/* * Copyright (C) 2022, STMicroelectronics - All Rights Reserved * * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause */ #include #include #include "clk-stm32-core.h" #include #include #include #include #include #include #include static struct spinlock reg_lock; static struct spinlock refcount_lock; static struct stm32_clk_priv *stm32_clock_data; const struct stm32_clk_ops clk_mux_ops; struct stm32_clk_priv *clk_stm32_get_priv(void) { return stm32_clock_data; } static void stm32mp1_clk_lock(struct spinlock *lock) { if (stm32mp_lock_available()) { /* Assume interrupts are masked */ spin_lock(lock); } } static void stm32mp1_clk_unlock(struct spinlock *lock) { if (stm32mp_lock_available()) { spin_unlock(lock); } } void stm32mp1_clk_rcc_regs_lock(void) { stm32mp1_clk_lock(®_lock); } void stm32mp1_clk_rcc_regs_unlock(void) { stm32mp1_clk_unlock(®_lock); } #define TIMEOUT_US_1S U(1000000) #define OSCRDY_TIMEOUT TIMEOUT_US_1S struct clk_oscillator_data *clk_oscillator_get_data(struct stm32_clk_priv *priv, int id) { const struct clk_stm32 *clk = _clk_get(priv, id); struct stm32_osc_cfg *osc_cfg = clk->clock_cfg; int osc_id = osc_cfg->osc_id; return &priv->osci_data[osc_id]; } void clk_oscillator_set_bypass(struct stm32_clk_priv *priv, int id, bool digbyp, bool bypass) { struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id); struct stm32_clk_bypass *bypass_data = osc_data->bypass; uintptr_t address; if (bypass_data == NULL) { return; } address = priv->base + bypass_data->offset; if (digbyp) { mmio_setbits_32(address, BIT(bypass_data->bit_digbyp)); } if (bypass || digbyp) { mmio_setbits_32(address, BIT(bypass_data->bit_byp)); } } void clk_oscillator_set_css(struct stm32_clk_priv *priv, int id, bool css) { struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id); struct stm32_clk_css *css_data = osc_data->css; uintptr_t address; if (css_data == NULL) { return; } address = priv->base + css_data->offset; if (css) { mmio_setbits_32(address, BIT(css_data->bit_css)); } } void clk_oscillator_set_drive(struct stm32_clk_priv *priv, int id, uint8_t lsedrv) { struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id); struct stm32_clk_drive *drive_data = osc_data->drive; uintptr_t address; uint32_t mask; uint32_t value; if (drive_data == NULL) { return; } address = priv->base + drive_data->offset; mask = (BIT(drive_data->drv_width) - 1U) << drive_data->drv_shift; /* * Warning: not recommended to switch directly from "high drive" * to "medium low drive", and vice-versa. */ value = (mmio_read_32(address) & mask) >> drive_data->drv_shift; while (value != lsedrv) { if (value > lsedrv) { value--; } else { value++; } mmio_clrsetbits_32(address, mask, value << drive_data->drv_shift); } } int clk_oscillator_wait_ready(struct stm32_clk_priv *priv, int id, bool ready_on) { struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id); return _clk_stm32_gate_wait_ready(priv, osc_data->gate_rdy_id, ready_on); } int clk_oscillator_wait_ready_on(struct stm32_clk_priv *priv, int id) { return clk_oscillator_wait_ready(priv, id, true); } int clk_oscillator_wait_ready_off(struct stm32_clk_priv *priv, int id) { return clk_oscillator_wait_ready(priv, id, false); } static int clk_gate_enable(struct stm32_clk_priv *priv, int id) { const struct clk_stm32 *clk = _clk_get(priv, id); struct clk_gate_cfg *cfg = clk->clock_cfg; mmio_setbits_32(priv->base + cfg->offset, BIT(cfg->bit_idx)); return 0; } static void clk_gate_disable(struct stm32_clk_priv *priv, int id) { const struct clk_stm32 *clk = _clk_get(priv, id); struct clk_gate_cfg *cfg = clk->clock_cfg; mmio_clrbits_32(priv->base + cfg->offset, BIT(cfg->bit_idx)); } static bool clk_gate_is_enabled(struct stm32_clk_priv *priv, int id) { const struct clk_stm32 *clk = _clk_get(priv, id); struct clk_gate_cfg *cfg = clk->clock_cfg; return ((mmio_read_32(priv->base + cfg->offset) & BIT(cfg->bit_idx)) != 0U); } const struct stm32_clk_ops clk_gate_ops = { .enable = clk_gate_enable, .disable = clk_gate_disable, .is_enabled = clk_gate_is_enabled, }; void _clk_stm32_gate_disable(struct stm32_clk_priv *priv, uint16_t gate_id) { const struct gate_cfg *gate = &priv->gates[gate_id]; uintptr_t addr = priv->base + gate->offset; if (gate->set_clr != 0U) { mmio_write_32(addr + RCC_MP_ENCLRR_OFFSET, BIT(gate->bit_idx)); } else { mmio_clrbits_32(addr, BIT(gate->bit_idx)); } } int _clk_stm32_gate_enable(struct stm32_clk_priv *priv, uint16_t gate_id) { const struct gate_cfg *gate = &priv->gates[gate_id]; uintptr_t addr = priv->base + gate->offset; if (gate->set_clr != 0U) { mmio_write_32(addr, BIT(gate->bit_idx)); } else { mmio_setbits_32(addr, BIT(gate->bit_idx)); } return 0; } const struct clk_stm32 *_clk_get(struct stm32_clk_priv *priv, int id) { if ((unsigned int)id < priv->num) { return &priv->clks[id]; } return NULL; } #define clk_div_mask(_width) GENMASK(((_width) - 1U), 0U) static unsigned int _get_table_div(const struct clk_div_table *table, unsigned int val) { const struct clk_div_table *clkt; for (clkt = table; clkt->div; clkt++) { if (clkt->val == val) { return clkt->div; } } return 0; } static unsigned int _get_div(const struct clk_div_table *table, unsigned int val, unsigned long flags, uint8_t width) { if ((flags & CLK_DIVIDER_ONE_BASED) != 0UL) { return val; } if ((flags & CLK_DIVIDER_POWER_OF_TWO) != 0UL) { return BIT(val); } if ((flags & CLK_DIVIDER_MAX_AT_ZERO) != 0UL) { return (val != 0U) ? val : BIT(width); } if (table != NULL) { return _get_table_div(table, val); } return val + 1U; } #define TIMEOUT_US_200MS U(200000) #define CLKSRC_TIMEOUT TIMEOUT_US_200MS int clk_mux_set_parent(struct stm32_clk_priv *priv, uint16_t pid, uint8_t sel) { const struct parent_cfg *parents = &priv->parents[pid & MUX_PARENT_MASK]; const struct mux_cfg *mux = parents->mux; uintptr_t address = priv->base + mux->offset; uint32_t mask; uint64_t timeout; mask = MASK_WIDTH_SHIFT(mux->width, mux->shift); mmio_clrsetbits_32(address, mask, (sel << mux->shift) & mask); if (mux->bitrdy == MUX_NO_BIT_RDY) { return 0; } timeout = timeout_init_us(CLKSRC_TIMEOUT); mask = BIT(mux->bitrdy); while ((mmio_read_32(address) & mask) == 0U) { if (timeout_elapsed(timeout)) { return -ETIMEDOUT; } } return 0; } int _clk_stm32_set_parent(struct stm32_clk_priv *priv, int clk, int clkp) { const struct parent_cfg *parents; uint16_t pid; uint8_t sel; int old_parent; pid = priv->clks[clk].parent; if ((pid == CLK_IS_ROOT) || (pid < MUX_MAX_PARENTS)) { return -EINVAL; } old_parent = _clk_stm32_get_parent(priv, clk); if (old_parent < 0) { return old_parent; } if (old_parent == clkp) { return 0; } parents = &priv->parents[pid & MUX_PARENT_MASK]; for (sel = 0; sel < parents->num_parents; sel++) { if (parents->id_parents[sel] == (uint16_t)clkp) { bool clk_was_enabled = _clk_stm32_is_enabled(priv, clk); int err = 0; /* Enable the parents (for glitch free mux) */ _clk_stm32_enable(priv, clkp); _clk_stm32_enable(priv, old_parent); err = clk_mux_set_parent(priv, pid, sel); _clk_stm32_disable(priv, old_parent); if (clk_was_enabled) { _clk_stm32_disable(priv, old_parent); } else { _clk_stm32_disable(priv, clkp); } return err; } } return -EINVAL; } int clk_mux_get_parent(struct stm32_clk_priv *priv, uint32_t mux_id) { const struct parent_cfg *parent; const struct mux_cfg *mux; uint32_t mask; if (mux_id >= priv->nb_parents) { panic(); } parent = &priv->parents[mux_id]; mux = parent->mux; mask = MASK_WIDTH_SHIFT(mux->width, mux->shift); return (mmio_read_32(priv->base + mux->offset) & mask) >> mux->shift; } int _clk_stm32_set_parent_by_index(struct stm32_clk_priv *priv, int clk, int sel) { uint16_t pid; pid = priv->clks[clk].parent; if ((pid == CLK_IS_ROOT) || (pid < MUX_MAX_PARENTS)) { return -EINVAL; } return clk_mux_set_parent(priv, pid, sel); } int _clk_stm32_get_parent(struct stm32_clk_priv *priv, int clk_id) { const struct clk_stm32 *clk = _clk_get(priv, clk_id); const struct parent_cfg *parent; uint16_t mux_id; int sel; mux_id = priv->clks[clk_id].parent; if (mux_id == CLK_IS_ROOT) { return CLK_IS_ROOT; } if (mux_id < MUX_MAX_PARENTS) { return mux_id & MUX_PARENT_MASK; } mux_id &= MUX_PARENT_MASK; parent = &priv->parents[mux_id]; if (clk->ops->get_parent != NULL) { sel = clk->ops->get_parent(priv, clk_id); } else { sel = clk_mux_get_parent(priv, mux_id); } if ((sel >= 0) && (sel < parent->num_parents)) { return parent->id_parents[sel]; } return -EINVAL; } int _clk_stm32_get_parent_index(struct stm32_clk_priv *priv, int clk_id) { uint16_t mux_id; mux_id = priv->clks[clk_id].parent; if (mux_id == CLK_IS_ROOT) { return CLK_IS_ROOT; } if (mux_id < MUX_MAX_PARENTS) { return mux_id & MUX_PARENT_MASK; } mux_id &= MUX_PARENT_MASK; return clk_mux_get_parent(priv, mux_id); } int _clk_stm32_get_parent_by_index(struct stm32_clk_priv *priv, int clk_id, int idx) { const struct parent_cfg *parent; uint16_t mux_id; mux_id = priv->clks[clk_id].parent; if (mux_id == CLK_IS_ROOT) { return CLK_IS_ROOT; } if (mux_id < MUX_MAX_PARENTS) { return mux_id & MUX_PARENT_MASK; } mux_id &= MUX_PARENT_MASK; parent = &priv->parents[mux_id]; if (idx < parent->num_parents) { return parent->id_parents[idx]; } return -EINVAL; } int clk_get_index(struct stm32_clk_priv *priv, unsigned long binding_id) { unsigned int i; for (i = 0U; i < priv->num; i++) { if (binding_id == priv->clks[i].binding) { return (int)i; } } return -EINVAL; } unsigned long _clk_stm32_get_rate(struct stm32_clk_priv *priv, int id) { const struct clk_stm32 *clk = _clk_get(priv, id); int parent; unsigned long rate = 0UL; if ((unsigned int)id >= priv->num) { return rate; } parent = _clk_stm32_get_parent(priv, id); if (parent < 0) { return 0UL; } if (clk->ops->recalc_rate != NULL) { unsigned long prate = 0UL; if (parent != CLK_IS_ROOT) { prate = _clk_stm32_get_rate(priv, parent); } rate = clk->ops->recalc_rate(priv, id, prate); return rate; } switch (parent) { case CLK_IS_ROOT: panic(); default: rate = _clk_stm32_get_rate(priv, parent); break; } return rate; } unsigned long _clk_stm32_get_parent_rate(struct stm32_clk_priv *priv, int id) { int parent_id = _clk_stm32_get_parent(priv, id); if (parent_id < 0) { return 0UL; } return _clk_stm32_get_rate(priv, parent_id); } static uint8_t _stm32_clk_get_flags(struct stm32_clk_priv *priv, int id) { return priv->clks[id].flags; } bool _stm32_clk_is_flags(struct stm32_clk_priv *priv, int id, uint8_t flag) { if (_stm32_clk_get_flags(priv, id) & flag) { return true; } return false; } int clk_stm32_enable_call_ops(struct stm32_clk_priv *priv, uint16_t id) { const struct clk_stm32 *clk = _clk_get(priv, id); if (clk->ops->enable != NULL) { clk->ops->enable(priv, id); } return 0; } static int _clk_stm32_enable_core(struct stm32_clk_priv *priv, int id) { int parent; int ret = 0; if (priv->gate_refcounts[id] == 0U) { parent = _clk_stm32_get_parent(priv, id); if (parent < 0) { return parent; } if (parent != CLK_IS_ROOT) { ret = _clk_stm32_enable_core(priv, parent); if (ret) { return ret; } } clk_stm32_enable_call_ops(priv, id); } priv->gate_refcounts[id]++; if (priv->gate_refcounts[id] == UINT_MAX) { ERROR("%s: %d max enable count !", __func__, id); panic(); } return 0; } int _clk_stm32_enable(struct stm32_clk_priv *priv, int id) { int ret; stm32mp1_clk_lock(&refcount_lock); ret = _clk_stm32_enable_core(priv, id); stm32mp1_clk_unlock(&refcount_lock); return ret; } void clk_stm32_disable_call_ops(struct stm32_clk_priv *priv, uint16_t id) { const struct clk_stm32 *clk = _clk_get(priv, id); if (clk->ops->disable != NULL) { clk->ops->disable(priv, id); } } static void _clk_stm32_disable_core(struct stm32_clk_priv *priv, int id) { int parent; if ((priv->gate_refcounts[id] == 1U) && _stm32_clk_is_flags(priv, id, CLK_IS_CRITICAL)) { return; } if (priv->gate_refcounts[id] == 0U) { /* case of clock ignore unused */ if (_clk_stm32_is_enabled(priv, id)) { clk_stm32_disable_call_ops(priv, id); return; } VERBOSE("%s: %d already disabled !\n\n", __func__, id); return; } if (--priv->gate_refcounts[id] > 0U) { return; } clk_stm32_disable_call_ops(priv, id); parent = _clk_stm32_get_parent(priv, id); if ((parent >= 0) && (parent != CLK_IS_ROOT)) { _clk_stm32_disable_core(priv, parent); } } void _clk_stm32_disable(struct stm32_clk_priv *priv, int id) { stm32mp1_clk_lock(&refcount_lock); _clk_stm32_disable_core(priv, id); stm32mp1_clk_unlock(&refcount_lock); } bool _clk_stm32_is_enabled(struct stm32_clk_priv *priv, int id) { const struct clk_stm32 *clk = _clk_get(priv, id); if (clk->ops->is_enabled != NULL) { return clk->ops->is_enabled(priv, id); } return priv->gate_refcounts[id]; } static int clk_stm32_enable(unsigned long binding_id) { struct stm32_clk_priv *priv = clk_stm32_get_priv(); int id; id = clk_get_index(priv, binding_id); if (id == -EINVAL) { return id; } return _clk_stm32_enable(priv, id); } static void clk_stm32_disable(unsigned long binding_id) { struct stm32_clk_priv *priv = clk_stm32_get_priv(); int id; id = clk_get_index(priv, binding_id); if (id != -EINVAL) { _clk_stm32_disable(priv, id); } } static bool clk_stm32_is_enabled(unsigned long binding_id) { struct stm32_clk_priv *priv = clk_stm32_get_priv(); int id; id = clk_get_index(priv, binding_id); if (id == -EINVAL) { return false; } return _clk_stm32_is_enabled(priv, id); } static unsigned long clk_stm32_get_rate(unsigned long binding_id) { struct stm32_clk_priv *priv = clk_stm32_get_priv(); int id; id = clk_get_index(priv, binding_id); if (id == -EINVAL) { return 0UL; } return _clk_stm32_get_rate(priv, id); } static int clk_stm32_get_parent(unsigned long binding_id) { struct stm32_clk_priv *priv = clk_stm32_get_priv(); int id; id = clk_get_index(priv, binding_id); if (id == -EINVAL) { return id; } return _clk_stm32_get_parent(priv, id); } static const struct clk_ops stm32mp_clk_ops = { .enable = clk_stm32_enable, .disable = clk_stm32_disable, .is_enabled = clk_stm32_is_enabled, .get_rate = clk_stm32_get_rate, .get_parent = clk_stm32_get_parent, }; void clk_stm32_enable_critical_clocks(void) { struct stm32_clk_priv *priv = clk_stm32_get_priv(); unsigned int i; for (i = 0U; i < priv->num; i++) { if (_stm32_clk_is_flags(priv, i, CLK_IS_CRITICAL)) { _clk_stm32_enable(priv, i); } } } static void stm32_clk_register(void) { clk_register(&stm32mp_clk_ops); } uint32_t clk_stm32_div_get_value(struct stm32_clk_priv *priv, int div_id) { const struct div_cfg *divider = &priv->div[div_id]; uint32_t val = 0; val = mmio_read_32(priv->base + divider->offset) >> divider->shift; val &= clk_div_mask(divider->width); return val; } unsigned long _clk_stm32_divider_recalc(struct stm32_clk_priv *priv, int div_id, unsigned long prate) { const struct div_cfg *divider = &priv->div[div_id]; uint32_t val = clk_stm32_div_get_value(priv, div_id); unsigned int div = 0U; div = _get_div(divider->table, val, divider->flags, divider->width); if (div == 0U) { return prate; } return div_round_up((uint64_t)prate, div); } unsigned long clk_stm32_divider_recalc(struct stm32_clk_priv *priv, int id, unsigned long prate) { const struct clk_stm32 *clk = _clk_get(priv, id); struct clk_stm32_div_cfg *div_cfg = clk->clock_cfg; return _clk_stm32_divider_recalc(priv, div_cfg->id, prate); } const struct stm32_clk_ops clk_stm32_divider_ops = { .recalc_rate = clk_stm32_divider_recalc, }; int clk_stm32_set_div(struct stm32_clk_priv *priv, uint32_t div_id, uint32_t value) { const struct div_cfg *divider; uintptr_t address; uint64_t timeout; uint32_t mask; if (div_id >= priv->nb_div) { panic(); } divider = &priv->div[div_id]; address = priv->base + divider->offset; mask = MASK_WIDTH_SHIFT(divider->width, divider->shift); mmio_clrsetbits_32(address, mask, (value << divider->shift) & mask); if (divider->bitrdy == DIV_NO_BIT_RDY) { return 0; } timeout = timeout_init_us(CLKSRC_TIMEOUT); mask = BIT(divider->bitrdy); while ((mmio_read_32(address) & mask) == 0U) { if (timeout_elapsed(timeout)) { return -ETIMEDOUT; } } return 0; } int _clk_stm32_gate_wait_ready(struct stm32_clk_priv *priv, uint16_t gate_id, bool ready_on) { const struct gate_cfg *gate = &priv->gates[gate_id]; uintptr_t address = priv->base + gate->offset; uint32_t mask_rdy = BIT(gate->bit_idx); uint64_t timeout; uint32_t mask_test; if (ready_on) { mask_test = BIT(gate->bit_idx); } else { mask_test = 0U; } timeout = timeout_init_us(OSCRDY_TIMEOUT); while ((mmio_read_32(address) & mask_rdy) != mask_test) { if (timeout_elapsed(timeout)) { break; } } if ((mmio_read_32(address) & mask_rdy) != mask_test) { return -ETIMEDOUT; } return 0; } int clk_stm32_gate_enable(struct stm32_clk_priv *priv, int id) { const struct clk_stm32 *clk = _clk_get(priv, id); struct clk_stm32_gate_cfg *cfg = clk->clock_cfg; const struct gate_cfg *gate = &priv->gates[cfg->id]; uintptr_t addr = priv->base + gate->offset; if (gate->set_clr != 0U) { mmio_write_32(addr, BIT(gate->bit_idx)); } else { mmio_setbits_32(addr, BIT(gate->bit_idx)); } return 0; } void clk_stm32_gate_disable(struct stm32_clk_priv *priv, int id) { const struct clk_stm32 *clk = _clk_get(priv, id); struct clk_stm32_gate_cfg *cfg = clk->clock_cfg; const struct gate_cfg *gate = &priv->gates[cfg->id]; uintptr_t addr = priv->base + gate->offset; if (gate->set_clr != 0U) { mmio_write_32(addr + RCC_MP_ENCLRR_OFFSET, BIT(gate->bit_idx)); } else { mmio_clrbits_32(addr, BIT(gate->bit_idx)); } } bool _clk_stm32_gate_is_enabled(struct stm32_clk_priv *priv, int gate_id) { const struct gate_cfg *gate; uint32_t addr; gate = &priv->gates[gate_id]; addr = priv->base + gate->offset; return ((mmio_read_32(addr) & BIT(gate->bit_idx)) != 0U); } bool clk_stm32_gate_is_enabled(struct stm32_clk_priv *priv, int id) { const struct clk_stm32 *clk = _clk_get(priv, id); struct clk_stm32_gate_cfg *cfg = clk->clock_cfg; return _clk_stm32_gate_is_enabled(priv, cfg->id); } const struct stm32_clk_ops clk_stm32_gate_ops = { .enable = clk_stm32_gate_enable, .disable = clk_stm32_gate_disable, .is_enabled = clk_stm32_gate_is_enabled, }; const struct stm32_clk_ops clk_fixed_factor_ops = { .recalc_rate = fixed_factor_recalc_rate, }; unsigned long fixed_factor_recalc_rate(struct stm32_clk_priv *priv, int id, unsigned long prate) { const struct clk_stm32 *clk = _clk_get(priv, id); const struct fixed_factor_cfg *cfg = clk->clock_cfg; unsigned long long rate; rate = (unsigned long long)prate * cfg->mult; if (cfg->div == 0U) { ERROR("division by zero\n"); panic(); } return (unsigned long)(rate / cfg->div); }; #define APB_DIV_MASK GENMASK(2, 0) #define TIM_PRE_MASK BIT(0) static unsigned long timer_recalc_rate(struct stm32_clk_priv *priv, int id, unsigned long prate) { const struct clk_stm32 *clk = _clk_get(priv, id); const struct clk_timer_cfg *cfg = clk->clock_cfg; uint32_t prescaler, timpre; uintptr_t rcc_base = priv->base; prescaler = mmio_read_32(rcc_base + cfg->apbdiv) & APB_DIV_MASK; timpre = mmio_read_32(rcc_base + cfg->timpre) & TIM_PRE_MASK; if (prescaler == 0U) { return prate; } return prate * (timpre + 1U) * 2U; }; const struct stm32_clk_ops clk_timer_ops = { .recalc_rate = timer_recalc_rate, }; static unsigned long clk_fixed_rate_recalc(struct stm32_clk_priv *priv, int id, unsigned long prate) { const struct clk_stm32 *clk = _clk_get(priv, id); struct clk_stm32_fixed_rate_cfg *cfg = clk->clock_cfg; return cfg->rate; } const struct stm32_clk_ops clk_stm32_fixed_rate_ops = { .recalc_rate = clk_fixed_rate_recalc, }; static unsigned long clk_stm32_osc_recalc_rate(struct stm32_clk_priv *priv, int id, unsigned long prate) { struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id); return osc_data->frequency; }; bool clk_stm32_osc_gate_is_enabled(struct stm32_clk_priv *priv, int id) { struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id); return _clk_stm32_gate_is_enabled(priv, osc_data->gate_id); } int clk_stm32_osc_gate_enable(struct stm32_clk_priv *priv, int id) { struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id); _clk_stm32_gate_enable(priv, osc_data->gate_id); if (_clk_stm32_gate_wait_ready(priv, osc_data->gate_rdy_id, true) != 0U) { ERROR("%s: %s (%d)\n", __func__, osc_data->name, __LINE__); panic(); } return 0; } void clk_stm32_osc_gate_disable(struct stm32_clk_priv *priv, int id) { struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id); _clk_stm32_gate_disable(priv, osc_data->gate_id); if (_clk_stm32_gate_wait_ready(priv, osc_data->gate_rdy_id, false) != 0U) { ERROR("%s: %s (%d)\n", __func__, osc_data->name, __LINE__); panic(); } } static unsigned long clk_stm32_get_dt_oscillator_frequency(const char *name) { void *fdt = NULL; int node = 0; int subnode = 0; if (fdt_get_address(&fdt) == 0) { panic(); } node = fdt_path_offset(fdt, "/clocks"); if (node < 0) { return 0UL; } fdt_for_each_subnode(subnode, fdt, node) { const char *cchar = NULL; const fdt32_t *cuint = NULL; int ret = 0; cchar = fdt_get_name(fdt, subnode, &ret); if (cchar == NULL) { continue; } if (strncmp(cchar, name, (size_t)ret) || fdt_get_status(subnode) == DT_DISABLED) { continue; } cuint = fdt_getprop(fdt, subnode, "clock-frequency", &ret); if (cuint == NULL) { return 0UL; } return fdt32_to_cpu(*cuint); } return 0UL; } void clk_stm32_osc_init(struct stm32_clk_priv *priv, int id) { struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id); const char *name = osc_data->name; osc_data->frequency = clk_stm32_get_dt_oscillator_frequency(name); } const struct stm32_clk_ops clk_stm32_osc_ops = { .recalc_rate = clk_stm32_osc_recalc_rate, .is_enabled = clk_stm32_osc_gate_is_enabled, .enable = clk_stm32_osc_gate_enable, .disable = clk_stm32_osc_gate_disable, .init = clk_stm32_osc_init, }; const struct stm32_clk_ops clk_stm32_osc_nogate_ops = { .recalc_rate = clk_stm32_osc_recalc_rate, .init = clk_stm32_osc_init, }; int stm32_clk_parse_fdt_by_name(void *fdt, int node, const char *name, uint32_t *tab, uint32_t *nb) { const fdt32_t *cell; int len = 0; uint32_t i; cell = fdt_getprop(fdt, node, name, &len); if (cell == NULL) { *nb = 0U; return 0; } for (i = 0; i < ((uint32_t)len / sizeof(uint32_t)); i++) { uint32_t val = fdt32_to_cpu(cell[i]); tab[i] = val; } *nb = (uint32_t)len / sizeof(uint32_t); return 0; } int clk_stm32_init(struct stm32_clk_priv *priv, uintptr_t base) { unsigned int i; stm32_clock_data = priv; priv->base = base; for (i = 0U; i < priv->num; i++) { const struct clk_stm32 *clk = _clk_get(priv, i); assert(clk->ops != NULL); if (clk->ops->init != NULL) { clk->ops->init(priv, i); } } stm32_clk_register(); return 0; }