From 102b0d2daa97dae68d3eed54d8fe37a9cc38a892 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sun, 28 Apr 2024 11:13:47 +0200 Subject: Adding upstream version 2.8.0+dfsg. Signed-off-by: Daniel Baumann --- services/spd/tspd/tspd_main.c | 819 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 819 insertions(+) create mode 100644 services/spd/tspd/tspd_main.c (limited to 'services/spd/tspd/tspd_main.c') diff --git a/services/spd/tspd/tspd_main.c b/services/spd/tspd/tspd_main.c new file mode 100644 index 0000000..6cb4992 --- /dev/null +++ b/services/spd/tspd/tspd_main.c @@ -0,0 +1,819 @@ +/* + * Copyright (c) 2013-2022, ARM Limited and Contributors. All rights reserved. + * + * SPDX-License-Identifier: BSD-3-Clause + */ + + +/******************************************************************************* + * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a + * plug-in component to the Secure Monitor, registered as a runtime service. The + * SPD is expected to be a functional extension of the Secure Payload (SP) that + * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting + * the Trusted OS/Applications range to the dispatcher. The SPD will either + * handle the request locally or delegate it to the Secure Payload. It is also + * responsible for initialising and maintaining communication with the SP. + ******************************************************************************/ +#include +#include +#include +#include + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include "tspd_private.h" + +/******************************************************************************* + * Address of the entrypoint vector table in the Secure Payload. It is + * initialised once on the primary core after a cold boot. + ******************************************************************************/ +tsp_vectors_t *tsp_vectors; + +/******************************************************************************* + * Array to keep track of per-cpu Secure Payload state + ******************************************************************************/ +tsp_context_t tspd_sp_context[TSPD_CORE_COUNT]; + + +/* TSP UID */ +DEFINE_SVC_UUID2(tsp_uuid, + 0xa056305b, 0x9132, 0x7b42, 0x98, 0x11, + 0x71, 0x68, 0xca, 0x50, 0xf3, 0xfa); + +int32_t tspd_init(void); + +/* + * This helper function handles Secure EL1 preemption. The preemption could be + * due Non Secure interrupts or EL3 interrupts. In both the cases we context + * switch to the normal world and in case of EL3 interrupts, it will again be + * routed to EL3 which will get handled at the exception vectors. + */ +uint64_t tspd_handle_sp_preemption(void *handle) +{ + cpu_context_t *ns_cpu_context; + + assert(handle == cm_get_context(SECURE)); + cm_el1_sysregs_context_save(SECURE); + /* Get a reference to the non-secure context */ + ns_cpu_context = cm_get_context(NON_SECURE); + assert(ns_cpu_context); + + /* + * To allow Secure EL1 interrupt handler to re-enter TSP while TSP + * is preempted, the secure system register context which will get + * overwritten must be additionally saved. This is currently done + * by the TSPD S-EL1 interrupt handler. + */ + + /* + * Restore non-secure state. + */ + cm_el1_sysregs_context_restore(NON_SECURE); + cm_set_next_eret_context(NON_SECURE); + + /* + * The TSP was preempted during execution of a Yielding SMC Call. + * Return back to the normal world with SMC_PREEMPTED as error + * code in x0. + */ + SMC_RET1(ns_cpu_context, SMC_PREEMPTED); +} + +/******************************************************************************* + * This function is the handler registered for S-EL1 interrupts by the TSPD. It + * validates the interrupt and upon success arranges entry into the TSP at + * 'tsp_sel1_intr_entry()' for handling the interrupt. + * Typically, interrupts for a specific security state get handled in the same + * security execption level if the execution is in the same security state. For + * example, if a non-secure interrupt gets fired when CPU is executing in NS-EL2 + * it gets handled in the non-secure world. + * However, interrupts belonging to the opposite security state typically demand + * a world(context) switch. This is inline with the security principle which + * states a secure interrupt has to be handled in the secure world. + * Hence, the TSPD in EL3 expects the context(handle) for a secure interrupt to + * be non-secure and vice versa. + * However, a race condition between non-secure and secure interrupts can lead to + * a scenario where the above assumptions do not hold true. This is demonstrated + * below through Note 1. + ******************************************************************************/ +static uint64_t tspd_sel1_interrupt_handler(uint32_t id, + uint32_t flags, + void *handle, + void *cookie) +{ + uint32_t linear_id; + tsp_context_t *tsp_ctx; + + /* Get a reference to this cpu's TSP context */ + linear_id = plat_my_core_pos(); + tsp_ctx = &tspd_sp_context[linear_id]; + +#if TSP_NS_INTR_ASYNC_PREEMPT + + /* + * Note 1: + * Under the current interrupt routing model, interrupts from other + * world are routed to EL3 when TSP_NS_INTR_ASYNC_PREEMPT is enabled. + * Consider the following scenario: + * 1/ A non-secure payload(like tftf) requests a secure service from + * TSP by invoking a yielding SMC call. + * 2/ Later, execution jumps to TSP in S-EL1 with the help of TSP + * Dispatcher in Secure Monitor(EL3). + * 3/ While CPU is executing TSP, a Non-secure interrupt gets fired. + * this demands a context switch to the non-secure world through + * secure monitor. + * 4/ Consequently, TSP in S-EL1 get asynchronously pre-empted and + * execution switches to secure monitor(EL3). + * 5/ EL3 tries to triage the (Non-secure) interrupt based on the + * highest pending interrupt. + * 6/ However, while the NS Interrupt was pending, secure timer gets + * fired which makes a S-EL1 interrupt to be pending. + * 7/ Hence, execution jumps to this companion handler of S-EL1 + * interrupt (i.e., tspd_sel1_interrupt_handler) even though the TSP + * was pre-empted due to non-secure interrupt. + * 8/ The above sequence of events explain how TSP was pre-empted by + * S-EL1 interrupt indirectly in an asynchronous way. + * 9/ Hence, we track the TSP pre-emption by S-EL1 interrupt using a + * boolean variable per each core. + * 10/ This helps us to indicate that SMC call for TSP service was + * pre-empted when execution resumes in non-secure world. + */ + + /* Check the security state when the exception was generated */ + if (get_interrupt_src_ss(flags) == NON_SECURE) { + /* Sanity check the pointer to this cpu's context */ + assert(handle == cm_get_context(NON_SECURE)); + + /* Save the non-secure context before entering the TSP */ + cm_el1_sysregs_context_save(NON_SECURE); + tsp_ctx->preempted_by_sel1_intr = false; + } else { + /* Sanity check the pointer to this cpu's context */ + assert(handle == cm_get_context(SECURE)); + + /* Save the secure context before entering the TSP for S-EL1 + * interrupt handling + */ + cm_el1_sysregs_context_save(SECURE); + tsp_ctx->preempted_by_sel1_intr = true; + } +#else + /* Check the security state when the exception was generated */ + assert(get_interrupt_src_ss(flags) == NON_SECURE); + + /* Sanity check the pointer to this cpu's context */ + assert(handle == cm_get_context(NON_SECURE)); + + /* Save the non-secure context before entering the TSP */ + cm_el1_sysregs_context_save(NON_SECURE); +#endif + + assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE)); + + /* + * Determine if the TSP was previously preempted. Its last known + * context has to be preserved in this case. + * The TSP should return control to the TSPD after handling this + * S-EL1 interrupt. Preserve essential EL3 context to allow entry into + * the TSP at the S-EL1 interrupt entry point using the 'cpu_context' + * structure. There is no need to save the secure system register + * context since the TSP is supposed to preserve it during S-EL1 + * interrupt handling. + */ + if (get_yield_smc_active_flag(tsp_ctx->state)) { + tsp_ctx->saved_spsr_el3 = (uint32_t)SMC_GET_EL3(&tsp_ctx->cpu_ctx, + CTX_SPSR_EL3); + tsp_ctx->saved_elr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx, + CTX_ELR_EL3); +#if TSP_NS_INTR_ASYNC_PREEMPT + memcpy(&tsp_ctx->sp_ctx, &tsp_ctx->cpu_ctx, TSPD_SP_CTX_SIZE); +#endif + } + + cm_el1_sysregs_context_restore(SECURE); + cm_set_elr_spsr_el3(SECURE, (uint64_t) &tsp_vectors->sel1_intr_entry, + SPSR_64(MODE_EL1, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS)); + + cm_set_next_eret_context(SECURE); + + /* + * Tell the TSP that it has to handle a S-EL1 interrupt synchronously. + * Also the instruction in normal world where the interrupt was + * generated is passed for debugging purposes. It is safe to retrieve + * this address from ELR_EL3 as the secure context will not take effect + * until el3_exit(). + */ + SMC_RET2(&tsp_ctx->cpu_ctx, TSP_HANDLE_SEL1_INTR_AND_RETURN, read_elr_el3()); +} + +#if TSP_NS_INTR_ASYNC_PREEMPT +/******************************************************************************* + * This function is the handler registered for Non secure interrupts by the + * TSPD. It validates the interrupt and upon success arranges entry into the + * normal world for handling the interrupt. + ******************************************************************************/ +static uint64_t tspd_ns_interrupt_handler(uint32_t id, + uint32_t flags, + void *handle, + void *cookie) +{ + /* Check the security state when the exception was generated */ + assert(get_interrupt_src_ss(flags) == SECURE); + + /* + * Disable the routing of NS interrupts from secure world to EL3 while + * interrupted on this core. + */ + disable_intr_rm_local(INTR_TYPE_NS, SECURE); + + return tspd_handle_sp_preemption(handle); +} +#endif + +/******************************************************************************* + * Secure Payload Dispatcher setup. The SPD finds out the SP entrypoint and type + * (aarch32/aarch64) if not already known and initialises the context for entry + * into the SP for its initialisation. + ******************************************************************************/ +static int32_t tspd_setup(void) +{ + entry_point_info_t *tsp_ep_info; + uint32_t linear_id; + + linear_id = plat_my_core_pos(); + + /* + * Get information about the Secure Payload (BL32) image. Its + * absence is a critical failure. TODO: Add support to + * conditionally include the SPD service + */ + tsp_ep_info = bl31_plat_get_next_image_ep_info(SECURE); + if (!tsp_ep_info) { + WARN("No TSP provided by BL2 boot loader, Booting device" + " without TSP initialization. SMC`s destined for TSP" + " will return SMC_UNK\n"); + return 1; + } + + /* + * If there's no valid entry point for SP, we return a non-zero value + * signalling failure initializing the service. We bail out without + * registering any handlers + */ + if (!tsp_ep_info->pc) + return 1; + + /* + * We could inspect the SP image and determine its execution + * state i.e whether AArch32 or AArch64. Assuming it's AArch64 + * for the time being. + */ + tspd_init_tsp_ep_state(tsp_ep_info, + TSP_AARCH64, + tsp_ep_info->pc, + &tspd_sp_context[linear_id]); + +#if TSP_INIT_ASYNC + bl31_set_next_image_type(SECURE); +#else + /* + * All TSPD initialization done. Now register our init function with + * BL31 for deferred invocation + */ + bl31_register_bl32_init(&tspd_init); +#endif + return 0; +} + +/******************************************************************************* + * This function passes control to the Secure Payload image (BL32) for the first + * time on the primary cpu after a cold boot. It assumes that a valid secure + * context has already been created by tspd_setup() which can be directly used. + * It also assumes that a valid non-secure context has been initialised by PSCI + * so it does not need to save and restore any non-secure state. This function + * performs a synchronous entry into the Secure payload. The SP passes control + * back to this routine through a SMC. + ******************************************************************************/ +int32_t tspd_init(void) +{ + uint32_t linear_id = plat_my_core_pos(); + tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id]; + entry_point_info_t *tsp_entry_point; + uint64_t rc; + + /* + * Get information about the Secure Payload (BL32) image. Its + * absence is a critical failure. + */ + tsp_entry_point = bl31_plat_get_next_image_ep_info(SECURE); + assert(tsp_entry_point); + + cm_init_my_context(tsp_entry_point); + + /* + * Arrange for an entry into the test secure payload. It will be + * returned via TSP_ENTRY_DONE case + */ + rc = tspd_synchronous_sp_entry(tsp_ctx); + assert(rc != 0); + + return rc; +} + + +/******************************************************************************* + * This function is responsible for handling all SMCs in the Trusted OS/App + * range from the non-secure state as defined in the SMC Calling Convention + * Document. It is also responsible for communicating with the Secure payload + * to delegate work and return results back to the non-secure state. Lastly it + * will also return any information that the secure payload needs to do the + * work assigned to it. + ******************************************************************************/ +static uintptr_t tspd_smc_handler(uint32_t smc_fid, + u_register_t x1, + u_register_t x2, + u_register_t x3, + u_register_t x4, + void *cookie, + void *handle, + u_register_t flags) +{ + cpu_context_t *ns_cpu_context; + uint32_t linear_id = plat_my_core_pos(), ns; + tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id]; + uint64_t rc; +#if TSP_INIT_ASYNC + entry_point_info_t *next_image_info; +#endif + + /* Determine which security state this SMC originated from */ + ns = is_caller_non_secure(flags); + + switch (smc_fid) { + + /* + * This function ID is used by TSP to indicate that it was + * preempted by a normal world IRQ. + * + */ + case TSP_PREEMPTED: + if (ns) + SMC_RET1(handle, SMC_UNK); + + return tspd_handle_sp_preemption(handle); + + /* + * This function ID is used only by the TSP to indicate that it has + * finished handling a S-EL1 interrupt or was preempted by a higher + * priority pending EL3 interrupt. Execution should resume + * in the normal world. + */ + case TSP_HANDLED_S_EL1_INTR: + if (ns) + SMC_RET1(handle, SMC_UNK); + + assert(handle == cm_get_context(SECURE)); + + /* + * Restore the relevant EL3 state which saved to service + * this SMC. + */ + if (get_yield_smc_active_flag(tsp_ctx->state)) { + SMC_SET_EL3(&tsp_ctx->cpu_ctx, + CTX_SPSR_EL3, + tsp_ctx->saved_spsr_el3); + SMC_SET_EL3(&tsp_ctx->cpu_ctx, + CTX_ELR_EL3, + tsp_ctx->saved_elr_el3); +#if TSP_NS_INTR_ASYNC_PREEMPT + /* + * Need to restore the previously interrupted + * secure context. + */ + memcpy(&tsp_ctx->cpu_ctx, &tsp_ctx->sp_ctx, + TSPD_SP_CTX_SIZE); +#endif + } + + /* Get a reference to the non-secure context */ + ns_cpu_context = cm_get_context(NON_SECURE); + assert(ns_cpu_context); + + /* + * Restore non-secure state. There is no need to save the + * secure system register context since the TSP was supposed + * to preserve it during S-EL1 interrupt handling. + */ + cm_el1_sysregs_context_restore(NON_SECURE); + cm_set_next_eret_context(NON_SECURE); + + /* Refer to Note 1 in function tspd_sel1_interrupt_handler()*/ +#if TSP_NS_INTR_ASYNC_PREEMPT + if (tsp_ctx->preempted_by_sel1_intr) { + /* Reset the flag */ + tsp_ctx->preempted_by_sel1_intr = false; + + SMC_RET1(ns_cpu_context, SMC_PREEMPTED); + } else { + SMC_RET0((uint64_t) ns_cpu_context); + } +#else + SMC_RET0((uint64_t) ns_cpu_context); +#endif + + + /* + * This function ID is used only by the SP to indicate it has + * finished initialising itself after a cold boot + */ + case TSP_ENTRY_DONE: + if (ns) + SMC_RET1(handle, SMC_UNK); + + /* + * Stash the SP entry points information. This is done + * only once on the primary cpu + */ + assert(tsp_vectors == NULL); + tsp_vectors = (tsp_vectors_t *) x1; + + if (tsp_vectors) { + set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_ON); + + /* + * TSP has been successfully initialized. Register power + * management hooks with PSCI + */ + psci_register_spd_pm_hook(&tspd_pm); + + /* + * Register an interrupt handler for S-EL1 interrupts + * when generated during code executing in the + * non-secure state. + */ + flags = 0; + set_interrupt_rm_flag(flags, NON_SECURE); + rc = register_interrupt_type_handler(INTR_TYPE_S_EL1, + tspd_sel1_interrupt_handler, + flags); + if (rc) + panic(); + +#if TSP_NS_INTR_ASYNC_PREEMPT + /* + * Register an interrupt handler for NS interrupts when + * generated during code executing in secure state are + * routed to EL3. + */ + flags = 0; + set_interrupt_rm_flag(flags, SECURE); + + rc = register_interrupt_type_handler(INTR_TYPE_NS, + tspd_ns_interrupt_handler, + flags); + if (rc) + panic(); + + /* + * Disable the NS interrupt locally. + */ + disable_intr_rm_local(INTR_TYPE_NS, SECURE); +#endif + } + + +#if TSP_INIT_ASYNC + /* Save the Secure EL1 system register context */ + assert(cm_get_context(SECURE) == &tsp_ctx->cpu_ctx); + cm_el1_sysregs_context_save(SECURE); + + /* Program EL3 registers to enable entry into the next EL */ + next_image_info = bl31_plat_get_next_image_ep_info(NON_SECURE); + assert(next_image_info); + assert(NON_SECURE == + GET_SECURITY_STATE(next_image_info->h.attr)); + + cm_init_my_context(next_image_info); + cm_prepare_el3_exit(NON_SECURE); + SMC_RET0(cm_get_context(NON_SECURE)); +#else + /* + * SP reports completion. The SPD must have initiated + * the original request through a synchronous entry + * into the SP. Jump back to the original C runtime + * context. + */ + tspd_synchronous_sp_exit(tsp_ctx, x1); + break; +#endif + /* + * This function ID is used only by the SP to indicate it has finished + * aborting a preempted Yielding SMC Call. + */ + case TSP_ABORT_DONE: + + /* + * These function IDs are used only by the SP to indicate it has + * finished: + * 1. turning itself on in response to an earlier psci + * cpu_on request + * 2. resuming itself after an earlier psci cpu_suspend + * request. + */ + case TSP_ON_DONE: + case TSP_RESUME_DONE: + + /* + * These function IDs are used only by the SP to indicate it has + * finished: + * 1. suspending itself after an earlier psci cpu_suspend + * request. + * 2. turning itself off in response to an earlier psci + * cpu_off request. + */ + case TSP_OFF_DONE: + case TSP_SUSPEND_DONE: + case TSP_SYSTEM_OFF_DONE: + case TSP_SYSTEM_RESET_DONE: + if (ns) + SMC_RET1(handle, SMC_UNK); + + /* + * SP reports completion. The SPD must have initiated the + * original request through a synchronous entry into the SP. + * Jump back to the original C runtime context, and pass x1 as + * return value to the caller + */ + tspd_synchronous_sp_exit(tsp_ctx, x1); + break; + + /* + * Request from non-secure client to perform an + * arithmetic operation or response from secure + * payload to an earlier request. + */ + case TSP_FAST_FID(TSP_ADD): + case TSP_FAST_FID(TSP_SUB): + case TSP_FAST_FID(TSP_MUL): + case TSP_FAST_FID(TSP_DIV): + + case TSP_YIELD_FID(TSP_ADD): + case TSP_YIELD_FID(TSP_SUB): + case TSP_YIELD_FID(TSP_MUL): + case TSP_YIELD_FID(TSP_DIV): + /* + * Request from non-secure client to perform a check + * of the DIT PSTATE bit. + */ + case TSP_YIELD_FID(TSP_CHECK_DIT): + if (ns) { + /* + * This is a fresh request from the non-secure client. + * The parameters are in x1 and x2. Figure out which + * registers need to be preserved, save the non-secure + * state and send the request to the secure payload. + */ + assert(handle == cm_get_context(NON_SECURE)); + + /* Check if we are already preempted */ + if (get_yield_smc_active_flag(tsp_ctx->state)) + SMC_RET1(handle, SMC_UNK); + + cm_el1_sysregs_context_save(NON_SECURE); + + /* Save x1 and x2 for use by TSP_GET_ARGS call below */ + store_tsp_args(tsp_ctx, x1, x2); + + /* + * We are done stashing the non-secure context. Ask the + * secure payload to do the work now. + */ + + /* + * Verify if there is a valid context to use, copy the + * operation type and parameters to the secure context + * and jump to the fast smc entry point in the secure + * payload. Entry into S-EL1 will take place upon exit + * from this function. + */ + assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE)); + + /* Set appropriate entry for SMC. + * We expect the TSP to manage the PSTATE.I and PSTATE.F + * flags as appropriate. + */ + if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) { + cm_set_elr_el3(SECURE, (uint64_t) + &tsp_vectors->fast_smc_entry); + } else { + set_yield_smc_active_flag(tsp_ctx->state); + cm_set_elr_el3(SECURE, (uint64_t) + &tsp_vectors->yield_smc_entry); +#if TSP_NS_INTR_ASYNC_PREEMPT + /* + * Enable the routing of NS interrupts to EL3 + * during processing of a Yielding SMC Call on + * this core. + */ + enable_intr_rm_local(INTR_TYPE_NS, SECURE); +#endif + +#if EL3_EXCEPTION_HANDLING + /* + * With EL3 exception handling, while an SMC is + * being processed, Non-secure interrupts can't + * preempt Secure execution. However, for + * yielding SMCs, we want preemption to happen; + * so explicitly allow NS preemption in this + * case, and supply the preemption return code + * for TSP. + */ + ehf_allow_ns_preemption(TSP_PREEMPTED); +#endif + } + + cm_el1_sysregs_context_restore(SECURE); + cm_set_next_eret_context(SECURE); + SMC_RET3(&tsp_ctx->cpu_ctx, smc_fid, x1, x2); + } else { + /* + * This is the result from the secure client of an + * earlier request. The results are in x1-x3. Copy it + * into the non-secure context, save the secure state + * and return to the non-secure state. + */ + assert(handle == cm_get_context(SECURE)); + cm_el1_sysregs_context_save(SECURE); + + /* Get a reference to the non-secure context */ + ns_cpu_context = cm_get_context(NON_SECURE); + assert(ns_cpu_context); + + /* Restore non-secure state */ + cm_el1_sysregs_context_restore(NON_SECURE); + cm_set_next_eret_context(NON_SECURE); + if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_YIELD) { + clr_yield_smc_active_flag(tsp_ctx->state); +#if TSP_NS_INTR_ASYNC_PREEMPT + /* + * Disable the routing of NS interrupts to EL3 + * after processing of a Yielding SMC Call on + * this core is finished. + */ + disable_intr_rm_local(INTR_TYPE_NS, SECURE); +#endif + } + + SMC_RET3(ns_cpu_context, x1, x2, x3); + } + assert(0); /* Unreachable */ + + /* + * Request from the non-secure world to abort a preempted Yielding SMC + * Call. + */ + case TSP_FID_ABORT: + /* ABORT should only be invoked by normal world */ + if (!ns) { + assert(0); + break; + } + + assert(handle == cm_get_context(NON_SECURE)); + cm_el1_sysregs_context_save(NON_SECURE); + + /* Abort the preempted SMC request */ + if (!tspd_abort_preempted_smc(tsp_ctx)) { + /* + * If there was no preempted SMC to abort, return + * SMC_UNK. + * + * Restoring the NON_SECURE context is not necessary as + * the synchronous entry did not take place if the + * return code of tspd_abort_preempted_smc is zero. + */ + cm_set_next_eret_context(NON_SECURE); + break; + } + + cm_el1_sysregs_context_restore(NON_SECURE); + cm_set_next_eret_context(NON_SECURE); + SMC_RET1(handle, SMC_OK); + + /* + * Request from non secure world to resume the preempted + * Yielding SMC Call. + */ + case TSP_FID_RESUME: + /* RESUME should be invoked only by normal world */ + if (!ns) { + assert(0); + break; + } + + /* + * This is a resume request from the non-secure client. + * save the non-secure state and send the request to + * the secure payload. + */ + assert(handle == cm_get_context(NON_SECURE)); + + /* Check if we are already preempted before resume */ + if (!get_yield_smc_active_flag(tsp_ctx->state)) + SMC_RET1(handle, SMC_UNK); + + cm_el1_sysregs_context_save(NON_SECURE); + + /* + * We are done stashing the non-secure context. Ask the + * secure payload to do the work now. + */ +#if TSP_NS_INTR_ASYNC_PREEMPT + /* + * Enable the routing of NS interrupts to EL3 during resumption + * of a Yielding SMC Call on this core. + */ + enable_intr_rm_local(INTR_TYPE_NS, SECURE); +#endif + +#if EL3_EXCEPTION_HANDLING + /* + * Allow the resumed yielding SMC processing to be preempted by + * Non-secure interrupts. Also, supply the preemption return + * code for TSP. + */ + ehf_allow_ns_preemption(TSP_PREEMPTED); +#endif + + /* We just need to return to the preempted point in + * TSP and the execution will resume as normal. + */ + cm_el1_sysregs_context_restore(SECURE); + cm_set_next_eret_context(SECURE); + SMC_RET0(&tsp_ctx->cpu_ctx); + + /* + * This is a request from the secure payload for more arguments + * for an ongoing arithmetic operation requested by the + * non-secure world. Simply return the arguments from the non- + * secure client in the original call. + */ + case TSP_GET_ARGS: + if (ns) + SMC_RET1(handle, SMC_UNK); + + get_tsp_args(tsp_ctx, x1, x2); + SMC_RET2(handle, x1, x2); + + case TOS_CALL_COUNT: + /* + * Return the number of service function IDs implemented to + * provide service to non-secure + */ + SMC_RET1(handle, TSP_NUM_FID); + + case TOS_UID: + /* Return TSP UID to the caller */ + SMC_UUID_RET(handle, tsp_uuid); + + case TOS_CALL_VERSION: + /* Return the version of current implementation */ + SMC_RET2(handle, TSP_VERSION_MAJOR, TSP_VERSION_MINOR); + + default: + break; + } + + SMC_RET1(handle, SMC_UNK); +} + +/* Define a SPD runtime service descriptor for fast SMC calls */ +DECLARE_RT_SVC( + tspd_fast, + + OEN_TOS_START, + OEN_TOS_END, + SMC_TYPE_FAST, + tspd_setup, + tspd_smc_handler +); + +/* Define a SPD runtime service descriptor for Yielding SMC Calls */ +DECLARE_RT_SVC( + tspd_std, + + OEN_TOS_START, + OEN_TOS_END, + SMC_TYPE_YIELD, + NULL, + tspd_smc_handler +); -- cgit v1.2.3