From 102b0d2daa97dae68d3eed54d8fe37a9cc38a892 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sun, 28 Apr 2024 11:13:47 +0200 Subject: Adding upstream version 2.8.0+dfsg. Signed-off-by: Daniel Baumann --- lib/psci/psci_common.c | 1052 ++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1052 insertions(+) create mode 100644 lib/psci/psci_common.c (limited to 'lib/psci/psci_common.c') diff --git a/lib/psci/psci_common.c b/lib/psci/psci_common.c new file mode 100644 index 0000000..8d736cc --- /dev/null +++ b/lib/psci/psci_common.c @@ -0,0 +1,1052 @@ +/* + * Copyright (c) 2013-2022, ARM Limited and Contributors. All rights reserved. + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include +#include + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include "psci_private.h" + +/* + * SPD power management operations, expected to be supplied by the registered + * SPD on successful SP initialization + */ +const spd_pm_ops_t *psci_spd_pm; + +/* + * PSCI requested local power state map. This array is used to store the local + * power states requested by a CPU for power levels from level 1 to + * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power + * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a + * CPU are the same. + * + * During state coordination, the platform is passed an array containing the + * local states requested for a particular non cpu power domain by each cpu + * within the domain. + * + * TODO: Dense packing of the requested states will cause cache thrashing + * when multiple power domains write to it. If we allocate the requested + * states at each power level in a cache-line aligned per-domain memory, + * the cache thrashing can be avoided. + */ +static plat_local_state_t + psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT]; + +unsigned int psci_plat_core_count; + +/******************************************************************************* + * Arrays that hold the platform's power domain tree information for state + * management of power domains. + * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain + * which is an ancestor of a CPU power domain. + * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain + ******************************************************************************/ +non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS] +#if USE_COHERENT_MEM +__section("tzfw_coherent_mem") +#endif +; + +/* Lock for PSCI state coordination */ +DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]); + +cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT]; + +/******************************************************************************* + * Pointer to functions exported by the platform to complete power mgmt. ops + ******************************************************************************/ +const plat_psci_ops_t *psci_plat_pm_ops; + +/****************************************************************************** + * Check that the maximum power level supported by the platform makes sense + *****************************************************************************/ +CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) && + (PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL), + assert_platform_max_pwrlvl_check); + +/* + * The plat_local_state used by the platform is one of these types: RUN, + * RETENTION and OFF. The platform can define further sub-states for each type + * apart from RUN. This categorization is done to verify the sanity of the + * psci_power_state passed by the platform and to print debug information. The + * categorization is done on the basis of the following conditions: + * + * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN. + * + * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is + * STATE_TYPE_RETN. + * + * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is + * STATE_TYPE_OFF. + */ +typedef enum plat_local_state_type { + STATE_TYPE_RUN = 0, + STATE_TYPE_RETN, + STATE_TYPE_OFF +} plat_local_state_type_t; + +/* Function used to categorize plat_local_state. */ +static plat_local_state_type_t find_local_state_type(plat_local_state_t state) +{ + if (state != 0U) { + if (state > PLAT_MAX_RET_STATE) { + return STATE_TYPE_OFF; + } else { + return STATE_TYPE_RETN; + } + } else { + return STATE_TYPE_RUN; + } +} + +/****************************************************************************** + * Check that the maximum retention level supported by the platform is less + * than the maximum off level. + *****************************************************************************/ +CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE, + assert_platform_max_off_and_retn_state_check); + +/****************************************************************************** + * This function ensures that the power state parameter in a CPU_SUSPEND request + * is valid. If so, it returns the requested states for each power level. + *****************************************************************************/ +int psci_validate_power_state(unsigned int power_state, + psci_power_state_t *state_info) +{ + /* Check SBZ bits in power state are zero */ + if (psci_check_power_state(power_state) != 0U) + return PSCI_E_INVALID_PARAMS; + + assert(psci_plat_pm_ops->validate_power_state != NULL); + + /* Validate the power_state using platform pm_ops */ + return psci_plat_pm_ops->validate_power_state(power_state, state_info); +} + +/****************************************************************************** + * This function retrieves the `psci_power_state_t` for system suspend from + * the platform. + *****************************************************************************/ +void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info) +{ + /* + * Assert that the required pm_ops hook is implemented to ensure that + * the capability detected during psci_setup() is valid. + */ + assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL); + + /* + * Query the platform for the power_state required for system suspend + */ + psci_plat_pm_ops->get_sys_suspend_power_state(state_info); +} + +/******************************************************************************* + * This function verifies that the all the other cores in the system have been + * turned OFF and the current CPU is the last running CPU in the system. + * Returns true, if the current CPU is the last ON CPU or false otherwise. + ******************************************************************************/ +bool psci_is_last_on_cpu(void) +{ + unsigned int cpu_idx, my_idx = plat_my_core_pos(); + + for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) { + if (cpu_idx == my_idx) { + assert(psci_get_aff_info_state() == AFF_STATE_ON); + continue; + } + + if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF) { + VERBOSE("core=%u other than current core=%u %s\n", + cpu_idx, my_idx, "running in the system"); + return false; + } + } + + return true; +} + +/******************************************************************************* + * Routine to return the maximum power level to traverse to after a cpu has + * been physically powered up. It is expected to be called immediately after + * reset from assembler code. + ******************************************************************************/ +static unsigned int get_power_on_target_pwrlvl(void) +{ + unsigned int pwrlvl; + + /* + * Assume that this cpu was suspended and retrieve its target power + * level. If it is invalid then it could only have been turned off + * earlier. PLAT_MAX_PWR_LVL will be the highest power level a + * cpu can be turned off to. + */ + pwrlvl = psci_get_suspend_pwrlvl(); + if (pwrlvl == PSCI_INVALID_PWR_LVL) + pwrlvl = PLAT_MAX_PWR_LVL; + assert(pwrlvl < PSCI_INVALID_PWR_LVL); + return pwrlvl; +} + +/****************************************************************************** + * Helper function to update the requested local power state array. This array + * does not store the requested state for the CPU power level. Hence an + * assertion is added to prevent us from accessing the CPU power level. + *****************************************************************************/ +static void psci_set_req_local_pwr_state(unsigned int pwrlvl, + unsigned int cpu_idx, + plat_local_state_t req_pwr_state) +{ + assert(pwrlvl > PSCI_CPU_PWR_LVL); + if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) && + (cpu_idx < psci_plat_core_count)) { + psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state; + } +} + +/****************************************************************************** + * This function initializes the psci_req_local_pwr_states. + *****************************************************************************/ +void __init psci_init_req_local_pwr_states(void) +{ + /* Initialize the requested state of all non CPU power domains as OFF */ + unsigned int pwrlvl; + unsigned int core; + + for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) { + for (core = 0; core < psci_plat_core_count; core++) { + psci_req_local_pwr_states[pwrlvl][core] = + PLAT_MAX_OFF_STATE; + } + } +} + +/****************************************************************************** + * Helper function to return a reference to an array containing the local power + * states requested by each cpu for a power domain at 'pwrlvl'. The size of the + * array will be the number of cpu power domains of which this power domain is + * an ancestor. These requested states will be used to determine a suitable + * target state for this power domain during psci state coordination. An + * assertion is added to prevent us from accessing the CPU power level. + *****************************************************************************/ +static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl, + unsigned int cpu_idx) +{ + assert(pwrlvl > PSCI_CPU_PWR_LVL); + + if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) && + (cpu_idx < psci_plat_core_count)) { + return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx]; + } else + return NULL; +} + +/* + * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent + * memory. + * + * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory, + * it's accessed by both cached and non-cached participants. To serve the common + * minimum, perform a cache flush before read and after write so that non-cached + * participants operate on latest data in main memory. + * + * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent + * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent. + * In both cases, no cache operations are required. + */ + +/* + * Retrieve local state of non-CPU power domain node from a non-cached CPU, + * after any required cache maintenance operation. + */ +static plat_local_state_t get_non_cpu_pd_node_local_state( + unsigned int parent_idx) +{ +#if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY) + flush_dcache_range( + (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx], + sizeof(psci_non_cpu_pd_nodes[parent_idx])); +#endif + return psci_non_cpu_pd_nodes[parent_idx].local_state; +} + +/* + * Update local state of non-CPU power domain node from a cached CPU; perform + * any required cache maintenance operation afterwards. + */ +static void set_non_cpu_pd_node_local_state(unsigned int parent_idx, + plat_local_state_t state) +{ + psci_non_cpu_pd_nodes[parent_idx].local_state = state; +#if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY) + flush_dcache_range( + (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx], + sizeof(psci_non_cpu_pd_nodes[parent_idx])); +#endif +} + +/****************************************************************************** + * Helper function to return the current local power state of each power domain + * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This + * function will be called after a cpu is powered on to find the local state + * each power domain has emerged from. + *****************************************************************************/ +void psci_get_target_local_pwr_states(unsigned int end_pwrlvl, + psci_power_state_t *target_state) +{ + unsigned int parent_idx, lvl; + plat_local_state_t *pd_state = target_state->pwr_domain_state; + + pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state(); + parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node; + + /* Copy the local power state from node to state_info */ + for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { + pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx); + parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; + } + + /* Set the the higher levels to RUN */ + for (; lvl <= PLAT_MAX_PWR_LVL; lvl++) + target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN; +} + +/****************************************************************************** + * Helper function to set the target local power state that each power domain + * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will + * enter. This function will be called after coordination of requested power + * states has been done for each power level. + *****************************************************************************/ +static void psci_set_target_local_pwr_states(unsigned int end_pwrlvl, + const psci_power_state_t *target_state) +{ + unsigned int parent_idx, lvl; + const plat_local_state_t *pd_state = target_state->pwr_domain_state; + + psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]); + + /* + * Need to flush as local_state might be accessed with Data Cache + * disabled during power on + */ + psci_flush_cpu_data(psci_svc_cpu_data.local_state); + + parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node; + + /* Copy the local_state from state_info */ + for (lvl = 1U; lvl <= end_pwrlvl; lvl++) { + set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]); + parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; + } +} + + +/******************************************************************************* + * PSCI helper function to get the parent nodes corresponding to a cpu_index. + ******************************************************************************/ +void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx, + unsigned int end_lvl, + unsigned int *node_index) +{ + unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node; + unsigned int i; + unsigned int *node = node_index; + + for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) { + *node = parent_node; + node++; + parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node; + } +} + +/****************************************************************************** + * This function is invoked post CPU power up and initialization. It sets the + * affinity info state, target power state and requested power state for the + * current CPU and all its ancestor power domains to RUN. + *****************************************************************************/ +void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl) +{ + unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl; + parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; + + /* Reset the local_state to RUN for the non cpu power domains. */ + for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { + set_non_cpu_pd_node_local_state(parent_idx, + PSCI_LOCAL_STATE_RUN); + psci_set_req_local_pwr_state(lvl, + cpu_idx, + PSCI_LOCAL_STATE_RUN); + parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; + } + + /* Set the affinity info state to ON */ + psci_set_aff_info_state(AFF_STATE_ON); + + psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN); + psci_flush_cpu_data(psci_svc_cpu_data); +} + +/****************************************************************************** + * This function is passed the local power states requested for each power + * domain (state_info) between the current CPU domain and its ancestors until + * the target power level (end_pwrlvl). It updates the array of requested power + * states with this information. + * + * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it + * retrieves the states requested by all the cpus of which the power domain at + * that level is an ancestor. It passes this information to the platform to + * coordinate and return the target power state. If the target state for a level + * is RUN then subsequent levels are not considered. At the CPU level, state + * coordination is not required. Hence, the requested and the target states are + * the same. + * + * The 'state_info' is updated with the target state for each level between the + * CPU and the 'end_pwrlvl' and returned to the caller. + * + * This function will only be invoked with data cache enabled and while + * powering down a core. + *****************************************************************************/ +void psci_do_state_coordination(unsigned int end_pwrlvl, + psci_power_state_t *state_info) +{ + unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos(); + unsigned int start_idx; + unsigned int ncpus; + plat_local_state_t target_state, *req_states; + + assert(end_pwrlvl <= PLAT_MAX_PWR_LVL); + parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; + + /* For level 0, the requested state will be equivalent + to target state */ + for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { + + /* First update the requested power state */ + psci_set_req_local_pwr_state(lvl, cpu_idx, + state_info->pwr_domain_state[lvl]); + + /* Get the requested power states for this power level */ + start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx; + req_states = psci_get_req_local_pwr_states(lvl, start_idx); + + /* + * Let the platform coordinate amongst the requested states at + * this power level and return the target local power state. + */ + ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus; + target_state = plat_get_target_pwr_state(lvl, + req_states, + ncpus); + + state_info->pwr_domain_state[lvl] = target_state; + + /* Break early if the negotiated target power state is RUN */ + if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0) + break; + + parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; + } + + /* + * This is for cases when we break out of the above loop early because + * the target power state is RUN at a power level < end_pwlvl. + * We update the requested power state from state_info and then + * set the target state as RUN. + */ + for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) { + psci_set_req_local_pwr_state(lvl, cpu_idx, + state_info->pwr_domain_state[lvl]); + state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN; + + } + + /* Update the target state in the power domain nodes */ + psci_set_target_local_pwr_states(end_pwrlvl, state_info); +} + +/****************************************************************************** + * This function validates a suspend request by making sure that if a standby + * state is requested then no power level is turned off and the highest power + * level is placed in a standby/retention state. + * + * It also ensures that the state level X will enter is not shallower than the + * state level X + 1 will enter. + * + * This validation will be enabled only for DEBUG builds as the platform is + * expected to perform these validations as well. + *****************************************************************************/ +int psci_validate_suspend_req(const psci_power_state_t *state_info, + unsigned int is_power_down_state) +{ + unsigned int max_off_lvl, target_lvl, max_retn_lvl; + plat_local_state_t state; + plat_local_state_type_t req_state_type, deepest_state_type; + int i; + + /* Find the target suspend power level */ + target_lvl = psci_find_target_suspend_lvl(state_info); + if (target_lvl == PSCI_INVALID_PWR_LVL) + return PSCI_E_INVALID_PARAMS; + + /* All power domain levels are in a RUN state to begin with */ + deepest_state_type = STATE_TYPE_RUN; + + for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) { + state = state_info->pwr_domain_state[i]; + req_state_type = find_local_state_type(state); + + /* + * While traversing from the highest power level to the lowest, + * the state requested for lower levels has to be the same or + * deeper i.e. equal to or greater than the state at the higher + * levels. If this condition is true, then the requested state + * becomes the deepest state encountered so far. + */ + if (req_state_type < deepest_state_type) + return PSCI_E_INVALID_PARAMS; + deepest_state_type = req_state_type; + } + + /* Find the highest off power level */ + max_off_lvl = psci_find_max_off_lvl(state_info); + + /* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */ + max_retn_lvl = PSCI_INVALID_PWR_LVL; + if (target_lvl != max_off_lvl) + max_retn_lvl = target_lvl; + + /* + * If this is not a request for a power down state then max off level + * has to be invalid and max retention level has to be a valid power + * level. + */ + if ((is_power_down_state == 0U) && + ((max_off_lvl != PSCI_INVALID_PWR_LVL) || + (max_retn_lvl == PSCI_INVALID_PWR_LVL))) + return PSCI_E_INVALID_PARAMS; + + return PSCI_E_SUCCESS; +} + +/****************************************************************************** + * This function finds the highest power level which will be powered down + * amongst all the power levels specified in the 'state_info' structure + *****************************************************************************/ +unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info) +{ + int i; + + for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) { + if (is_local_state_off(state_info->pwr_domain_state[i]) != 0) + return (unsigned int) i; + } + + return PSCI_INVALID_PWR_LVL; +} + +/****************************************************************************** + * This functions finds the level of the highest power domain which will be + * placed in a low power state during a suspend operation. + *****************************************************************************/ +unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info) +{ + int i; + + for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) { + if (is_local_state_run(state_info->pwr_domain_state[i]) == 0) + return (unsigned int) i; + } + + return PSCI_INVALID_PWR_LVL; +} + +/******************************************************************************* + * This function is passed the highest level in the topology tree that the + * operation should be applied to and a list of node indexes. It picks up locks + * from the node index list in order of increasing power domain level in the + * range specified. + ******************************************************************************/ +void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl, + const unsigned int *parent_nodes) +{ + unsigned int parent_idx; + unsigned int level; + + /* No locking required for level 0. Hence start locking from level 1 */ + for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) { + parent_idx = parent_nodes[level - 1U]; + psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]); + } +} + +/******************************************************************************* + * This function is passed the highest level in the topology tree that the + * operation should be applied to and a list of node indexes. It releases the + * locks in order of decreasing power domain level in the range specified. + ******************************************************************************/ +void psci_release_pwr_domain_locks(unsigned int end_pwrlvl, + const unsigned int *parent_nodes) +{ + unsigned int parent_idx; + unsigned int level; + + /* Unlock top down. No unlocking required for level 0. */ + for (level = end_pwrlvl; level >= (PSCI_CPU_PWR_LVL + 1U); level--) { + parent_idx = parent_nodes[level - 1U]; + psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]); + } +} + +/******************************************************************************* + * Simple routine to determine whether a mpidr is valid or not. + ******************************************************************************/ +int psci_validate_mpidr(u_register_t mpidr) +{ + if (plat_core_pos_by_mpidr(mpidr) < 0) + return PSCI_E_INVALID_PARAMS; + + return PSCI_E_SUCCESS; +} + +/******************************************************************************* + * This function determines the full entrypoint information for the requested + * PSCI entrypoint on power on/resume and returns it. + ******************************************************************************/ +#ifdef __aarch64__ +static int psci_get_ns_ep_info(entry_point_info_t *ep, + uintptr_t entrypoint, + u_register_t context_id) +{ + u_register_t ep_attr, sctlr; + unsigned int daif, ee, mode; + u_register_t ns_scr_el3 = read_scr_el3(); + u_register_t ns_sctlr_el1 = read_sctlr_el1(); + + sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? + read_sctlr_el2() : ns_sctlr_el1; + ee = 0; + + ep_attr = NON_SECURE | EP_ST_DISABLE; + if ((sctlr & SCTLR_EE_BIT) != 0U) { + ep_attr |= EP_EE_BIG; + ee = 1; + } + SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr); + + ep->pc = entrypoint; + zeromem(&ep->args, sizeof(ep->args)); + ep->args.arg0 = context_id; + + /* + * Figure out whether the cpu enters the non-secure address space + * in aarch32 or aarch64 + */ + if ((ns_scr_el3 & SCR_RW_BIT) != 0U) { + + /* + * Check whether a Thumb entry point has been provided for an + * aarch64 EL + */ + if ((entrypoint & 0x1UL) != 0UL) + return PSCI_E_INVALID_ADDRESS; + + mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1; + + ep->spsr = SPSR_64((uint64_t)mode, MODE_SP_ELX, + DISABLE_ALL_EXCEPTIONS); + } else { + + mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? + MODE32_hyp : MODE32_svc; + + /* + * TODO: Choose async. exception bits if HYP mode is not + * implemented according to the values of SCR.{AW, FW} bits + */ + daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT; + + ep->spsr = SPSR_MODE32((uint64_t)mode, entrypoint & 0x1, ee, + daif); + } + + return PSCI_E_SUCCESS; +} +#else /* !__aarch64__ */ +static int psci_get_ns_ep_info(entry_point_info_t *ep, + uintptr_t entrypoint, + u_register_t context_id) +{ + u_register_t ep_attr; + unsigned int aif, ee, mode; + u_register_t scr = read_scr(); + u_register_t ns_sctlr, sctlr; + + /* Switch to non secure state */ + write_scr(scr | SCR_NS_BIT); + isb(); + ns_sctlr = read_sctlr(); + + sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr; + + /* Return to original state */ + write_scr(scr); + isb(); + ee = 0; + + ep_attr = NON_SECURE | EP_ST_DISABLE; + if (sctlr & SCTLR_EE_BIT) { + ep_attr |= EP_EE_BIG; + ee = 1; + } + SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr); + + ep->pc = entrypoint; + zeromem(&ep->args, sizeof(ep->args)); + ep->args.arg0 = context_id; + + mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc; + + /* + * TODO: Choose async. exception bits if HYP mode is not + * implemented according to the values of SCR.{AW, FW} bits + */ + aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT; + + ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif); + + return PSCI_E_SUCCESS; +} + +#endif /* __aarch64__ */ + +/******************************************************************************* + * This function validates the entrypoint with the platform layer if the + * appropriate pm_ops hook is exported by the platform and returns the + * 'entry_point_info'. + ******************************************************************************/ +int psci_validate_entry_point(entry_point_info_t *ep, + uintptr_t entrypoint, + u_register_t context_id) +{ + int rc; + + /* Validate the entrypoint using platform psci_ops */ + if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) { + rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint); + if (rc != PSCI_E_SUCCESS) + return PSCI_E_INVALID_ADDRESS; + } + + /* + * Verify and derive the re-entry information for + * the non-secure world from the non-secure state from + * where this call originated. + */ + rc = psci_get_ns_ep_info(ep, entrypoint, context_id); + return rc; +} + +/******************************************************************************* + * Generic handler which is called when a cpu is physically powered on. It + * traverses the node information and finds the highest power level powered + * off and performs generic, architectural, platform setup and state management + * to power on that power level and power levels below it. + * e.g. For a cpu that's been powered on, it will call the platform specific + * code to enable the gic cpu interface and for a cluster it will enable + * coherency at the interconnect level in addition to gic cpu interface. + ******************************************************************************/ +void psci_warmboot_entrypoint(void) +{ + unsigned int end_pwrlvl; + unsigned int cpu_idx = plat_my_core_pos(); + unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0}; + psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} }; + + /* + * Verify that we have been explicitly turned ON or resumed from + * suspend. + */ + if (psci_get_aff_info_state() == AFF_STATE_OFF) { + ERROR("Unexpected affinity info state.\n"); + panic(); + } + + /* + * Get the maximum power domain level to traverse to after this cpu + * has been physically powered up. + */ + end_pwrlvl = get_power_on_target_pwrlvl(); + + /* Get the parent nodes */ + psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes); + + /* + * This function acquires the lock corresponding to each power level so + * that by the time all locks are taken, the system topology is snapshot + * and state management can be done safely. + */ + psci_acquire_pwr_domain_locks(end_pwrlvl, parent_nodes); + + psci_get_target_local_pwr_states(end_pwrlvl, &state_info); + +#if ENABLE_PSCI_STAT + plat_psci_stat_accounting_stop(&state_info); +#endif + + /* + * This CPU could be resuming from suspend or it could have just been + * turned on. To distinguish between these 2 cases, we examine the + * affinity state of the CPU: + * - If the affinity state is ON_PENDING then it has just been + * turned on. + * - Else it is resuming from suspend. + * + * Depending on the type of warm reset identified, choose the right set + * of power management handler and perform the generic, architecture + * and platform specific handling. + */ + if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING) + psci_cpu_on_finish(cpu_idx, &state_info); + else + psci_cpu_suspend_finish(cpu_idx, &state_info); + + /* + * Set the requested and target state of this CPU and all the higher + * power domains which are ancestors of this CPU to run. + */ + psci_set_pwr_domains_to_run(end_pwrlvl); + +#if ENABLE_PSCI_STAT + /* + * Update PSCI stats. + * Caches are off when writing stats data on the power down path. + * Since caches are now enabled, it's necessary to do cache + * maintenance before reading that same data. + */ + psci_stats_update_pwr_up(end_pwrlvl, &state_info); +#endif + + /* + * This loop releases the lock corresponding to each power level + * in the reverse order to which they were acquired. + */ + psci_release_pwr_domain_locks(end_pwrlvl, parent_nodes); +} + +/******************************************************************************* + * This function initializes the set of hooks that PSCI invokes as part of power + * management operation. The power management hooks are expected to be provided + * by the SPD, after it finishes all its initialization + ******************************************************************************/ +void psci_register_spd_pm_hook(const spd_pm_ops_t *pm) +{ + assert(pm != NULL); + psci_spd_pm = pm; + + if (pm->svc_migrate != NULL) + psci_caps |= define_psci_cap(PSCI_MIG_AARCH64); + + if (pm->svc_migrate_info != NULL) + psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64) + | define_psci_cap(PSCI_MIG_INFO_TYPE); +} + +/******************************************************************************* + * This function invokes the migrate info hook in the spd_pm_ops. It performs + * the necessary return value validation. If the Secure Payload is UP and + * migrate capable, it returns the mpidr of the CPU on which the Secure payload + * is resident through the mpidr parameter. Else the value of the parameter on + * return is undefined. + ******************************************************************************/ +int psci_spd_migrate_info(u_register_t *mpidr) +{ + int rc; + + if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL)) + return PSCI_E_NOT_SUPPORTED; + + rc = psci_spd_pm->svc_migrate_info(mpidr); + + assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) || + (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED)); + + return rc; +} + + +/******************************************************************************* + * This function prints the state of all power domains present in the + * system + ******************************************************************************/ +void psci_print_power_domain_map(void) +{ +#if LOG_LEVEL >= LOG_LEVEL_INFO + unsigned int idx; + plat_local_state_t state; + plat_local_state_type_t state_type; + + /* This array maps to the PSCI_STATE_X definitions in psci.h */ + static const char * const psci_state_type_str[] = { + "ON", + "RETENTION", + "OFF", + }; + + INFO("PSCI Power Domain Map:\n"); + for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - psci_plat_core_count); + idx++) { + state_type = find_local_state_type( + psci_non_cpu_pd_nodes[idx].local_state); + INFO(" Domain Node : Level %u, parent_node %u," + " State %s (0x%x)\n", + psci_non_cpu_pd_nodes[idx].level, + psci_non_cpu_pd_nodes[idx].parent_node, + psci_state_type_str[state_type], + psci_non_cpu_pd_nodes[idx].local_state); + } + + for (idx = 0; idx < psci_plat_core_count; idx++) { + state = psci_get_cpu_local_state_by_idx(idx); + state_type = find_local_state_type(state); + INFO(" CPU Node : MPID 0x%llx, parent_node %u," + " State %s (0x%x)\n", + (unsigned long long)psci_cpu_pd_nodes[idx].mpidr, + psci_cpu_pd_nodes[idx].parent_node, + psci_state_type_str[state_type], + psci_get_cpu_local_state_by_idx(idx)); + } +#endif +} + +/****************************************************************************** + * Return whether any secondaries were powered up with CPU_ON call. A CPU that + * have ever been powered up would have set its MPDIR value to something other + * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to + * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is + * meaningful only when called on the primary CPU during early boot. + *****************************************************************************/ +int psci_secondaries_brought_up(void) +{ + unsigned int idx, n_valid = 0U; + + for (idx = 0U; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) { + if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR) + n_valid++; + } + + assert(n_valid > 0U); + + return (n_valid > 1U) ? 1 : 0; +} + +/******************************************************************************* + * Initiate power down sequence, by calling power down operations registered for + * this CPU. + ******************************************************************************/ +void psci_pwrdown_cpu(unsigned int power_level) +{ +#if HW_ASSISTED_COHERENCY + /* + * With hardware-assisted coherency, the CPU drivers only initiate the + * power down sequence, without performing cache-maintenance operations + * in software. Data caches enabled both before and after this call. + */ + prepare_cpu_pwr_dwn(power_level); +#else + /* + * Without hardware-assisted coherency, the CPU drivers disable data + * caches, then perform cache-maintenance operations in software. + * + * This also calls prepare_cpu_pwr_dwn() to initiate power down + * sequence, but that function will return with data caches disabled. + * We must ensure that the stack memory is flushed out to memory before + * we start popping from it again. + */ + psci_do_pwrdown_cache_maintenance(power_level); +#endif +} + +/******************************************************************************* + * This function invokes the callback 'stop_func()' with the 'mpidr' of each + * online PE. Caller can pass suitable method to stop a remote core. + * + * 'wait_ms' is the timeout value in milliseconds for the other cores to + * transition to power down state. Passing '0' makes it non-blocking. + * + * The function returns 'PSCI_E_DENIED' if some cores failed to stop within the + * given timeout. + ******************************************************************************/ +int psci_stop_other_cores(unsigned int wait_ms, + void (*stop_func)(u_register_t mpidr)) +{ + unsigned int idx, this_cpu_idx; + + this_cpu_idx = plat_my_core_pos(); + + /* Invoke stop_func for each core */ + for (idx = 0U; idx < psci_plat_core_count; idx++) { + /* skip current CPU */ + if (idx == this_cpu_idx) { + continue; + } + + /* Check if the CPU is ON */ + if (psci_get_aff_info_state_by_idx(idx) == AFF_STATE_ON) { + (*stop_func)(psci_cpu_pd_nodes[idx].mpidr); + } + } + + /* Need to wait for other cores to shutdown */ + if (wait_ms != 0U) { + while ((wait_ms-- != 0U) && (!psci_is_last_on_cpu())) { + mdelay(1U); + } + + if (!psci_is_last_on_cpu()) { + WARN("Failed to stop all cores!\n"); + psci_print_power_domain_map(); + return PSCI_E_DENIED; + } + } + + return PSCI_E_SUCCESS; +} + +/******************************************************************************* + * This function verifies that all the other cores in the system have been + * turned OFF and the current CPU is the last running CPU in the system. + * Returns true if the current CPU is the last ON CPU or false otherwise. + * + * This API has following differences with psci_is_last_on_cpu + * 1. PSCI states are locked + ******************************************************************************/ +bool psci_is_last_on_cpu_safe(void) +{ + unsigned int this_core = plat_my_core_pos(); + unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0}; + + psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes); + + psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); + + if (!psci_is_last_on_cpu()) { + psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); + return false; + } + + psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); + + return true; +} -- cgit v1.2.3