1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
|
/*
* Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch.h>
#include <asm_macros.S>
#include <common/bl_common.h>
#include <cortex_a53.h>
#include <cortex_a57.h>
#include <cortex_a72.h>
#include <cpu_macros.S>
#include <platform_def.h>
.globl plat_reset_handler
.globl plat_arm_calc_core_pos
#if JUNO_AARCH32_EL3_RUNTIME
.globl plat_get_my_entrypoint
.globl juno_reset_to_aarch32_state
#endif
#define JUNO_REVISION(rev) REV_JUNO_R##rev
#define JUNO_HANDLER(rev) plat_reset_handler_juno_r##rev
#define JUMP_TO_HANDLER_IF_JUNO_R(revision) \
jump_to_handler JUNO_REVISION(revision), JUNO_HANDLER(revision)
/* --------------------------------------------------------------------
* Helper macro to jump to the given handler if the board revision
* matches.
* Expects the Juno board revision in x0.
* --------------------------------------------------------------------
*/
.macro jump_to_handler _revision, _handler
cmp x0, #\_revision
b.eq \_handler
.endm
/* --------------------------------------------------------------------
* Platform reset handler for Juno R0.
*
* Juno R0 has the following topology:
* - Quad core Cortex-A53 processor cluster;
* - Dual core Cortex-A57 processor cluster.
*
* This handler does the following:
* - Implement workaround for defect id 831273 by enabling an event
* stream every 65536 cycles.
* - Set the L2 Data RAM latency to 2 (i.e. 3 cycles) for Cortex-A57
* - Set the L2 Tag RAM latency to 2 (i.e. 3 cycles) for Cortex-A57
* --------------------------------------------------------------------
*/
func JUNO_HANDLER(0)
/* --------------------------------------------------------------------
* Enable the event stream every 65536 cycles
* --------------------------------------------------------------------
*/
mov x0, #(0xf << EVNTI_SHIFT)
orr x0, x0, #EVNTEN_BIT
msr CNTKCTL_EL1, x0
/* --------------------------------------------------------------------
* Nothing else to do on Cortex-A53.
* --------------------------------------------------------------------
*/
jump_if_cpu_midr CORTEX_A53_MIDR, 1f
/* --------------------------------------------------------------------
* Cortex-A57 specific settings
* --------------------------------------------------------------------
*/
mov x0, #((CORTEX_A57_L2_DATA_RAM_LATENCY_3_CYCLES << CORTEX_A57_L2CTLR_DATA_RAM_LATENCY_SHIFT) | \
(CORTEX_A57_L2_TAG_RAM_LATENCY_3_CYCLES << CORTEX_A57_L2CTLR_TAG_RAM_LATENCY_SHIFT))
msr CORTEX_A57_L2CTLR_EL1, x0
1:
isb
ret
endfunc JUNO_HANDLER(0)
/* --------------------------------------------------------------------
* Platform reset handler for Juno R1.
*
* Juno R1 has the following topology:
* - Quad core Cortex-A53 processor cluster;
* - Dual core Cortex-A57 processor cluster.
*
* This handler does the following:
* - Set the L2 Data RAM latency to 2 (i.e. 3 cycles) for Cortex-A57
*
* Note that:
* - The default value for the L2 Tag RAM latency for Cortex-A57 is
* suitable.
* - Defect #831273 doesn't affect Juno R1.
* --------------------------------------------------------------------
*/
func JUNO_HANDLER(1)
/* --------------------------------------------------------------------
* Nothing to do on Cortex-A53.
* --------------------------------------------------------------------
*/
jump_if_cpu_midr CORTEX_A57_MIDR, A57
ret
A57:
/* --------------------------------------------------------------------
* Cortex-A57 specific settings
* --------------------------------------------------------------------
*/
mov x0, #(CORTEX_A57_L2_DATA_RAM_LATENCY_3_CYCLES << CORTEX_A57_L2CTLR_DATA_RAM_LATENCY_SHIFT)
msr CORTEX_A57_L2CTLR_EL1, x0
isb
ret
endfunc JUNO_HANDLER(1)
/* --------------------------------------------------------------------
* Platform reset handler for Juno R2.
*
* Juno R2 has the following topology:
* - Quad core Cortex-A53 processor cluster;
* - Dual core Cortex-A72 processor cluster.
*
* This handler does the following:
* - Set the L2 Data RAM latency to 2 (i.e. 3 cycles) for Cortex-A72
* - Set the L2 Tag RAM latency to 1 (i.e. 2 cycles) for Cortex-A72
*
* Note that:
* - Defect #831273 doesn't affect Juno R2.
* --------------------------------------------------------------------
*/
func JUNO_HANDLER(2)
/* --------------------------------------------------------------------
* Nothing to do on Cortex-A53.
* --------------------------------------------------------------------
*/
jump_if_cpu_midr CORTEX_A72_MIDR, A72
ret
A72:
/* --------------------------------------------------------------------
* Cortex-A72 specific settings
* --------------------------------------------------------------------
*/
mov x0, #((CORTEX_A72_L2_DATA_RAM_LATENCY_3_CYCLES << CORTEX_A72_L2CTLR_DATA_RAM_LATENCY_SHIFT) | \
(CORTEX_A72_L2_TAG_RAM_LATENCY_2_CYCLES << CORTEX_A72_L2CTLR_TAG_RAM_LATENCY_SHIFT))
msr CORTEX_A57_L2CTLR_EL1, x0
isb
ret
endfunc JUNO_HANDLER(2)
/* --------------------------------------------------------------------
* void plat_reset_handler(void);
*
* Determine the Juno board revision and call the appropriate reset
* handler.
* --------------------------------------------------------------------
*/
func plat_reset_handler
/* Read the V2M SYS_ID register */
mov_imm x0, (V2M_SYSREGS_BASE + V2M_SYS_ID)
ldr w1, [x0]
/* Extract board revision from the SYS_ID */
ubfx x0, x1, #V2M_SYS_ID_REV_SHIFT, #4
JUMP_TO_HANDLER_IF_JUNO_R(0)
JUMP_TO_HANDLER_IF_JUNO_R(1)
JUMP_TO_HANDLER_IF_JUNO_R(2)
/* Board revision is not supported */
no_ret plat_panic_handler
endfunc plat_reset_handler
/* -----------------------------------------------------
* void juno_do_reset_to_aarch32_state(void);
*
* Request warm reset to AArch32 mode.
* -----------------------------------------------------
*/
func juno_do_reset_to_aarch32_state
mov x0, #RMR_EL3_RR_BIT
dsb sy
msr rmr_el3, x0
isb
wfi
b plat_panic_handler
endfunc juno_do_reset_to_aarch32_state
/* -----------------------------------------------------
* unsigned int plat_arm_calc_core_pos(u_register_t mpidr)
* Helper function to calculate the core position.
* -----------------------------------------------------
*/
func plat_arm_calc_core_pos
b css_calc_core_pos_swap_cluster
endfunc plat_arm_calc_core_pos
#if JUNO_AARCH32_EL3_RUNTIME
/* ---------------------------------------------------------------------
* uintptr_t plat_get_my_entrypoint (void);
*
* Main job of this routine is to distinguish between a cold and a warm
* boot. On JUNO platform, this distinction is based on the contents of
* the Trusted Mailbox. It is initialised to zero by the SCP before the
* AP cores are released from reset. Therefore, a zero mailbox means
* it's a cold reset. If it is a warm boot then a request to reset to
* AArch32 state is issued. This is the only way to reset to AArch32
* in EL3 on Juno. A trampoline located at the high vector address
* has already been prepared by BL1.
*
* This functions returns the contents of the mailbox, i.e.:
* - 0 for a cold boot;
* - request warm reset in AArch32 state for warm boot case;
* ---------------------------------------------------------------------
*/
func plat_get_my_entrypoint
mov_imm x0, PLAT_ARM_TRUSTED_MAILBOX_BASE
ldr x0, [x0]
cbz x0, return
b juno_do_reset_to_aarch32_state
return:
ret
endfunc plat_get_my_entrypoint
/*
* Emit a "movw r0, #imm16" which moves the lower
* 16 bits of `_val` into r0.
*/
.macro emit_movw _reg_d, _val
mov_imm \_reg_d, (0xe3000000 | \
((\_val & 0xfff) | \
((\_val & 0xf000) << 4)))
.endm
/*
* Emit a "movt r0, #imm16" which moves the upper
* 16 bits of `_val` into r0.
*/
.macro emit_movt _reg_d, _val
mov_imm \_reg_d, (0xe3400000 | \
(((\_val & 0x0fff0000) >> 16) | \
((\_val & 0xf0000000) >> 12)))
.endm
/*
* This function writes the trampoline code at HI-VEC (0xFFFF0000)
* address which loads r0 with the entrypoint address for
* BL32 (a.k.a SP_MIN) when EL3 is in AArch32 mode. A warm reset
* to AArch32 mode is then requested by writing into RMR_EL3.
*/
func juno_reset_to_aarch32_state
/*
* Invalidate all caches before the warm reset to AArch32 state.
* This is required on the Juno AArch32 boot flow because the L2
* unified cache may contain code and data from when the processor
* was still executing in AArch64 state. This code only runs on
* the primary core, all other cores are powered down.
*/
mov x0, #DCISW
bl dcsw_op_all
emit_movw w0, BL32_BASE
emit_movt w1, BL32_BASE
/* opcode "bx r0" to branch using r0 in AArch32 mode */
mov_imm w2, 0xe12fff10
/* Write the above opcodes at HI-VECTOR location */
mov_imm x3, HI_VECTOR_BASE
str w0, [x3], #4
str w1, [x3], #4
str w2, [x3]
b juno_do_reset_to_aarch32_state
endfunc juno_reset_to_aarch32_state
#endif /* JUNO_AARCH32_EL3_RUNTIME */
|