat_pm_ops->pwr_domain_suspend_finish != NULL)) { + if (psci_plat_pm_ops->validate_power_state != NULL) + psci_caps |= define_psci_cap(PSCI_CPU_SUSPEND_AARCH64); + if (psci_plat_pm_ops->get_sys_suspend_power_state != NULL) + psci_caps |= define_psci_cap(PSCI_SYSTEM_SUSPEND_AARCH64); + } + if (psci_plat_pm_ops->system_off != NULL) + psci_caps |= define_psci_cap(PSCI_SYSTEM_OFF); + if (psci_plat_pm_ops->system_reset != NULL) + psci_caps |= define_psci_cap(PSCI_SYSTEM_RESET); + if (psci_plat_pm_ops->get_node_hw_state != NULL) + psci_caps |= define_psci_cap(PSCI_NODE_HW_STATE_AARCH64); + if ((psci_plat_pm_ops->read_mem_protect != NULL) && + (psci_plat_pm_ops->write_mem_protect != NULL)) + psci_caps |= define_psci_cap(PSCI_MEM_PROTECT); + if (psci_plat_pm_ops->mem_protect_chk != NULL) + psci_caps |= define_psci_cap(PSCI_MEM_CHK_RANGE_AARCH64); + if (psci_plat_pm_ops->system_reset2 != NULL) + psci_caps |= define_psci_cap(PSCI_SYSTEM_RESET2_AARCH64); + +#if ENABLE_PSCI_STAT + psci_caps |= define_psci_cap(PSCI_STAT_RESIDENCY_AARCH64); + psci_caps |= define_psci_cap(PSCI_STAT_COUNT_AARCH64); +#endif + + return 0; +} + +/******************************************************************************* + * This duplicates what the primary cpu did after a cold boot in BL1. The same + * needs to be done when a cpu is hotplugged in. This function could also over- + * ride any EL3 setup done by BL1 as this code resides in rw memory. + ******************************************************************************/ +void psci_arch_setup(void) +{ +#if (ARM_ARCH_MAJOR > 7) || defined(ARMV7_SUPPORTS_GENERIC_TIMER) + /* Program the counter frequency */ + write_cntfrq_el0(plat_get_syscnt_freq2()); +#endif + + /* Initialize the cpu_ops pointer. */ + init_cpu_ops(); + + /* Having initialized cpu_ops, we can now print errata status */ + print_errata_status(); + +#if ENABLE_PAUTH + /* Store APIAKey_EL1 key */ + set_cpu_data(apiakey[0], read_apiakeylo_el1()); + set_cpu_data(apiakey[1], read_apiakeyhi_el1()); +#endif /* ENABLE_PAUTH */ +} + +/****************************************************************************** + * PSCI Library interface to initialize the cpu context for the next non + * secure image during cold boot. The relevant registers in the cpu context + * need to be retrieved and programmed on return from this interface. + *****************************************************************************/ +void psci_prepare_next_non_secure_ctx(entry_point_info_t *next_image_info) +{ + assert(GET_SECURITY_STATE(next_image_info->h.attr) == NON_SECURE); + cm_init_my_context(next_image_info); + cm_prepare_el3_exit(NON_SECURE); +} |