summaryrefslogtreecommitdiffstats
path: root/plat/allwinner/common/arisc_off.S
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--plat/allwinner/common/arisc_off.S115
1 files changed, 115 insertions, 0 deletions
diff --git a/plat/allwinner/common/arisc_off.S b/plat/allwinner/common/arisc_off.S
new file mode 100644
index 0000000..ed10832
--- /dev/null
+++ b/plat/allwinner/common/arisc_off.S
@@ -0,0 +1,115 @@
+# turn_off_core.S
+#
+# Copyright (c) 2018, Andre Przywara <osp@andrep.de>
+# SPDX-License-Identifier: BSD-3-Clause
+#
+# OpenRISC assembly to turn off an ARM core on an Allwinner SoC from
+# the arisc management controller.
+# Generate a binary representation with:
+# $ or1k-elf-as -c -o turn_off_core.o turn_off_core.S
+# $ or1k-elf-objcopy -O binary --reverse-bytes=4 turn_off_core.o \
+# turn_off_core.bin
+# The encoded instructions go into an array defined in
+# plat/allwinner/sun50i_*/include/core_off_arisc.h, to be handed off to
+# the arisc processor.
+#
+# This routine is meant to be called directly from arisc reset (put the
+# start address in the reset vector), to be actually triggered by that
+# very ARM core to be turned off.
+# It expects the core number presented as a mask in the upper half of
+# r3, so to be patched in the lower 16 bits of the first instruction,
+# overwriting the 0 in this code here.
+# The code will do the following:
+# - Read the C_CPU_STATUS register, which contains the status of the WFI
+# lines of each of the four A53 cores.
+# - Loop until the core in question reaches WFI.
+# - Using that mask, activate the core output clamps by setting the
+# respective core bit in CPUX_PWROFF_GATING_REG (0x1f01500).
+# Note that the clamp for core 0 covers more than just the core, activating
+# it hangs the whole system. So we skip this step for core 0.
+# - Using the negated mask, assert the core's reset line by clearing the
+# respective bit in C_RST_CTRL (0x1f01c30).
+# - Finally turn off the core's power switch by writing 0xff to the
+# respective CPUx_PWR_SWITCH_REG (0x1f01540 ff.)
+# - Assert the arisc's own reset to end execution.
+# This also signals other arisc users that the chip is free again.
+# So in C this would look like:
+# while (!(readl(0x1700030) & (1U << core_nr)))
+# ;
+# if (core_nr != 0)
+# writel(readl(0x1f01500) | (1U << core_nr), 0x1f01500);
+# writel(readl(0x1f01c30) & ~(1U << core_nr), 0x1f01c30);
+# writel(0xff, 0x1f01540 + (core_nr * 4));
+# (using A64/H5 addresses)
+
+.text
+_start:
+ l.movhi r3, 0 # FIXUP! with core mask
+ l.movhi r0, 0 # clear r0
+ l.movhi r13, 0x170 # r13: CPU_CFG_BASE=0x01700000
+wait_wfi:
+ l.lwz r5, 0x30(r13) # load C_CPU_STATUS
+ l.and r5, r5, r3 # mask requested core
+ l.sfeq r5, r0 # is it not yet in WFI?
+ l.bf wait_wfi # try again
+
+ l.srli r6, r3, 16 # move mask to lower 16 bits
+ l.sfeqi r6, 1 # core 0 is special
+ l.bf 1f # don't touch the bit for core 0
+ l.movhi r13, 0x1f0 # address of R_CPUCFG (delay)
+ l.lwz r5, 0x1500(r13) # core output clamps
+ l.or r5, r5, r6 # set bit to ...
+ l.sw 0x1500(r13), r5 # ... activate for our core
+
+1: l.lwz r5, 0x1c30(r13) # CPU power-on reset
+ l.xori r6, r6, -1 # negate core mask
+ l.and r5, r5, r6 # clear bit to ...
+ l.sw 0x1c30(r13), r5 # ... assert for our core
+
+ l.ff1 r6, r3 # get core number from high mask
+ l.addi r6, r6, -17 # convert to 0-3
+ l.slli r6, r6, 2 # r5: core number*4 (0-12)
+ l.add r6, r6, r13 # add to base address
+ l.ori r5, r0, 0xff # 0xff means all switches off
+ l.sw 0x1540(r6), r5 # core power switch registers
+
+reset: l.sw 0x1c00(r13),r0 # pull down our own reset line
+
+ l.j reset # just in case ....
+ l.nop 0x0 # (delay slot)
+
+# same as above, but with the MMIO addresses matching the H6 SoC
+_start_h6:
+ l.movhi r3, 0 # FIXUP! with core mask
+ l.movhi r0, 0 # clear r0
+ l.movhi r13, 0x901 # r13: CPU_CFG_BASE=0x09010000
+1:
+ l.lwz r5, 0x80(r13) # load C_CPU_STATUS
+ l.and r5, r5, r3 # mask requested core
+ l.sfeq r5, r0 # is it not yet in WFI?
+ l.bf 1b # try again
+
+ l.srli r6, r3, 16 # move mask to lower 16 bits(ds)
+ l.sfeqi r6, 1 # core 0 is special
+ l.bf 1f # don't touch the bit for core 0
+ l.movhi r13, 0x700 # address of R_CPUCFG (ds)
+ l.lwz r5, 0x0444(r13) # core output clamps
+ l.or r5, r5, r6 # set bit to ...
+ l.sw 0x0444(r13), r5 # ... activate for our core
+
+1: l.lwz r5, 0x0440(r13) # CPU power-on reset
+ l.xori r6, r6, -1 # negate core mask
+ l.and r5, r5, r6 # clear bit to ...
+ l.sw 0x0440(r13), r5 # ... assert for our core
+
+ l.ff1 r6, r3 # get core number from high mask
+ l.addi r6, r6, -17 # convert to 0-3
+ l.slli r6, r6, 2 # r5: core number*4 (0-12)
+ l.add r6, r6, r13 # add to base address
+ l.ori r5, r0, 0xff # 0xff means all switches off
+ l.sw 0x0450(r6), r5 # core power switch registers
+
+1: l.sw 0x0400(r13),r0 # pull down our own reset line
+
+ l.j 1b # just in case ...
+ l.nop 0x0 # (delay slot)