/* * Linux kernel userspace API crypto backend implementation * * Copyright (C) 2010-2023 Red Hat, Inc. All rights reserved. * Copyright (C) 2010-2023 Milan Broz * * This file is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This file is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this file; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include #include #include #include #include #include #include #include "crypto_backend_internal.h" #ifndef AF_ALG #define AF_ALG 38 #endif #ifndef SOL_ALG #define SOL_ALG 279 #endif static int crypto_backend_initialised = 0; static char version[256]; struct hash_alg { const char *name; const char *kernel_name; int length; unsigned int block_length; }; static struct hash_alg hash_algs[] = { { "sha1", "sha1", 20, 64 }, { "sha224", "sha224", 28, 64 }, { "sha256", "sha256", 32, 64 }, { "sha384", "sha384", 48, 128 }, { "sha512", "sha512", 64, 128 }, { "ripemd160", "rmd160", 20, 64 }, { "whirlpool", "wp512", 64, 64 }, { "sha3-224", "sha3-224", 28, 144 }, { "sha3-256", "sha3-256", 32, 136 }, { "sha3-384", "sha3-384", 48, 104 }, { "sha3-512", "sha3-512", 64, 72 }, { "stribog256","streebog256", 32, 64 }, { "stribog512","streebog512", 64, 64 }, { "sm3", "sm3", 32, 64 }, { "blake2b-160","blake2b-160",20, 128 }, { "blake2b-256","blake2b-256",32, 128 }, { "blake2b-384","blake2b-384",48, 128 }, { "blake2b-512","blake2b-512",64, 128 }, { "blake2s-128","blake2s-128",16, 64 }, { "blake2s-160","blake2s-160",20, 64 }, { "blake2s-224","blake2s-224",28, 64 }, { "blake2s-256","blake2s-256",32, 64 }, { NULL, NULL, 0, 0 } }; struct crypt_hash { int tfmfd; int opfd; int hash_len; }; struct crypt_hmac { int tfmfd; int opfd; int hash_len; }; struct crypt_cipher { struct crypt_cipher_kernel ck; }; static int crypt_kernel_socket_init(struct sockaddr_alg *sa, int *tfmfd, int *opfd, const void *key, size_t key_length) { *tfmfd = socket(AF_ALG, SOCK_SEQPACKET, 0); if (*tfmfd < 0) return -ENOTSUP; if (bind(*tfmfd, (struct sockaddr *)sa, sizeof(*sa)) < 0) { close(*tfmfd); *tfmfd = -1; return -ENOENT; } if (key && setsockopt(*tfmfd, SOL_ALG, ALG_SET_KEY, key, key_length) < 0) { close(*tfmfd); *tfmfd = -1; return -EINVAL; } *opfd = accept(*tfmfd, NULL, 0); if (*opfd < 0) { close(*tfmfd); *tfmfd = -1; return -EINVAL; } return 0; } int crypt_backend_init(bool fips __attribute__((unused))) { struct utsname uts; struct sockaddr_alg sa = { .salg_family = AF_ALG, .salg_type = "hash", .salg_name = "sha256", }; int r, tfmfd = -1, opfd = -1; if (crypto_backend_initialised) return 0; if (uname(&uts) == -1 || strcmp(uts.sysname, "Linux")) return -EINVAL; r = snprintf(version, sizeof(version), "%s %s kernel cryptoAPI", uts.sysname, uts.release); if (r < 0 || (size_t)r >= sizeof(version)) return -EINVAL; if (crypt_kernel_socket_init(&sa, &tfmfd, &opfd, NULL, 0) < 0) return -EINVAL; close(tfmfd); close(opfd); crypto_backend_initialised = 1; return 0; } void crypt_backend_destroy(void) { crypto_backend_initialised = 0; } uint32_t crypt_backend_flags(void) { return CRYPT_BACKEND_KERNEL; } const char *crypt_backend_version(void) { return crypto_backend_initialised ? version : ""; } static struct hash_alg *_get_alg(const char *name) { int i = 0; while (name && hash_algs[i].name) { if (!strcmp(name, hash_algs[i].name)) return &hash_algs[i]; i++; } return NULL; } /* HASH */ int crypt_hash_size(const char *name) { struct hash_alg *ha = _get_alg(name); return ha ? ha->length : -EINVAL; } int crypt_hash_init(struct crypt_hash **ctx, const char *name) { struct crypt_hash *h; struct hash_alg *ha; struct sockaddr_alg sa = { .salg_family = AF_ALG, .salg_type = "hash", }; h = malloc(sizeof(*h)); if (!h) return -ENOMEM; ha = _get_alg(name); if (!ha) { free(h); return -EINVAL; } h->hash_len = ha->length; strncpy((char *)sa.salg_name, ha->kernel_name, sizeof(sa.salg_name)-1); if (crypt_kernel_socket_init(&sa, &h->tfmfd, &h->opfd, NULL, 0) < 0) { free(h); return -EINVAL; } *ctx = h; return 0; } int crypt_hash_write(struct crypt_hash *ctx, const char *buffer, size_t length) { ssize_t r; r = send(ctx->opfd, buffer, length, MSG_MORE); if (r < 0 || (size_t)r < length) return -EIO; return 0; } int crypt_hash_final(struct crypt_hash *ctx, char *buffer, size_t length) { ssize_t r; if (length > (size_t)ctx->hash_len) return -EINVAL; r = read(ctx->opfd, buffer, length); if (r < 0) return -EIO; return 0; } void crypt_hash_destroy(struct crypt_hash *ctx) { if (ctx->tfmfd >= 0) close(ctx->tfmfd); if (ctx->opfd >= 0) close(ctx->opfd); memset(ctx, 0, sizeof(*ctx)); free(ctx); } /* HMAC */ int crypt_hmac_size(const char *name) { return crypt_hash_size(name); } int crypt_hmac_init(struct crypt_hmac **ctx, const char *name, const void *key, size_t key_length) { struct crypt_hmac *h; struct hash_alg *ha; struct sockaddr_alg sa = { .salg_family = AF_ALG, .salg_type = "hash", }; int r; h = malloc(sizeof(*h)); if (!h) return -ENOMEM; ha = _get_alg(name); if (!ha) { free(h); return -EINVAL; } h->hash_len = ha->length; r = snprintf((char *)sa.salg_name, sizeof(sa.salg_name), "hmac(%s)", ha->kernel_name); if (r < 0 || (size_t)r >= sizeof(sa.salg_name)) { free(h); return -EINVAL; } if (crypt_kernel_socket_init(&sa, &h->tfmfd, &h->opfd, key, key_length) < 0) { free(h); return -EINVAL; } *ctx = h; return 0; } int crypt_hmac_write(struct crypt_hmac *ctx, const char *buffer, size_t length) { ssize_t r; r = send(ctx->opfd, buffer, length, MSG_MORE); if (r < 0 || (size_t)r < length) return -EIO; return 0; } int crypt_hmac_final(struct crypt_hmac *ctx, char *buffer, size_t length) { ssize_t r; if (length > (size_t)ctx->hash_len) return -EINVAL; r = read(ctx->opfd, buffer, length); if (r < 0) return -EIO; return 0; } void crypt_hmac_destroy(struct crypt_hmac *ctx) { if (ctx->tfmfd >= 0) close(ctx->tfmfd); if (ctx->opfd >= 0) close(ctx->opfd); memset(ctx, 0, sizeof(*ctx)); free(ctx); } /* RNG - N/A */ int crypt_backend_rng(char *buffer __attribute__((unused)), size_t length __attribute__((unused)), int quality __attribute__((unused)), int fips __attribute__((unused))) { return -EINVAL; } /* PBKDF */ int crypt_pbkdf(const char *kdf, const char *hash, const char *password, size_t password_length, const char *salt, size_t salt_length, char *key, size_t key_length, uint32_t iterations, uint32_t memory, uint32_t parallel) { struct hash_alg *ha; if (!kdf) return -EINVAL; if (!strcmp(kdf, "pbkdf2")) { ha = _get_alg(hash); if (!ha) return -EINVAL; return pkcs5_pbkdf2(hash, password, password_length, salt, salt_length, iterations, key_length, key, ha->block_length); } else if (!strncmp(kdf, "argon2", 6)) { return argon2(kdf, password, password_length, salt, salt_length, key, key_length, iterations, memory, parallel); } return -EINVAL; } /* Block ciphers */ int crypt_cipher_init(struct crypt_cipher **ctx, const char *name, const char *mode, const void *key, size_t key_length) { struct crypt_cipher *h; int r; h = malloc(sizeof(*h)); if (!h) return -ENOMEM; r = crypt_cipher_init_kernel(&h->ck, name, mode, key, key_length); if (r < 0) { free(h); return r; } *ctx = h; return 0; } void crypt_cipher_destroy(struct crypt_cipher *ctx) { crypt_cipher_destroy_kernel(&ctx->ck); free(ctx); } int crypt_cipher_encrypt(struct crypt_cipher *ctx, const char *in, char *out, size_t length, const char *iv, size_t iv_length) { return crypt_cipher_encrypt_kernel(&ctx->ck, in, out, length, iv, iv_length); } int crypt_cipher_decrypt(struct crypt_cipher *ctx, const char *in, char *out, size_t length, const char *iv, size_t iv_length) { return crypt_cipher_decrypt_kernel(&ctx->ck, in, out, length, iv, iv_length); } bool crypt_cipher_kernel_only(struct crypt_cipher *ctx __attribute__((unused))) { return true; } int crypt_bitlk_decrypt_key(const void *key, size_t key_length, const char *in, char *out, size_t length, const char *iv, size_t iv_length, const char *tag, size_t tag_length) { return crypt_bitlk_decrypt_key_kernel(key, key_length, in, out, length, iv, iv_length, tag, tag_length); } int crypt_backend_memeq(const void *m1, const void *m2, size_t n) { return crypt_internal_memeq(m1, m2, n); } bool crypt_fips_mode(void) { return false; }