1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
|
#include <unistd.h>
#include "threadname.hh"
#include "remote_logger.hh"
#include <sys/uio.h>
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#ifdef PDNS_CONFIG_ARGS
#include "logger.hh"
#define WE_ARE_RECURSOR
#else
#include "dolog.hh"
#endif
bool CircularWriteBuffer::hasRoomFor(const std::string& str) const
{
if (d_buffer.size() + 2 + str.size() > d_buffer.capacity()) {
return false;
}
return true;
}
bool CircularWriteBuffer::write(const std::string& str)
{
if (str.size() > std::numeric_limits<uint16_t>::max() || !hasRoomFor(str)) {
return false;
}
uint16_t len = htons(str.size());
const char* ptr = reinterpret_cast<const char*>(&len);
d_buffer.insert(d_buffer.end(), ptr, ptr + 2);
d_buffer.insert(d_buffer.end(), str.begin(), str.end());
return true;
}
bool CircularWriteBuffer::flush(int fd)
{
if (d_buffer.empty()) {
// not optional, we report EOF otherwise
return false;
}
auto arr1 = d_buffer.array_one();
auto arr2 = d_buffer.array_two();
struct iovec iov[2];
int pos = 0;
for(const auto& arr : {arr1, arr2}) {
if(arr.second) {
iov[pos].iov_base = arr.first;
iov[pos].iov_len = arr.second;
++pos;
}
}
ssize_t res = 0;
do {
res = writev(fd, iov, pos);
if (res < 0) {
if (errno == EINTR) {
continue;
}
if (errno == EAGAIN || errno == EWOULDBLOCK) {
return false;
}
/* we can't be sure we haven't sent a partial message,
and we don't want to send the remaining part after reconnecting */
d_buffer.clear();
throw std::runtime_error("Couldn't flush a thing: " + stringerror());
}
else if (!res) {
/* we can't be sure we haven't sent a partial message,
and we don't want to send the remaining part after reconnecting */
d_buffer.clear();
throw std::runtime_error("EOF");
}
}
while (res < 0);
if (static_cast<size_t>(res) == d_buffer.size()) {
d_buffer.clear();
}
else {
while (res--) {
d_buffer.pop_front();
}
}
return true;
}
RemoteLogger::RemoteLogger(const ComboAddress& remote, uint16_t timeout, uint64_t maxQueuedBytes, uint8_t reconnectWaitTime, bool asyncConnect): d_remote(remote), d_timeout(timeout), d_reconnectWaitTime(reconnectWaitTime), d_asyncConnect(asyncConnect), d_runtime({CircularWriteBuffer(maxQueuedBytes), nullptr})
{
if (!d_asyncConnect) {
reconnect();
}
d_thread = std::thread(&RemoteLogger::maintenanceThread, this);
}
bool RemoteLogger::reconnect()
{
try {
auto newSock = make_unique<Socket>(d_remote.sin4.sin_family, SOCK_STREAM, 0);
newSock->setNonBlocking();
newSock->connect(d_remote, d_timeout);
{
/* we are now successfully connected, time to take the lock and update the
socket */
auto runtime = d_runtime.lock();
runtime->d_socket = std::move(newSock);
}
}
catch (const std::exception& e) {
#ifdef WE_ARE_RECURSOR
g_log<<Logger::Warning<<"Error connecting to remote logger "<<d_remote.toStringWithPort()<<": "<<e.what()<<std::endl;
#else
warnlog("Error connecting to remote logger %s: %s", d_remote.toStringWithPort(), e.what());
#endif
return false;
}
return true;
}
void RemoteLogger::queueData(const std::string& data)
{
if (data.size() > std::numeric_limits<uint16_t>::max()) {
throw std::runtime_error("Got a request to write an object of size " + std::to_string(data.size()));
}
auto runtime = d_runtime.lock();
if (!runtime->d_writer.hasRoomFor(data)) {
/* not connected, queue is full, just drop */
if (!runtime->d_socket) {
++d_drops;
return;
}
try {
/* we try to flush some data */
if (!runtime->d_writer.flush(runtime->d_socket->getHandle())) {
/* but failed, let's just drop */
++d_drops;
return;
}
/* see if we freed enough data */
if (!runtime->d_writer.hasRoomFor(data)) {
/* we didn't */
++d_drops;
return;
}
}
catch(const std::exception& e) {
// cout << "Got exception writing: "<<e.what()<<endl;
++d_drops;
runtime->d_socket.reset();
return;
}
}
runtime->d_writer.write(data);
++d_processed;
}
void RemoteLogger::maintenanceThread()
{
try {
#ifdef WE_ARE_RECURSOR
string threadName = "pdns-r/remLog";
#else
string threadName = "dnsdist/remLog";
#endif
setThreadName(threadName);
for (;;) {
if (d_exiting) {
break;
}
bool connected = true;
if (d_runtime.lock()->d_socket == nullptr) {
// if it was unset, it will remain so, we are the only ones setting it!
connected = reconnect();
}
/* we will just go to sleep if the reconnection just failed */
if (connected) {
try {
/* we don't want to take the lock while trying to reconnect */
auto runtime = d_runtime.lock();
if (runtime->d_socket) { // check if it is set
/* if flush() returns false, it means that we couldn't flush anything yet
either because there is nothing to flush, or because the outgoing TCP
buffer is full. That's fine by us */
runtime->d_writer.flush(runtime->d_socket->getHandle());
}
else {
connected = false;
}
}
catch (const std::exception& e) {
d_runtime.lock()->d_socket.reset();
connected = false;
}
if (!connected) {
/* let's try to reconnect right away, we are about to sleep anyway */
reconnect();
}
}
sleep(d_reconnectWaitTime);
}
}
catch (const std::exception& e)
{
cerr << "Remote Logger's maintenance thead died on: " << e.what() << endl;
}
catch (...) {
cerr << "Remote Logger's maintenance thead died on unknown exception" << endl;
}
}
RemoteLogger::~RemoteLogger()
{
d_exiting = true;
d_thread.join();
}
|