1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
|
/*
* Copyright (c) 2022, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <endian.h>
#include <errno.h>
#include <stdint.h>
#include <drivers/clk.h>
#include <drivers/delay_timer.h>
#include <drivers/st/stm32_saes.h>
#include <drivers/st/stm32mp_reset.h>
#include <lib/mmio.h>
#include <lib/utils_def.h>
#include <libfdt.h>
#include <platform_def.h>
#define UINT8_BIT 8U
#define AES_BLOCK_SIZE_BIT 128U
#define AES_BLOCK_SIZE (AES_BLOCK_SIZE_BIT / UINT8_BIT)
#define AES_KEYSIZE_128 16U
#define AES_KEYSIZE_256 32U
#define AES_IVSIZE 16U
/* SAES control register */
#define _SAES_CR 0x0U
/* SAES status register */
#define _SAES_SR 0x04U
/* SAES data input register */
#define _SAES_DINR 0x08U
/* SAES data output register */
#define _SAES_DOUTR 0x0CU
/* SAES key registers [0-3] */
#define _SAES_KEYR0 0x10U
#define _SAES_KEYR1 0x14U
#define _SAES_KEYR2 0x18U
#define _SAES_KEYR3 0x1CU
/* SAES initialization vector registers [0-3] */
#define _SAES_IVR0 0x20U
#define _SAES_IVR1 0x24U
#define _SAES_IVR2 0x28U
#define _SAES_IVR3 0x2CU
/* SAES key registers [4-7] */
#define _SAES_KEYR4 0x30U
#define _SAES_KEYR5 0x34U
#define _SAES_KEYR6 0x38U
#define _SAES_KEYR7 0x3CU
/* SAES suspend registers [0-7] */
#define _SAES_SUSPR0 0x40U
#define _SAES_SUSPR1 0x44U
#define _SAES_SUSPR2 0x48U
#define _SAES_SUSPR3 0x4CU
#define _SAES_SUSPR4 0x50U
#define _SAES_SUSPR5 0x54U
#define _SAES_SUSPR6 0x58U
#define _SAES_SUSPR7 0x5CU
/* SAES Interrupt Enable Register */
#define _SAES_IER 0x300U
/* SAES Interrupt Status Register */
#define _SAES_ISR 0x304U
/* SAES Interrupt Clear Register */
#define _SAES_ICR 0x308U
/* SAES control register fields */
#define _SAES_CR_RESET_VALUE 0x0U
#define _SAES_CR_IPRST BIT(31)
#define _SAES_CR_KEYSEL_MASK GENMASK(30, 28)
#define _SAES_CR_KEYSEL_SHIFT 28U
#define _SAES_CR_KEYSEL_SOFT 0x0U
#define _SAES_CR_KEYSEL_DHUK 0x1U
#define _SAES_CR_KEYSEL_BHK 0x2U
#define _SAES_CR_KEYSEL_BHU_XOR_BH_K 0x4U
#define _SAES_CR_KEYSEL_TEST 0x7U
#define _SAES_CR_KSHAREID_MASK GENMASK(27, 26)
#define _SAES_CR_KSHAREID_SHIFT 26U
#define _SAES_CR_KSHAREID_CRYP 0x0U
#define _SAES_CR_KEYMOD_MASK GENMASK(25, 24)
#define _SAES_CR_KEYMOD_SHIFT 24U
#define _SAES_CR_KEYMOD_NORMAL 0x0U
#define _SAES_CR_KEYMOD_WRAPPED 0x1U
#define _SAES_CR_KEYMOD_SHARED 0x2U
#define _SAES_CR_NPBLB_MASK GENMASK(23, 20)
#define _SAES_CR_NPBLB_SHIFT 20U
#define _SAES_CR_KEYPROT BIT(19)
#define _SAES_CR_KEYSIZE BIT(18)
#define _SAES_CR_GCMPH_MASK GENMASK(14, 13)
#define _SAES_CR_GCMPH_SHIFT 13U
#define _SAES_CR_GCMPH_INIT 0U
#define _SAES_CR_GCMPH_HEADER 1U
#define _SAES_CR_GCMPH_PAYLOAD 2U
#define _SAES_CR_GCMPH_FINAL 3U
#define _SAES_CR_DMAOUTEN BIT(12)
#define _SAES_CR_DMAINEN BIT(11)
#define _SAES_CR_CHMOD_MASK (BIT(16) | GENMASK(6, 5))
#define _SAES_CR_CHMOD_SHIFT 5U
#define _SAES_CR_CHMOD_ECB 0x0U
#define _SAES_CR_CHMOD_CBC 0x1U
#define _SAES_CR_CHMOD_CTR 0x2U
#define _SAES_CR_CHMOD_GCM 0x3U
#define _SAES_CR_CHMOD_GMAC 0x3U
#define _SAES_CR_CHMOD_CCM 0x800U
#define _SAES_CR_MODE_MASK GENMASK(4, 3)
#define _SAES_CR_MODE_SHIFT 3U
#define _SAES_CR_MODE_ENC 0U
#define _SAES_CR_MODE_KEYPREP 1U
#define _SAES_CR_MODE_DEC 2U
#define _SAES_CR_DATATYPE_MASK GENMASK(2, 1)
#define _SAES_CR_DATATYPE_SHIFT 1U
#define _SAES_CR_DATATYPE_NONE 0U
#define _SAES_CR_DATATYPE_HALF_WORD 1U
#define _SAES_CR_DATATYPE_BYTE 2U
#define _SAES_CR_DATATYPE_BIT 3U
#define _SAES_CR_EN BIT(0)
/* SAES status register fields */
#define _SAES_SR_KEYVALID BIT(7)
#define _SAES_SR_BUSY BIT(3)
#define _SAES_SR_WRERR BIT(2)
#define _SAES_SR_RDERR BIT(1)
#define _SAES_SR_CCF BIT(0)
/* SAES interrupt registers fields */
#define _SAES_I_RNG_ERR BIT(3)
#define _SAES_I_KEY_ERR BIT(2)
#define _SAES_I_RW_ERR BIT(1)
#define _SAES_I_CC BIT(0)
#define SAES_TIMEOUT_US 100000U
#define TIMEOUT_US_1MS 1000U
#define SAES_RESET_DELAY 20U
#define IS_CHAINING_MODE(mod, cr) \
(((cr) & _SAES_CR_CHMOD_MASK) == (_SAES_CR_CHMOD_##mod << _SAES_CR_CHMOD_SHIFT))
#define SET_CHAINING_MODE(mod, cr) \
mmio_clrsetbits_32((cr), _SAES_CR_CHMOD_MASK, _SAES_CR_CHMOD_##mod << _SAES_CR_CHMOD_SHIFT)
#define pragma weak stm32_saes_get_platdata
static struct stm32_saes_platdata saes_pdata;
int stm32_saes_get_platdata(struct stm32_saes_platdata *pdata)
{
return -ENODEV;
}
static int stm32_saes_parse_fdt(struct stm32_saes_platdata *pdata)
{
int node;
struct dt_node_info info;
void *fdt;
if (fdt_get_address(&fdt) == 0) {
return -FDT_ERR_NOTFOUND;
}
node = dt_get_node(&info, -1, DT_SAES_COMPAT);
if (node < 0) {
ERROR("No SAES entry in DT\n");
return -FDT_ERR_NOTFOUND;
}
if (info.status == DT_DISABLED) {
return -FDT_ERR_NOTFOUND;
}
if ((info.base == 0U) || (info.clock < 0) || (info.reset < 0)) {
return -FDT_ERR_BADVALUE;
}
pdata->base = (uintptr_t)info.base;
pdata->clock_id = (unsigned long)info.clock;
pdata->reset_id = (unsigned int)info.reset;
return 0;
}
static bool does_chaining_mode_need_iv(uint32_t cr)
{
return !(IS_CHAINING_MODE(ECB, cr));
}
static bool is_encrypt(uint32_t cr)
{
return (cr & _SAES_CR_MODE_MASK) == (_SAES_CR_MODE_ENC << _SAES_CR_MODE_SHIFT);
}
static bool is_decrypt(uint32_t cr)
{
return (cr & _SAES_CR_MODE_MASK) == (_SAES_CR_MODE_DEC << _SAES_CR_MODE_SHIFT);
}
static int wait_computation_completed(uintptr_t base)
{
uint64_t timeout = timeout_init_us(SAES_TIMEOUT_US);
while ((mmio_read_32(base + _SAES_SR) & _SAES_SR_CCF) != _SAES_SR_CCF) {
if (timeout_elapsed(timeout)) {
WARN("%s: timeout\n", __func__);
return -ETIMEDOUT;
}
}
return 0;
}
static void clear_computation_completed(uintptr_t base)
{
mmio_setbits_32(base + _SAES_ICR, _SAES_I_CC);
}
static int saes_start(struct stm32_saes_context *ctx)
{
uint64_t timeout;
/* Reset IP */
mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_IPRST);
udelay(SAES_RESET_DELAY);
mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_IPRST);
timeout = timeout_init_us(SAES_TIMEOUT_US);
while ((mmio_read_32(ctx->base + _SAES_SR) & _SAES_SR_BUSY) == _SAES_SR_BUSY) {
if (timeout_elapsed(timeout)) {
WARN("%s: timeout\n", __func__);
return -ETIMEDOUT;
}
}
return 0;
}
static void saes_end(struct stm32_saes_context *ctx, int prev_error)
{
if (prev_error != 0) {
/* Reset IP */
mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_IPRST);
udelay(SAES_RESET_DELAY);
mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_IPRST);
}
/* Disable the SAES peripheral */
mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_EN);
}
static void saes_write_iv(struct stm32_saes_context *ctx)
{
/* If chaining mode need to restore IV */
if (does_chaining_mode_need_iv(ctx->cr)) {
uint8_t i;
/* Restore the _SAES_IVRx */
for (i = 0U; i < AES_IVSIZE / sizeof(uint32_t); i++) {
mmio_write_32(ctx->base + _SAES_IVR0 + i * sizeof(uint32_t), ctx->iv[i]);
}
}
}
static void saes_write_key(struct stm32_saes_context *ctx)
{
/* Restore the _SAES_KEYRx if SOFTWARE key */
if ((ctx->cr & _SAES_CR_KEYSEL_MASK) == (_SAES_CR_KEYSEL_SOFT << _SAES_CR_KEYSEL_SHIFT)) {
uint8_t i;
for (i = 0U; i < AES_KEYSIZE_128 / sizeof(uint32_t); i++) {
mmio_write_32(ctx->base + _SAES_KEYR0 + i * sizeof(uint32_t), ctx->key[i]);
}
if ((ctx->cr & _SAES_CR_KEYSIZE) == _SAES_CR_KEYSIZE) {
for (i = 0U; i < (AES_KEYSIZE_256 / 2U) / sizeof(uint32_t); i++) {
mmio_write_32(ctx->base + _SAES_KEYR4 + i * sizeof(uint32_t),
ctx->key[i + 4U]);
}
}
}
}
static int saes_prepare_key(struct stm32_saes_context *ctx)
{
/* Disable the SAES peripheral */
mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_EN);
/* Set key size */
if ((ctx->cr & _SAES_CR_KEYSIZE) != 0U) {
mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_KEYSIZE);
} else {
mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_KEYSIZE);
}
saes_write_key(ctx);
/* For ECB/CBC decryption, key preparation mode must be selected to populate the key */
if ((IS_CHAINING_MODE(ECB, ctx->cr) || IS_CHAINING_MODE(CBC, ctx->cr)) &&
is_decrypt(ctx->cr)) {
int ret;
/* Select Mode 2 */
mmio_clrsetbits_32(ctx->base + _SAES_CR, _SAES_CR_MODE_MASK,
_SAES_CR_MODE_KEYPREP << _SAES_CR_MODE_SHIFT);
/* Enable SAES */
mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_EN);
/* Wait Computation completed */
ret = wait_computation_completed(ctx->base);
if (ret != 0) {
return ret;
}
clear_computation_completed(ctx->base);
/* Set Mode 3 */
mmio_clrsetbits_32(ctx->base + _SAES_CR, _SAES_CR_MODE_MASK,
_SAES_CR_MODE_DEC << _SAES_CR_MODE_SHIFT);
}
return 0;
}
static int save_context(struct stm32_saes_context *ctx)
{
if ((mmio_read_32(ctx->base + _SAES_SR) & _SAES_SR_CCF) != 0U) {
/* Device should not be in a processing phase */
return -EINVAL;
}
/* Save CR */
ctx->cr = mmio_read_32(ctx->base + _SAES_CR);
/* If chaining mode need to save current IV */
if (does_chaining_mode_need_iv(ctx->cr)) {
uint8_t i;
/* Save IV */
for (i = 0U; i < AES_IVSIZE / sizeof(uint32_t); i++) {
ctx->iv[i] = mmio_read_32(ctx->base + _SAES_IVR0 + i * sizeof(uint32_t));
}
}
/* Disable the SAES peripheral */
mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_EN);
return 0;
}
/* To resume the processing of a message */
static int restore_context(struct stm32_saes_context *ctx)
{
int ret;
/* IP should be disabled */
if ((mmio_read_32(ctx->base + _SAES_CR) & _SAES_CR_EN) != 0U) {
VERBOSE("%s: Device is still enabled\n", __func__);
return -EINVAL;
}
/* Reset internal state */
mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_IPRST);
/* Restore the _SAES_CR */
mmio_write_32(ctx->base + _SAES_CR, ctx->cr);
/* Preparation decrypt key */
ret = saes_prepare_key(ctx);
if (ret != 0) {
return ret;
}
saes_write_iv(ctx);
/* Enable the SAES peripheral */
mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_EN);
return 0;
}
/**
* @brief Initialize SAES driver.
* @param None.
* @retval 0 if OK; negative value else.
*/
int stm32_saes_driver_init(void)
{
int err;
err = stm32_saes_parse_fdt(&saes_pdata);
if (err != 0) {
err = stm32_saes_get_platdata(&saes_pdata);
if (err != 0) {
return err;
}
}
clk_enable(saes_pdata.clock_id);
if (stm32mp_reset_assert(saes_pdata.reset_id, TIMEOUT_US_1MS) != 0) {
panic();
}
udelay(SAES_RESET_DELAY);
if (stm32mp_reset_deassert(saes_pdata.reset_id, TIMEOUT_US_1MS) != 0) {
panic();
}
return 0;
}
/**
* @brief Start a AES computation.
* @param ctx: SAES process context
* @param is_dec: true if decryption, false if encryption
* @param ch_mode: define the chaining mode
* @param key_select: define where the key comes from.
* @param key: pointer to key (if key_select is KEY_SOFT, else unused)
* @param key_size: key size
* @param iv: pointer to initialization vectore (unsed if ch_mode is ECB)
* @param iv_size: iv size
* @note this function doesn't access to hardware but store in ctx the values
*
* @retval 0 if OK; negative value else.
*/
int stm32_saes_init(struct stm32_saes_context *ctx, bool is_dec,
enum stm32_saes_chaining_mode ch_mode, enum stm32_saes_key_selection key_select,
const void *key, size_t key_size, const void *iv, size_t iv_size)
{
unsigned int i;
const uint32_t *iv_u32;
const uint32_t *key_u32;
ctx->assoc_len = 0U;
ctx->load_len = 0U;
ctx->base = saes_pdata.base;
ctx->cr = _SAES_CR_RESET_VALUE;
/* We want buffer to be u32 aligned */
assert((uintptr_t)key % __alignof__(uint32_t) == 0);
assert((uintptr_t)iv % __alignof__(uint32_t) == 0);
iv_u32 = iv;
key_u32 = key;
if (is_dec) {
/* Save Mode 3 = decrypt */
mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_MODE_MASK,
_SAES_CR_MODE_DEC << _SAES_CR_MODE_SHIFT);
} else {
/* Save Mode 1 = crypt */
mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_MODE_MASK,
_SAES_CR_MODE_ENC << _SAES_CR_MODE_SHIFT);
}
/* Save chaining mode */
switch (ch_mode) {
case STM32_SAES_MODE_ECB:
SET_CHAINING_MODE(ECB, (uintptr_t)&(ctx->cr));
break;
case STM32_SAES_MODE_CBC:
SET_CHAINING_MODE(CBC, (uintptr_t)&(ctx->cr));
break;
case STM32_SAES_MODE_CTR:
SET_CHAINING_MODE(CTR, (uintptr_t)&(ctx->cr));
break;
case STM32_SAES_MODE_GCM:
SET_CHAINING_MODE(GCM, (uintptr_t)&(ctx->cr));
break;
case STM32_SAES_MODE_CCM:
SET_CHAINING_MODE(CCM, (uintptr_t)&(ctx->cr));
break;
default:
return -EINVAL;
}
/* We will use HW Byte swap (_SAES_CR_DATATYPE_BYTE) for data.
* so we won't need to
* htobe32(data) before write to DINR
* nor
* be32toh after reading from DOUTR
*
* But note that wrap key only accept _SAES_CR_DATATYPE_NONE
*/
mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_DATATYPE_MASK,
_SAES_CR_DATATYPE_BYTE << _SAES_CR_DATATYPE_SHIFT);
/* Configure keysize */
switch (key_size) {
case AES_KEYSIZE_128:
mmio_clrbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSIZE);
break;
case AES_KEYSIZE_256:
mmio_setbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSIZE);
break;
default:
return -EINVAL;
}
/* Configure key */
switch (key_select) {
case STM32_SAES_KEY_SOFT:
mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSEL_MASK,
_SAES_CR_KEYSEL_SOFT << _SAES_CR_KEYSEL_SHIFT);
/* Save key */
switch (key_size) {
case AES_KEYSIZE_128:
/* First 16 bytes == 4 u32 */
for (i = 0U; i < AES_KEYSIZE_128 / sizeof(uint32_t); i++) {
mmio_write_32((uintptr_t)(ctx->key + i), htobe32(key_u32[3 - i]));
/* /!\ we save the key in HW byte order
* and word order : key[i] is for _SAES_KEYRi
*/
}
break;
case AES_KEYSIZE_256:
for (i = 0U; i < AES_KEYSIZE_256 / sizeof(uint32_t); i++) {
mmio_write_32((uintptr_t)(ctx->key + i), htobe32(key_u32[7 - i]));
/* /!\ we save the key in HW byte order
* and word order : key[i] is for _SAES_KEYRi
*/
}
break;
default:
return -EINVAL;
}
break;
case STM32_SAES_KEY_DHU:
mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSEL_MASK,
_SAES_CR_KEYSEL_DHUK << _SAES_CR_KEYSEL_SHIFT);
break;
case STM32_SAES_KEY_BH:
mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSEL_MASK,
_SAES_CR_KEYSEL_BHK << _SAES_CR_KEYSEL_SHIFT);
break;
case STM32_SAES_KEY_BHU_XOR_BH:
mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSEL_MASK,
_SAES_CR_KEYSEL_BHU_XOR_BH_K << _SAES_CR_KEYSEL_SHIFT);
break;
case STM32_SAES_KEY_WRAPPED:
mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSEL_MASK,
_SAES_CR_KEYSEL_SOFT << _SAES_CR_KEYSEL_SHIFT);
break;
default:
return -EINVAL;
}
/* Save IV */
if (ch_mode != STM32_SAES_MODE_ECB) {
if ((iv == NULL) || (iv_size != AES_IVSIZE)) {
return -EINVAL;
}
for (i = 0U; i < AES_IVSIZE / sizeof(uint32_t); i++) {
mmio_write_32((uintptr_t)(ctx->iv + i), htobe32(iv_u32[3 - i]));
/* /!\ We save the iv in HW byte order */
}
}
return saes_start(ctx);
}
/**
* @brief Update (or start) a AES authentificate process of associated data (CCM or GCM).
* @param ctx: SAES process context
* @param last_block: true if last assoc data block
* @param data: pointer to associated data
* @param data_size: data size
*
* @retval 0 if OK; negative value else.
*/
int stm32_saes_update_assodata(struct stm32_saes_context *ctx, bool last_block,
uint8_t *data, size_t data_size)
{
int ret;
uint32_t *data_u32;
unsigned int i = 0U;
/* We want buffers to be u32 aligned */
assert((uintptr_t)data % __alignof__(uint32_t) == 0);
data_u32 = (uint32_t *)data;
/* Init phase */
ret = restore_context(ctx);
if (ret != 0) {
goto out;
}
ret = wait_computation_completed(ctx->base);
if (ret != 0) {
return ret;
}
clear_computation_completed(ctx->base);
if ((data == NULL) || (data_size == 0U)) {
/* No associated data */
/* ret already = 0 */
goto out;
}
/* There is an header/associated data phase */
mmio_clrsetbits_32(ctx->base + _SAES_CR, _SAES_CR_GCMPH_MASK,
_SAES_CR_GCMPH_HEADER << _SAES_CR_GCMPH_SHIFT);
/* Enable the SAES peripheral */
mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_EN);
while (i < round_down(data_size, AES_BLOCK_SIZE)) {
unsigned int w; /* Word index */
w = i / sizeof(uint32_t);
/* No need to htobe() as we configure the HW to swap bytes */
mmio_write_32(ctx->base + _SAES_DINR, data_u32[w + 0U]);
mmio_write_32(ctx->base + _SAES_DINR, data_u32[w + 1U]);
mmio_write_32(ctx->base + _SAES_DINR, data_u32[w + 2U]);
mmio_write_32(ctx->base + _SAES_DINR, data_u32[w + 3U]);
ret = wait_computation_completed(ctx->base);
if (ret != 0) {
goto out;
}
clear_computation_completed(ctx->base);
/* Process next block */
i += AES_BLOCK_SIZE;
ctx->assoc_len += AES_BLOCK_SIZE_BIT;
}
/* Manage last block if not a block size multiple */
if ((last_block) && (i < data_size)) {
/* We don't manage unaligned last block yet */
ret = -ENODEV;
goto out;
}
out:
if (ret != 0) {
saes_end(ctx, ret);
}
return ret;
}
/**
* @brief Update (or start) a AES authenticate and de/encrypt with payload data (CCM or GCM).
* @param ctx: SAES process context
* @param last_block: true if last payload data block
* @param data_in: pointer to payload
* @param data_out: pointer where to save de/encrypted payload
* @param data_size: payload size
*
* @retval 0 if OK; negative value else.
*/
int stm32_saes_update_load(struct stm32_saes_context *ctx, bool last_block,
uint8_t *data_in, uint8_t *data_out, size_t data_size)
{
int ret = 0;
uint32_t *data_in_u32;
uint32_t *data_out_u32;
unsigned int i = 0U;
uint32_t prev_cr;
/* We want buffers to be u32 aligned */
assert((uintptr_t)data_in % __alignof__(uint32_t) == 0);
assert((uintptr_t)data_out % __alignof__(uint32_t) == 0);
data_in_u32 = (uint32_t *)data_in;
data_out_u32 = (uint32_t *)data_out;
prev_cr = mmio_read_32(ctx->base + _SAES_CR);
if ((data_in == NULL) || (data_size == 0U)) {
/* there is no data */
goto out;
}
/* There is a load phase */
mmio_clrsetbits_32(ctx->base + _SAES_CR, _SAES_CR_GCMPH_MASK,
_SAES_CR_GCMPH_PAYLOAD << _SAES_CR_GCMPH_SHIFT);
if ((prev_cr & _SAES_CR_GCMPH_MASK) ==
(_SAES_CR_GCMPH_INIT << _SAES_CR_GCMPH_SHIFT)) {
/* Still in initialization phase, no header
* We need to enable the SAES peripheral
*/
mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_EN);
}
while (i < round_down(data_size, AES_BLOCK_SIZE)) {
unsigned int w; /* Word index */
w = i / sizeof(uint32_t);
/* No need to htobe() as we configure the HW to swap bytes */
mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 0U]);
mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 1U]);
mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 2U]);
mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 3U]);
ret = wait_computation_completed(ctx->base);
if (ret != 0) {
goto out;
}
/* No need to htobe() as we configure the HW to swap bytes */
data_out_u32[w + 0U] = mmio_read_32(ctx->base + _SAES_DOUTR);
data_out_u32[w + 1U] = mmio_read_32(ctx->base + _SAES_DOUTR);
data_out_u32[w + 2U] = mmio_read_32(ctx->base + _SAES_DOUTR);
data_out_u32[w + 3U] = mmio_read_32(ctx->base + _SAES_DOUTR);
clear_computation_completed(ctx->base);
/* Process next block */
i += AES_BLOCK_SIZE;
ctx->load_len += AES_BLOCK_SIZE_BIT;
}
/* Manage last block if not a block size multiple */
if ((last_block) && (i < data_size)) {
uint32_t block_in[AES_BLOCK_SIZE / sizeof(uint32_t)] = {0};
uint32_t block_out[AES_BLOCK_SIZE / sizeof(uint32_t)] = {0};
memcpy(block_in, data_in + i, data_size - i);
/* No need to htobe() as we configure the HW to swap bytes */
mmio_write_32(ctx->base + _SAES_DINR, block_in[0U]);
mmio_write_32(ctx->base + _SAES_DINR, block_in[1U]);
mmio_write_32(ctx->base + _SAES_DINR, block_in[2U]);
mmio_write_32(ctx->base + _SAES_DINR, block_in[3U]);
ret = wait_computation_completed(ctx->base);
if (ret != 0) {
VERBOSE("%s %d\n", __func__, __LINE__);
goto out;
}
/* No need to htobe() as we configure the HW to swap bytes */
block_out[0U] = mmio_read_32(ctx->base + _SAES_DOUTR);
block_out[1U] = mmio_read_32(ctx->base + _SAES_DOUTR);
block_out[2U] = mmio_read_32(ctx->base + _SAES_DOUTR);
block_out[3U] = mmio_read_32(ctx->base + _SAES_DOUTR);
clear_computation_completed(ctx->base);
memcpy(data_out + i, block_out, data_size - i);
ctx->load_len += (data_size - i) * UINT8_BIT;
}
out:
if (ret != 0) {
saes_end(ctx, ret);
}
return ret;
}
/**
* @brief Get authentication tag for AES authenticated algorithms (CCM or GCM).
* @param ctx: SAES process context
* @param tag: pointer where to save the tag
* @param data_size: tag size
*
* @retval 0 if OK; negative value else.
*/
int stm32_saes_final(struct stm32_saes_context *ctx, uint8_t *tag,
size_t tag_size)
{
int ret;
uint32_t tag_u32[4];
uint32_t prev_cr;
prev_cr = mmio_read_32(ctx->base + _SAES_CR);
mmio_clrsetbits_32(ctx->base + _SAES_CR, _SAES_CR_GCMPH_MASK,
_SAES_CR_GCMPH_FINAL << _SAES_CR_GCMPH_SHIFT);
if ((prev_cr & _SAES_CR_GCMPH_MASK) == (_SAES_CR_GCMPH_INIT << _SAES_CR_GCMPH_SHIFT)) {
/* Still in initialization phase, no header
* We need to enable the SAES peripheral
*/
mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_EN);
}
/* No need to htobe() as we configure the HW to swap bytes */
mmio_write_32(ctx->base + _SAES_DINR, 0);
mmio_write_32(ctx->base + _SAES_DINR, ctx->assoc_len);
mmio_write_32(ctx->base + _SAES_DINR, 0);
mmio_write_32(ctx->base + _SAES_DINR, ctx->load_len);
ret = wait_computation_completed(ctx->base);
if (ret != 0) {
goto out;
}
/* No need to htobe() as we configure the HW to swap bytes */
tag_u32[0] = mmio_read_32(ctx->base + _SAES_DOUTR);
tag_u32[1] = mmio_read_32(ctx->base + _SAES_DOUTR);
tag_u32[2] = mmio_read_32(ctx->base + _SAES_DOUTR);
tag_u32[3] = mmio_read_32(ctx->base + _SAES_DOUTR);
clear_computation_completed(ctx->base);
memcpy(tag, tag_u32, MIN(sizeof(tag_u32), tag_size));
out:
saes_end(ctx, ret);
return ret;
}
/**
* @brief Update (or start) a AES de/encrypt process (ECB, CBC or CTR).
* @param ctx: SAES process context
* @param last_block: true if last payload data block
* @param data_in: pointer to payload
* @param data_out: pointer where to save de/encrypted payload
* @param data_size: payload size
*
* @retval 0 if OK; negative value else.
*/
int stm32_saes_update(struct stm32_saes_context *ctx, bool last_block,
uint8_t *data_in, uint8_t *data_out, size_t data_size)
{
int ret;
uint32_t *data_in_u32;
uint32_t *data_out_u32;
unsigned int i = 0U;
/* We want buffers to be u32 aligned */
assert((uintptr_t)data_in % __alignof__(uint32_t) == 0);
assert((uintptr_t)data_out % __alignof__(uint32_t) == 0);
data_in_u32 = (uint32_t *)data_in;
data_out_u32 = (uint32_t *)data_out;
if ((!last_block) &&
(round_down(data_size, AES_BLOCK_SIZE) != data_size)) {
ERROR("%s: non last block must be multiple of 128 bits\n",
__func__);
ret = -EINVAL;
goto out;
}
/* In CBC encryption we need to manage specifically last 2 128bits
* blocks if total size in not a block size aligned
* work TODO. Currently return ENODEV.
* Morevoer as we need to know last 2 block, if unaligned and
* call with less than two block, return -EINVAL.
*/
if (last_block && IS_CHAINING_MODE(CBC, ctx->cr) && is_encrypt(ctx->cr) &&
(round_down(data_size, AES_BLOCK_SIZE) != data_size)) {
if (data_size < AES_BLOCK_SIZE * 2U) {
ERROR("if CBC, last part size should be at least 2 * AES_BLOCK_SIZE\n");
ret = -EINVAL;
goto out;
}
/* Moreover the CBC specific padding for encrypt is not yet implemented */
ret = -ENODEV;
goto out;
}
ret = restore_context(ctx);
if (ret != 0) {
goto out;
}
while (i < round_down(data_size, AES_BLOCK_SIZE)) {
unsigned int w; /* Word index */
w = i / sizeof(uint32_t);
/* No need to htobe() as we configure the HW to swap bytes */
mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 0U]);
mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 1U]);
mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 2U]);
mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 3U]);
ret = wait_computation_completed(ctx->base);
if (ret != 0) {
goto out;
}
/* No need to htobe() as we configure the HW to swap bytes */
data_out_u32[w + 0U] = mmio_read_32(ctx->base + _SAES_DOUTR);
data_out_u32[w + 1U] = mmio_read_32(ctx->base + _SAES_DOUTR);
data_out_u32[w + 2U] = mmio_read_32(ctx->base + _SAES_DOUTR);
data_out_u32[w + 3U] = mmio_read_32(ctx->base + _SAES_DOUTR);
clear_computation_completed(ctx->base);
/* Process next block */
i += AES_BLOCK_SIZE;
}
/* Manage last block if not a block size multiple */
if ((last_block) && (i < data_size)) {
/* In and out buffer have same size so should be AES_BLOCK_SIZE multiple */
ret = -ENODEV;
goto out;
}
if (!last_block) {
ret = save_context(ctx);
}
out:
/* If last block or error, end of SAES process */
if (last_block || (ret != 0)) {
saes_end(ctx, ret);
}
return ret;
}
|