/* * LUKS - Linux Unified Key Setup v2, keyslot handling * * Copyright (C) 2015-2023 Red Hat, Inc. All rights reserved. * Copyright (C) 2015-2023 Milan Broz * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "luks2_internal.h" /* Internal implementations */ extern const keyslot_handler luks2_keyslot; extern const keyslot_handler reenc_keyslot; static const keyslot_handler *keyslot_handlers[LUKS2_KEYSLOTS_MAX] = { &luks2_keyslot, #if USE_LUKS2_REENCRYPTION &reenc_keyslot, #endif NULL }; static const keyslot_handler *LUKS2_keyslot_handler_type(const char *type) { int i; for (i = 0; i < LUKS2_KEYSLOTS_MAX && keyslot_handlers[i]; i++) { if (!strcmp(keyslot_handlers[i]->name, type)) return keyslot_handlers[i]; } return NULL; } static const keyslot_handler *LUKS2_keyslot_handler(struct crypt_device *cd, int keyslot) { struct luks2_hdr *hdr; json_object *jobj1, *jobj2; if (keyslot < 0) return NULL; if (!(hdr = crypt_get_hdr(cd, CRYPT_LUKS2))) return NULL; if (!(jobj1 = LUKS2_get_keyslot_jobj(hdr, keyslot))) return NULL; if (!json_object_object_get_ex(jobj1, "type", &jobj2)) return NULL; return LUKS2_keyslot_handler_type(json_object_get_string(jobj2)); } int LUKS2_keyslot_find_empty(struct crypt_device *cd, struct luks2_hdr *hdr, size_t keylength) { int i; for (i = 0; i < LUKS2_KEYSLOTS_MAX; i++) if (!LUKS2_get_keyslot_jobj(hdr, i)) break; if (i == LUKS2_KEYSLOTS_MAX) return -EINVAL; /* Check also there is a space for the key in keyslots area */ if (keylength && LUKS2_find_area_gap(cd, hdr, keylength, NULL, NULL) < 0) return -ENOSPC; return i; } /* Check if a keyslot is assigned to specific segment */ static int _keyslot_for_segment(struct luks2_hdr *hdr, int keyslot, int segment) { int keyslot_digest, count = 0; unsigned s; keyslot_digest = LUKS2_digest_by_keyslot(hdr, keyslot); if (keyslot_digest < 0) return keyslot_digest; if (segment >= 0) return keyslot_digest == LUKS2_digest_by_segment(hdr, segment); for (s = 0; s < json_segments_count(LUKS2_get_segments_jobj(hdr)); s++) { if (keyslot_digest == LUKS2_digest_by_segment(hdr, s)) count++; } return count; } static int _keyslot_for_digest(struct luks2_hdr *hdr, int keyslot, int digest) { int r = -EINVAL; r = LUKS2_digest_by_keyslot(hdr, keyslot); if (r < 0) return r; return r == digest ? 0 : -ENOENT; } int LUKS2_keyslot_for_segment(struct luks2_hdr *hdr, int keyslot, int segment) { int r = -EINVAL; /* no need to check anything */ if (segment == CRYPT_ANY_SEGMENT) return 0; /* ok */ if (segment == CRYPT_DEFAULT_SEGMENT) { segment = LUKS2_get_default_segment(hdr); if (segment < 0) return segment; } r = _keyslot_for_segment(hdr, keyslot, segment); if (r < 0) return r; return r >= 1 ? 0 : -ENOENT; } /* Number of keyslots assigned to a segment or all keyslots for CRYPT_ANY_SEGMENT */ int LUKS2_keyslot_active_count(struct luks2_hdr *hdr, int segment) { int num = 0; json_object *jobj_keyslots; json_object_object_get_ex(hdr->jobj, "keyslots", &jobj_keyslots); json_object_object_foreach(jobj_keyslots, slot, val) { UNUSED(val); if (!LUKS2_keyslot_for_segment(hdr, atoi(slot), segment)) num++; } return num; } int LUKS2_keyslot_cipher_incompatible(struct crypt_device *cd, const char *cipher_spec) { char cipher[MAX_CIPHER_LEN], cipher_mode[MAX_CIPHER_LEN]; if (!cipher_spec || crypt_is_cipher_null(cipher_spec)) return 1; if (crypt_parse_name_and_mode(cipher_spec, cipher, NULL, cipher_mode) < 0) return 1; /* Keyslot is already authenticated; we cannot use integrity tags here */ if (crypt_get_integrity_tag_size(cd)) return 1; /* Wrapped key schemes cannot be used for keyslot encryption */ if (crypt_cipher_wrapped_key(cipher, cipher_mode)) return 1; /* Check if crypto backend can use the cipher */ if (crypt_cipher_ivsize(cipher, cipher_mode) < 0) return 1; return 0; } int LUKS2_keyslot_params_default(struct crypt_device *cd, struct luks2_hdr *hdr, struct luks2_keyslot_params *params) { const struct crypt_pbkdf_type *pbkdf = crypt_get_pbkdf_type(cd); const char *cipher_spec; size_t key_size; int r; if (!hdr || !pbkdf || !params) return -EINVAL; /* * set keyslot area encryption parameters */ params->area_type = LUKS2_KEYSLOT_AREA_RAW; cipher_spec = crypt_keyslot_get_encryption(cd, CRYPT_ANY_SLOT, &key_size); if (!cipher_spec || !key_size) return -EINVAL; params->area.raw.key_size = key_size; r = snprintf(params->area.raw.encryption, sizeof(params->area.raw.encryption), "%s", cipher_spec); if (r < 0 || (size_t)r >= sizeof(params->area.raw.encryption)) return -EINVAL; /* * set keyslot AF parameters */ params->af_type = LUKS2_KEYSLOT_AF_LUKS1; /* currently we use hash for AF from pbkdf settings */ r = snprintf(params->af.luks1.hash, sizeof(params->af.luks1.hash), "%s", pbkdf->hash ?: DEFAULT_LUKS1_HASH); if (r < 0 || (size_t)r >= sizeof(params->af.luks1.hash)) return -EINVAL; params->af.luks1.stripes = 4000; return 0; } int LUKS2_keyslot_pbkdf(struct luks2_hdr *hdr, int keyslot, struct crypt_pbkdf_type *pbkdf) { json_object *jobj_keyslot, *jobj_kdf, *jobj; if (!hdr || !pbkdf) return -EINVAL; if (LUKS2_keyslot_info(hdr, keyslot) == CRYPT_SLOT_INVALID) return -EINVAL; jobj_keyslot = LUKS2_get_keyslot_jobj(hdr, keyslot); if (!jobj_keyslot) return -ENOENT; if (!json_object_object_get_ex(jobj_keyslot, "kdf", &jobj_kdf)) return -EINVAL; if (!json_object_object_get_ex(jobj_kdf, "type", &jobj)) return -EINVAL; memset(pbkdf, 0, sizeof(*pbkdf)); pbkdf->type = json_object_get_string(jobj); if (json_object_object_get_ex(jobj_kdf, "hash", &jobj)) pbkdf->hash = json_object_get_string(jobj); if (json_object_object_get_ex(jobj_kdf, "iterations", &jobj)) pbkdf->iterations = json_object_get_int(jobj); if (json_object_object_get_ex(jobj_kdf, "time", &jobj)) pbkdf->iterations = json_object_get_int(jobj); if (json_object_object_get_ex(jobj_kdf, "memory", &jobj)) pbkdf->max_memory_kb = json_object_get_int(jobj); if (json_object_object_get_ex(jobj_kdf, "cpus", &jobj)) pbkdf->parallel_threads = json_object_get_int(jobj); return 0; } static int LUKS2_keyslot_unbound(struct luks2_hdr *hdr, int keyslot) { json_object *jobj_digest, *jobj_segments; int digest = LUKS2_digest_by_keyslot(hdr, keyslot); if (digest < 0) return 0; if (!(jobj_digest = LUKS2_get_digest_jobj(hdr, digest))) return 0; json_object_object_get_ex(jobj_digest, "segments", &jobj_segments); if (!jobj_segments || !json_object_is_type(jobj_segments, json_type_array) || json_object_array_length(jobj_segments) == 0) return 1; return 0; } crypt_keyslot_info LUKS2_keyslot_info(struct luks2_hdr *hdr, int keyslot) { if(keyslot >= LUKS2_KEYSLOTS_MAX || keyslot < 0) return CRYPT_SLOT_INVALID; if (!LUKS2_get_keyslot_jobj(hdr, keyslot)) return CRYPT_SLOT_INACTIVE; if (LUKS2_digest_by_keyslot(hdr, keyslot) < 0 || LUKS2_keyslot_unbound(hdr, keyslot)) return CRYPT_SLOT_UNBOUND; if (LUKS2_keyslot_active_count(hdr, CRYPT_DEFAULT_SEGMENT) == 1 && !LUKS2_keyslot_for_segment(hdr, keyslot, CRYPT_DEFAULT_SEGMENT)) return CRYPT_SLOT_ACTIVE_LAST; return CRYPT_SLOT_ACTIVE; } int LUKS2_keyslot_jobj_area(json_object *jobj_keyslot, uint64_t *offset, uint64_t *length) { json_object *jobj_area, *jobj; if (!json_object_object_get_ex(jobj_keyslot, "area", &jobj_area)) return -EINVAL; if (!json_object_object_get_ex(jobj_area, "offset", &jobj)) return -EINVAL; *offset = crypt_jobj_get_uint64(jobj); if (!json_object_object_get_ex(jobj_area, "size", &jobj)) return -EINVAL; *length = crypt_jobj_get_uint64(jobj); return 0; } int LUKS2_keyslot_area(struct luks2_hdr *hdr, int keyslot, uint64_t *offset, uint64_t *length) { json_object *jobj_keyslot; if (LUKS2_keyslot_info(hdr, keyslot) == CRYPT_SLOT_INVALID) return -EINVAL; jobj_keyslot = LUKS2_get_keyslot_jobj(hdr, keyslot); if (!jobj_keyslot) return -ENOENT; return LUKS2_keyslot_jobj_area(jobj_keyslot, offset, length); } static int _open_and_verify(struct crypt_device *cd, struct luks2_hdr *hdr, const keyslot_handler *h, int keyslot, const char *password, size_t password_len, struct volume_key **vk) { int r, key_size = LUKS2_get_keyslot_stored_key_size(hdr, keyslot); if (key_size < 0) return -EINVAL; *vk = crypt_alloc_volume_key(key_size, NULL); if (!*vk) return -ENOMEM; r = h->open(cd, keyslot, password, password_len, (*vk)->key, (*vk)->keylength); if (r < 0) log_dbg(cd, "Keyslot %d (%s) open failed with %d.", keyslot, h->name, r); else r = LUKS2_digest_verify(cd, hdr, *vk, keyslot); if (r < 0) { crypt_free_volume_key(*vk); *vk = NULL; } crypt_volume_key_set_id(*vk, r); return r < 0 ? r : keyslot; } static int LUKS2_open_and_verify_by_digest(struct crypt_device *cd, struct luks2_hdr *hdr, int keyslot, int digest, const char *password, size_t password_len, struct volume_key **vk) { const keyslot_handler *h; int r; if (!(h = LUKS2_keyslot_handler(cd, keyslot))) return -ENOENT; r = h->validate(cd, LUKS2_get_keyslot_jobj(hdr, keyslot)); if (r) { log_dbg(cd, "Keyslot %d validation failed.", keyslot); return r; } r = _keyslot_for_digest(hdr, keyslot, digest); if (r) { if (r == -ENOENT) log_dbg(cd, "Keyslot %d unusable for digest %d.", keyslot, digest); return r; } return _open_and_verify(cd, hdr, h, keyslot, password, password_len, vk); } static int LUKS2_open_and_verify(struct crypt_device *cd, struct luks2_hdr *hdr, int keyslot, int segment, const char *password, size_t password_len, struct volume_key **vk) { const keyslot_handler *h; int r; if (!(h = LUKS2_keyslot_handler(cd, keyslot))) return -ENOENT; r = h->validate(cd, LUKS2_get_keyslot_jobj(hdr, keyslot)); if (r) { log_dbg(cd, "Keyslot %d validation failed.", keyslot); return r; } r = LUKS2_keyslot_for_segment(hdr, keyslot, segment); if (r) { if (r == -ENOENT) log_dbg(cd, "Keyslot %d unusable for segment %d.", keyslot, segment); return r; } return _open_and_verify(cd, hdr, h, keyslot, password, password_len, vk); } static int LUKS2_keyslot_open_priority_digest(struct crypt_device *cd, struct luks2_hdr *hdr, crypt_keyslot_priority priority, const char *password, size_t password_len, int digest, struct volume_key **vk) { json_object *jobj_keyslots, *jobj; crypt_keyslot_priority slot_priority; int keyslot, r = -ENOENT; json_object_object_get_ex(hdr->jobj, "keyslots", &jobj_keyslots); json_object_object_foreach(jobj_keyslots, slot, val) { if (!json_object_object_get_ex(val, "priority", &jobj)) slot_priority = CRYPT_SLOT_PRIORITY_NORMAL; else slot_priority = json_object_get_int(jobj); keyslot = atoi(slot); if (slot_priority != priority) { log_dbg(cd, "Keyslot %d priority %d != %d (required), skipped.", keyslot, slot_priority, priority); continue; } r = LUKS2_open_and_verify_by_digest(cd, hdr, keyslot, digest, password, password_len, vk); /* Do not retry for errors that are no -EPERM or -ENOENT, former meaning password wrong, latter key slot unusable for segment */ if ((r != -EPERM) && (r != -ENOENT)) break; } return r; } static int LUKS2_keyslot_open_priority(struct crypt_device *cd, struct luks2_hdr *hdr, crypt_keyslot_priority priority, const char *password, size_t password_len, int segment, struct volume_key **vk) { json_object *jobj_keyslots, *jobj; crypt_keyslot_priority slot_priority; int keyslot, r = -ENOENT; json_object_object_get_ex(hdr->jobj, "keyslots", &jobj_keyslots); json_object_object_foreach(jobj_keyslots, slot, val) { if (!json_object_object_get_ex(val, "priority", &jobj)) slot_priority = CRYPT_SLOT_PRIORITY_NORMAL; else slot_priority = json_object_get_int(jobj); keyslot = atoi(slot); if (slot_priority != priority) { log_dbg(cd, "Keyslot %d priority %d != %d (required), skipped.", keyslot, slot_priority, priority); continue; } r = LUKS2_open_and_verify(cd, hdr, keyslot, segment, password, password_len, vk); /* Do not retry for errors that are no -EPERM or -ENOENT, former meaning password wrong, latter key slot unusable for segment */ if ((r != -EPERM) && (r != -ENOENT)) break; } return r; } static int LUKS2_keyslot_open_by_digest(struct crypt_device *cd, struct luks2_hdr *hdr, int keyslot, int digest, const char *password, size_t password_len, struct volume_key **vk) { int r_prio, r = -EINVAL; if (digest < 0) return r; if (keyslot == CRYPT_ANY_SLOT) { r_prio = LUKS2_keyslot_open_priority_digest(cd, hdr, CRYPT_SLOT_PRIORITY_PREFER, password, password_len, digest, vk); if (r_prio >= 0) r = r_prio; else if (r_prio != -EPERM && r_prio != -ENOENT) r = r_prio; else r = LUKS2_keyslot_open_priority_digest(cd, hdr, CRYPT_SLOT_PRIORITY_NORMAL, password, password_len, digest, vk); /* Prefer password wrong to no entry from priority slot */ if (r_prio == -EPERM && r == -ENOENT) r = r_prio; } else r = LUKS2_open_and_verify_by_digest(cd, hdr, keyslot, digest, password, password_len, vk); return r; } int LUKS2_keyslot_open_all_segments(struct crypt_device *cd, int keyslot_old, int keyslot_new, const char *password, size_t password_len, struct volume_key **vks) { struct volume_key *vk = NULL; int digest_old, digest_new, r = -EINVAL; struct luks2_hdr *hdr = crypt_get_hdr(cd, CRYPT_LUKS2); digest_old = LUKS2_reencrypt_digest_old(hdr); if (digest_old >= 0) { log_dbg(cd, "Trying to unlock volume key (digest: %d) using keyslot %d.", digest_old, keyslot_old); r = LUKS2_keyslot_open_by_digest(cd, hdr, keyslot_old, digest_old, password, password_len, &vk); if (r < 0) goto out; crypt_volume_key_add_next(vks, vk); } digest_new = LUKS2_reencrypt_digest_new(hdr); if (digest_new >= 0 && digest_old != digest_new) { log_dbg(cd, "Trying to unlock volume key (digest: %d) using keyslot %d.", digest_new, keyslot_new); r = LUKS2_keyslot_open_by_digest(cd, hdr, keyslot_new, digest_new, password, password_len, &vk); if (r < 0) goto out; crypt_volume_key_add_next(vks, vk); } out: if (r < 0) { crypt_free_volume_key(*vks); *vks = NULL; if (r == -ENOMEM) log_err(cd, _("Not enough available memory to open a keyslot.")); else if (r != -EPERM && r != -ENOENT) log_err(cd, _("Keyslot open failed.")); } return r; } int LUKS2_keyslot_open(struct crypt_device *cd, int keyslot, int segment, const char *password, size_t password_len, struct volume_key **vk) { struct luks2_hdr *hdr; int r_prio, r = -EINVAL; hdr = crypt_get_hdr(cd, CRYPT_LUKS2); if (keyslot == CRYPT_ANY_SLOT) { r_prio = LUKS2_keyslot_open_priority(cd, hdr, CRYPT_SLOT_PRIORITY_PREFER, password, password_len, segment, vk); if (r_prio >= 0) r = r_prio; else if (r_prio != -EPERM && r_prio != -ENOENT) r = r_prio; else r = LUKS2_keyslot_open_priority(cd, hdr, CRYPT_SLOT_PRIORITY_NORMAL, password, password_len, segment, vk); /* Prefer password wrong to no entry from priority slot */ if (r_prio == -EPERM && r == -ENOENT) r = r_prio; } else r = LUKS2_open_and_verify(cd, hdr, keyslot, segment, password, password_len, vk); if (r < 0) { if (r == -ENOMEM) log_err(cd, _("Not enough available memory to open a keyslot.")); else if (r != -EPERM && r != -ENOENT) log_err(cd, _("Keyslot open failed.")); } return r; } int LUKS2_keyslot_reencrypt_store(struct crypt_device *cd, struct luks2_hdr *hdr, int keyslot, const void *buffer, size_t buffer_length) { const keyslot_handler *h; int r; if (!(h = LUKS2_keyslot_handler(cd, keyslot)) || strcmp(h->name, "reencrypt")) return -EINVAL; r = h->validate(cd, LUKS2_get_keyslot_jobj(hdr, keyslot)); if (r) { log_dbg(cd, "Keyslot validation failed."); return r; } return h->store(cd, keyslot, NULL, 0, buffer, buffer_length); } int LUKS2_keyslot_store(struct crypt_device *cd, struct luks2_hdr *hdr, int keyslot, const char *password, size_t password_len, const struct volume_key *vk, const struct luks2_keyslot_params *params) { const keyslot_handler *h; int r; if (keyslot == CRYPT_ANY_SLOT) return -EINVAL; if (!LUKS2_get_keyslot_jobj(hdr, keyslot)) { /* Try to allocate default and empty keyslot type */ h = LUKS2_keyslot_handler_type("luks2"); if (!h) return -EINVAL; r = h->alloc(cd, keyslot, vk->keylength, params); if (r) return r; } else { if (!(h = LUKS2_keyslot_handler(cd, keyslot))) return -EINVAL; r = h->update(cd, keyslot, params); if (r) { log_dbg(cd, "Failed to update keyslot %d json.", keyslot); return r; } } r = h->validate(cd, LUKS2_get_keyslot_jobj(hdr, keyslot)); if (r) { log_dbg(cd, "Keyslot validation failed."); return r; } if (LUKS2_hdr_validate(cd, hdr->jobj, hdr->hdr_size - LUKS2_HDR_BIN_LEN)) return -EINVAL; return h->store(cd, keyslot, password, password_len, vk->key, vk->keylength); } int LUKS2_keyslot_wipe(struct crypt_device *cd, struct luks2_hdr *hdr, int keyslot, int wipe_area_only) { struct device *device = crypt_metadata_device(cd); uint64_t area_offset, area_length; int r; json_object *jobj_keyslot, *jobj_keyslots; const keyslot_handler *h; h = LUKS2_keyslot_handler(cd, keyslot); if (!json_object_object_get_ex(hdr->jobj, "keyslots", &jobj_keyslots)) return -EINVAL; jobj_keyslot = LUKS2_get_keyslot_jobj(hdr, keyslot); if (!jobj_keyslot) return -ENOENT; if (wipe_area_only) log_dbg(cd, "Wiping keyslot %d area only.", keyslot); r = LUKS2_device_write_lock(cd, hdr, device); if (r) return r; /* secure deletion of possible key material in keyslot area */ r = crypt_keyslot_area(cd, keyslot, &area_offset, &area_length); if (r && r != -ENOENT) goto out; if (!r) { r = crypt_wipe_device(cd, device, CRYPT_WIPE_SPECIAL, area_offset, area_length, area_length, NULL, NULL); if (r) { if (r == -EACCES) { log_err(cd, _("Cannot write to device %s, permission denied."), device_path(device)); r = -EINVAL; } else log_err(cd, _("Cannot wipe device %s."), device_path(device)); goto out; } } if (wipe_area_only) goto out; /* Slot specific wipe */ if (h) { r = h->wipe(cd, keyslot); if (r < 0) goto out; } else log_dbg(cd, "Wiping keyslot %d without specific-slot handler loaded.", keyslot); json_object_object_del_by_uint(jobj_keyslots, keyslot); r = LUKS2_hdr_write(cd, hdr); out: device_write_unlock(cd, crypt_metadata_device(cd)); return r; } int LUKS2_keyslot_dump(struct crypt_device *cd, int keyslot) { const keyslot_handler *h; if (!(h = LUKS2_keyslot_handler(cd, keyslot))) return -EINVAL; return h->dump(cd, keyslot); } crypt_keyslot_priority LUKS2_keyslot_priority_get(struct luks2_hdr *hdr, int keyslot) { json_object *jobj_keyslot, *jobj_priority; jobj_keyslot = LUKS2_get_keyslot_jobj(hdr, keyslot); if (!jobj_keyslot) return CRYPT_SLOT_PRIORITY_INVALID; if (!json_object_object_get_ex(jobj_keyslot, "priority", &jobj_priority)) return CRYPT_SLOT_PRIORITY_NORMAL; return json_object_get_int(jobj_priority); } int LUKS2_keyslot_priority_set(struct crypt_device *cd, struct luks2_hdr *hdr, int keyslot, crypt_keyslot_priority priority, int commit) { json_object *jobj_keyslot; jobj_keyslot = LUKS2_get_keyslot_jobj(hdr, keyslot); if (!jobj_keyslot) return -EINVAL; if (priority == CRYPT_SLOT_PRIORITY_NORMAL) json_object_object_del(jobj_keyslot, "priority"); else json_object_object_add(jobj_keyslot, "priority", json_object_new_int(priority)); return commit ? LUKS2_hdr_write(cd, hdr) : 0; } int placeholder_keyslot_alloc(struct crypt_device *cd, int keyslot, uint64_t area_offset, uint64_t area_length) { struct luks2_hdr *hdr; json_object *jobj_keyslots, *jobj_keyslot, *jobj_area; log_dbg(cd, "Allocating placeholder keyslot %d for LUKS1 down conversion.", keyslot); if (!(hdr = crypt_get_hdr(cd, CRYPT_LUKS2))) return -EINVAL; if (keyslot < 0 || keyslot >= LUKS2_KEYSLOTS_MAX) return -EINVAL; if (LUKS2_get_keyslot_jobj(hdr, keyslot)) return -EINVAL; if (!json_object_object_get_ex(hdr->jobj, "keyslots", &jobj_keyslots)) return -EINVAL; jobj_keyslot = json_object_new_object(); json_object_object_add(jobj_keyslot, "type", json_object_new_string("placeholder")); /* * key_size = -1 makes placeholder keyslot impossible to pass validation. * It's a safeguard against accidentally storing temporary conversion * LUKS2 header. */ json_object_object_add(jobj_keyslot, "key_size", json_object_new_int(-1)); /* Area object */ jobj_area = json_object_new_object(); json_object_object_add(jobj_area, "offset", crypt_jobj_new_uint64(area_offset)); json_object_object_add(jobj_area, "size", crypt_jobj_new_uint64(area_length)); json_object_object_add(jobj_keyslot, "area", jobj_area); json_object_object_add_by_uint(jobj_keyslots, keyslot, jobj_keyslot); return 0; } static unsigned LUKS2_get_keyslot_digests_count(json_object *hdr_jobj, int keyslot) { char num[16]; json_object *jobj_digests, *jobj_keyslots; unsigned count = 0; if (!json_object_object_get_ex(hdr_jobj, "digests", &jobj_digests)) return 0; if (snprintf(num, sizeof(num), "%u", keyslot) < 0) return 0; json_object_object_foreach(jobj_digests, key, val) { UNUSED(key); json_object_object_get_ex(val, "keyslots", &jobj_keyslots); if (LUKS2_array_jobj(jobj_keyslots, num)) count++; } return count; } /* run only on header that passed basic format validation */ int LUKS2_keyslots_validate(struct crypt_device *cd, json_object *hdr_jobj) { const keyslot_handler *h; int keyslot; json_object *jobj_keyslots, *jobj_type; uint32_t reqs, reencrypt_count = 0; struct luks2_hdr dummy = { .jobj = hdr_jobj }; if (!json_object_object_get_ex(hdr_jobj, "keyslots", &jobj_keyslots)) return -EINVAL; if (LUKS2_config_get_requirements(cd, &dummy, &reqs)) return -EINVAL; json_object_object_foreach(jobj_keyslots, slot, val) { keyslot = atoi(slot); json_object_object_get_ex(val, "type", &jobj_type); h = LUKS2_keyslot_handler_type(json_object_get_string(jobj_type)); if (!h) continue; if (h->validate && h->validate(cd, val)) { log_dbg(cd, "Keyslot type %s validation failed on keyslot %d.", h->name, keyslot); return -EINVAL; } if (!strcmp(h->name, "luks2") && LUKS2_get_keyslot_digests_count(hdr_jobj, keyslot) != 1) { log_dbg(cd, "Keyslot %d is not assigned to exactly 1 digest.", keyslot); return -EINVAL; } if (!strcmp(h->name, "reencrypt")) reencrypt_count++; } if ((reqs & CRYPT_REQUIREMENT_ONLINE_REENCRYPT) && reencrypt_count == 0) { log_dbg(cd, "Missing reencryption keyslot."); return -EINVAL; } if (reencrypt_count && !LUKS2_reencrypt_requirement_candidate(&dummy)) { log_dbg(cd, "Missing reencryption requirement flag."); return -EINVAL; } if (reencrypt_count > 1) { log_dbg(cd, "Too many reencryption keyslots."); return -EINVAL; } return 0; } void LUKS2_keyslots_repair(struct crypt_device *cd, json_object *jobj_keyslots) { const keyslot_handler *h; json_object *jobj_type; json_object_object_foreach(jobj_keyslots, slot, val) { UNUSED(slot); if (!json_object_is_type(val, json_type_object) || !json_object_object_get_ex(val, "type", &jobj_type) || !json_object_is_type(jobj_type, json_type_string)) continue; h = LUKS2_keyslot_handler_type(json_object_get_string(jobj_type)); if (h && h->repair) h->repair(val); } } /* assumes valid header */ int LUKS2_find_keyslot(struct luks2_hdr *hdr, const char *type) { int i; json_object *jobj_keyslot, *jobj_type; if (!type) return -EINVAL; for (i = 0; i < LUKS2_KEYSLOTS_MAX; i++) { jobj_keyslot = LUKS2_get_keyslot_jobj(hdr, i); if (!jobj_keyslot) continue; json_object_object_get_ex(jobj_keyslot, "type", &jobj_type); if (!strcmp(json_object_get_string(jobj_type), type)) return i; } return -ENOENT; } /* assumes valid header, it does not move references in tokens/digests etc! */ int LUKS2_keyslot_swap(struct crypt_device *cd, struct luks2_hdr *hdr, int keyslot, int keyslot2) { json_object *jobj_keyslots, *jobj_keyslot, *jobj_keyslot2; int r; if (!json_object_object_get_ex(hdr->jobj, "keyslots", &jobj_keyslots)) return -EINVAL; jobj_keyslot = LUKS2_get_keyslot_jobj(hdr, keyslot); if (!jobj_keyslot) return -EINVAL; jobj_keyslot2 = LUKS2_get_keyslot_jobj(hdr, keyslot2); if (!jobj_keyslot2) return -EINVAL; /* This transfer owner of object, no need for json_object_put */ json_object_get(jobj_keyslot); json_object_get(jobj_keyslot2); json_object_object_del_by_uint(jobj_keyslots, keyslot); r = json_object_object_add_by_uint(jobj_keyslots, keyslot, jobj_keyslot2); if (r < 0) { log_dbg(cd, "Failed to swap keyslot %d.", keyslot); return r; } json_object_object_del_by_uint(jobj_keyslots, keyslot2); r = json_object_object_add_by_uint(jobj_keyslots, keyslot2, jobj_keyslot); if (r < 0) log_dbg(cd, "Failed to swap keyslot2 %d.", keyslot2); return r; }