1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
|
/*
* Copyright (c) 2021, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef EL2_COMMON_MACROS_S
#define EL2_COMMON_MACROS_S
#include <arch.h>
#include <asm_macros.S>
#include <context.h>
#include <lib/xlat_tables/xlat_tables_defs.h>
#include <platform_def.h>
/*
* Helper macro to initialise system registers at EL2.
*/
.macro el2_arch_init_common
/* ---------------------------------------------------------------------
* SCTLR_EL2 has already been initialised - read current value before
* modifying.
*
* SCTLR_EL2.I: Enable the instruction cache.
*
* SCTLR_EL2.SA: Enable Stack Alignment check. A SP alignment fault
* exception is generated if a load or store instruction executed at
* EL2 uses the SP as the base address and the SP is not aligned to a
* 16-byte boundary.
*
* SCTLR_EL2.A: Enable Alignment fault checking. All instructions that
* load or store one or more registers have an alignment check that the
* address being accessed is aligned to the size of the data element(s)
* being accessed.
* ---------------------------------------------------------------------
*/
mov x1, #(SCTLR_I_BIT | SCTLR_A_BIT | SCTLR_SA_BIT)
mrs x0, sctlr_el2
orr x0, x0, x1
msr sctlr_el2, x0
isb
/* ---------------------------------------------------------------------
* Initialise HCR_EL2, setting all fields rather than relying on HW.
* All fields are architecturally UNKNOWN on reset. The following fields
* do not change during the TF lifetime. The remaining fields are set to
* zero here but are updated ahead of transitioning to a lower EL in the
* function cm_init_context_common().
*
* HCR_EL2.TWE: Set to zero so that execution of WFE instructions at
* EL2, EL1 and EL0 are not trapped to EL2.
*
* HCR_EL2.TWI: Set to zero so that execution of WFI instructions at
* EL2, EL1 and EL0 are not trapped to EL2.
*
* HCR_EL2.HCD: Set to zero to enable HVC calls at EL1 and above,
* from both Security states and both Execution states.
*
* HCR_EL2.TEA: Set to one to route External Aborts and SError
* Interrupts to EL2 when executing at any EL.
*
* HCR_EL2.{API,APK}: For Armv8.3 pointer authentication feature,
* disable traps to EL2 when accessing key registers or using
* pointer authentication instructions from lower ELs.
* ---------------------------------------------------------------------
*/
mov_imm x0, ((HCR_RESET_VAL | HCR_TEA_BIT) \
& ~(HCR_TWE_BIT | HCR_TWI_BIT | HCR_HCD_BIT))
#if CTX_INCLUDE_PAUTH_REGS
/*
* If the pointer authentication registers are saved during world
* switches, enable pointer authentication everywhere, as it is safe to
* do so.
*/
orr x0, x0, #(HCR_API_BIT | HCR_APK_BIT)
#endif /* CTX_INCLUDE_PAUTH_REGS */
msr hcr_el2, x0
/* ---------------------------------------------------------------------
* Initialise MDCR_EL2, setting all fields rather than relying on
* hw. Some fields are architecturally UNKNOWN on reset.
*
* MDCR_EL2.TDOSA: Set to zero so that EL2 and EL2 System register
* access to the powerdown debug registers do not trap to EL2.
*
* MDCR_EL2.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
* debug registers, other than those registers that are controlled by
* MDCR_EL2.TDOSA.
*
* MDCR_EL2.TPM: Set to zero so that EL0, EL1, and EL2 System
* register accesses to all Performance Monitors registers do not trap
* to EL2.
*
* MDCR_EL2.HPMD: Set to zero so that event counting by the program-
* mable counters PMEVCNTR<n>_EL0 is prohibited in Secure state. If
* ARMv8.2 Debug is not implemented this bit does not have any effect
* on the counters unless there is support for the implementation
* defined authentication interface
* ExternalSecureNoninvasiveDebugEnabled().
* ---------------------------------------------------------------------
*/
mov_imm x0, ((MDCR_EL2_RESET_VAL | \
MDCR_SPD32(MDCR_SPD32_DISABLE)) \
& ~(MDCR_EL2_HPMD | MDCR_TDOSA_BIT | \
MDCR_TDA_BIT | MDCR_TPM_BIT))
msr mdcr_el2, x0
/* ---------------------------------------------------------------------
* Initialise PMCR_EL0 setting all fields rather than relying
* on hw. Some fields are architecturally UNKNOWN on reset.
*
* PMCR_EL0.DP: Set to one so that the cycle counter,
* PMCCNTR_EL0 does not count when event counting is prohibited.
*
* PMCR_EL0.X: Set to zero to disable export of events.
*
* PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0
* counts on every clock cycle.
* ---------------------------------------------------------------------
*/
mov_imm x0, ((PMCR_EL0_RESET_VAL | PMCR_EL0_DP_BIT) & \
~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT))
msr pmcr_el0, x0
/* ---------------------------------------------------------------------
* Enable External Aborts and SError Interrupts now that the exception
* vectors have been setup.
* ---------------------------------------------------------------------
*/
msr daifclr, #DAIF_ABT_BIT
/* ---------------------------------------------------------------------
* Initialise CPTR_EL2, setting all fields rather than relying on hw.
* All fields are architecturally UNKNOWN on reset.
*
* CPTR_EL2.TCPAC: Set to zero so that any accesses to CPACR_EL1 do
* not trap to EL2.
*
* CPTR_EL2.TTA: Set to zero so that System register accesses to the
* trace registers do not trap to EL2.
*
* CPTR_EL2.TFP: Set to zero so that accesses to the V- or Z- registers
* by Advanced SIMD, floating-point or SVE instructions (if implemented)
* do not trap to EL2.
*/
mov_imm x0, (CPTR_EL2_RESET_VAL & ~(TCPAC_BIT | TTA_BIT | TFP_BIT))
msr cptr_el2, x0
/*
* If Data Independent Timing (DIT) functionality is implemented,
* always enable DIT in EL2
*/
mrs x0, id_aa64pfr0_el1
ubfx x0, x0, #ID_AA64PFR0_DIT_SHIFT, #ID_AA64PFR0_DIT_LENGTH
cmp x0, #ID_AA64PFR0_DIT_SUPPORTED
bne 1f
mov x0, #DIT_BIT
msr DIT, x0
1:
.endm
/* -----------------------------------------------------------------------------
* This is the super set of actions that need to be performed during a cold boot
* or a warm boot in EL2. This code is shared by BL1 and BL31.
*
* This macro will always perform reset handling, architectural initialisations
* and stack setup. The rest of the actions are optional because they might not
* be needed, depending on the context in which this macro is called. This is
* why this macro is parameterised ; each parameter allows to enable/disable
* some actions.
*
* _init_sctlr:
* Whether the macro needs to initialise SCTLR_EL2, including configuring
* the endianness of data accesses.
*
* _warm_boot_mailbox:
* Whether the macro needs to detect the type of boot (cold/warm). The
* detection is based on the platform entrypoint address : if it is zero
* then it is a cold boot, otherwise it is a warm boot. In the latter case,
* this macro jumps on the platform entrypoint address.
*
* _secondary_cold_boot:
* Whether the macro needs to identify the CPU that is calling it: primary
* CPU or secondary CPU. The primary CPU will be allowed to carry on with
* the platform initialisations, while the secondaries will be put in a
* platform-specific state in the meantime.
*
* If the caller knows this macro will only be called by the primary CPU
* then this parameter can be defined to 0 to skip this step.
*
* _init_memory:
* Whether the macro needs to initialise the memory.
*
* _init_c_runtime:
* Whether the macro needs to initialise the C runtime environment.
*
* _exception_vectors:
* Address of the exception vectors to program in the VBAR_EL2 register.
*
* _pie_fixup_size:
* Size of memory region to fixup Global Descriptor Table (GDT).
*
* A non-zero value is expected when firmware needs GDT to be fixed-up.
*
* -----------------------------------------------------------------------------
*/
.macro el2_entrypoint_common \
_init_sctlr, _warm_boot_mailbox, _secondary_cold_boot, \
_init_memory, _init_c_runtime, _exception_vectors, \
_pie_fixup_size
.if \_init_sctlr
/* -------------------------------------------------------------
* This is the initialisation of SCTLR_EL2 and so must ensure
* that all fields are explicitly set rather than relying on hw.
* Some fields reset to an IMPLEMENTATION DEFINED value and
* others are architecturally UNKNOWN on reset.
*
* SCTLR.EE: Set the CPU endianness before doing anything that
* might involve memory reads or writes. Set to zero to select
* Little Endian.
*
* SCTLR_EL2.WXN: For the EL2 translation regime, this field can
* force all memory regions that are writeable to be treated as
* XN (Execute-never). Set to zero so that this control has no
* effect on memory access permissions.
*
* SCTLR_EL2.SA: Set to zero to disable Stack Alignment check.
*
* SCTLR_EL2.A: Set to zero to disable Alignment fault checking.
*
* SCTLR.DSSBS: Set to zero to disable speculation store bypass
* safe behaviour upon exception entry to EL2.
* -------------------------------------------------------------
*/
mov_imm x0, (SCTLR_RESET_VAL & ~(SCTLR_EE_BIT | SCTLR_WXN_BIT \
| SCTLR_SA_BIT | SCTLR_A_BIT | SCTLR_DSSBS_BIT))
msr sctlr_el2, x0
isb
.endif /* _init_sctlr */
#if DISABLE_MTPMU
bl mtpmu_disable
#endif
.if \_warm_boot_mailbox
/* -------------------------------------------------------------
* This code will be executed for both warm and cold resets.
* Now is the time to distinguish between the two.
* Query the platform entrypoint address and if it is not zero
* then it means it is a warm boot so jump to this address.
* -------------------------------------------------------------
*/
bl plat_get_my_entrypoint
cbz x0, do_cold_boot
br x0
do_cold_boot:
.endif /* _warm_boot_mailbox */
.if \_pie_fixup_size
#if ENABLE_PIE
/*
* ------------------------------------------------------------
* If PIE is enabled fixup the Global descriptor Table only
* once during primary core cold boot path.
*
* Compile time base address, required for fixup, is calculated
* using "pie_fixup" label present within first page.
* ------------------------------------------------------------
*/
pie_fixup:
ldr x0, =pie_fixup
and x0, x0, #~(PAGE_SIZE_MASK)
mov_imm x1, \_pie_fixup_size
add x1, x1, x0
bl fixup_gdt_reloc
#endif /* ENABLE_PIE */
.endif /* _pie_fixup_size */
/* ---------------------------------------------------------------------
* Set the exception vectors.
* ---------------------------------------------------------------------
*/
adr x0, \_exception_vectors
msr vbar_el2, x0
isb
/* ---------------------------------------------------------------------
* It is a cold boot.
* Perform any processor specific actions upon reset e.g. cache, TLB
* invalidations etc.
* ---------------------------------------------------------------------
*/
bl reset_handler
el2_arch_init_common
.if \_secondary_cold_boot
/* -------------------------------------------------------------
* Check if this is a primary or secondary CPU cold boot.
* The primary CPU will set up the platform while the
* secondaries are placed in a platform-specific state until the
* primary CPU performs the necessary actions to bring them out
* of that state and allows entry into the OS.
* -------------------------------------------------------------
*/
bl plat_is_my_cpu_primary
cbnz w0, do_primary_cold_boot
/* This is a cold boot on a secondary CPU */
bl plat_secondary_cold_boot_setup
/* plat_secondary_cold_boot_setup() is not supposed to return */
bl el2_panic
do_primary_cold_boot:
.endif /* _secondary_cold_boot */
/* ---------------------------------------------------------------------
* Initialize memory now. Secondary CPU initialization won't get to this
* point.
* ---------------------------------------------------------------------
*/
.if \_init_memory
bl platform_mem_init
.endif /* _init_memory */
/* ---------------------------------------------------------------------
* Init C runtime environment:
* - Zero-initialise the NOBITS sections. There are 2 of them:
* - the .bss section;
* - the coherent memory section (if any).
* - Relocate the data section from ROM to RAM, if required.
* ---------------------------------------------------------------------
*/
.if \_init_c_runtime
adrp x0, __BSS_START__
add x0, x0, :lo12:__BSS_START__
adrp x1, __BSS_END__
add x1, x1, :lo12:__BSS_END__
sub x1, x1, x0
bl zeromem
#if defined(IMAGE_BL1) || (defined(IMAGE_BL2) && BL2_AT_EL3 && BL2_IN_XIP_MEM)
adrp x0, __DATA_RAM_START__
add x0, x0, :lo12:__DATA_RAM_START__
adrp x1, __DATA_ROM_START__
add x1, x1, :lo12:__DATA_ROM_START__
adrp x2, __DATA_RAM_END__
add x2, x2, :lo12:__DATA_RAM_END__
sub x2, x2, x0
bl memcpy16
#endif
.endif /* _init_c_runtime */
/* ---------------------------------------------------------------------
* Use SP_EL0 for the C runtime stack.
* ---------------------------------------------------------------------
*/
msr spsel, #0
/* ---------------------------------------------------------------------
* Allocate a stack whose memory will be marked as Normal-IS-WBWA when
* the MMU is enabled. There is no risk of reading stale stack memory
* after enabling the MMU as only the primary CPU is running at the
* moment.
* ---------------------------------------------------------------------
*/
bl plat_set_my_stack
#if STACK_PROTECTOR_ENABLED
.if \_init_c_runtime
bl update_stack_protector_canary
.endif /* _init_c_runtime */
#endif
.endm
.macro apply_at_speculative_wa
#if ERRATA_SPECULATIVE_AT
/*
* Explicitly save x30 so as to free up a register and to enable
* branching and also, save x29 which will be used in the called
* function
*/
stp x29, x30, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X29]
bl save_and_update_ptw_el1_sys_regs
ldp x29, x30, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X29]
#endif
.endm
.macro restore_ptw_el1_sys_regs
#if ERRATA_SPECULATIVE_AT
/* -----------------------------------------------------------
* In case of ERRATA_SPECULATIVE_AT, must follow below order
* to ensure that page table walk is not enabled until
* restoration of all EL1 system registers. TCR_EL1 register
* should be updated at the end which restores previous page
* table walk setting of stage1 i.e.(TCR_EL1.EPDx) bits. ISB
* ensures that CPU does below steps in order.
*
* 1. Ensure all other system registers are written before
* updating SCTLR_EL1 using ISB.
* 2. Restore SCTLR_EL1 register.
* 3. Ensure SCTLR_EL1 written successfully using ISB.
* 4. Restore TCR_EL1 register.
* -----------------------------------------------------------
*/
isb
ldp x28, x29, [sp, #CTX_EL1_SYSREGS_OFFSET + CTX_SCTLR_EL1]
msr sctlr_el1, x28
isb
msr tcr_el1, x29
#endif
.endm
#endif /* EL2_COMMON_MACROS_S */
|