/* Copyright (c) 2001-2018 Dovecot authors, see the included COPYING file */ /* Unit tests for bit twiddles library */ #include "test-lib.h" #include static void test_bits_unsigned_minus(void) { test_begin("bits_unsigned_minus()"); // 32 bit test_assert(UNSIGNED_MINUS(0x00000000U) == 0x00000000U); test_assert(UNSIGNED_MINUS(0x00000001U) == 0xffffffffU); test_assert(UNSIGNED_MINUS(0x00000002U) == 0xfffffffeU); test_assert(UNSIGNED_MINUS(0x00000003U) == 0xfffffffdU); //.. test_assert(UNSIGNED_MINUS(0x7fffffffU) == 0x80000001U); test_assert(UNSIGNED_MINUS(0x80000000U) == 0x80000000U); test_assert(UNSIGNED_MINUS(0x80000001U) == 0x7fffffffU); //.. test_assert(UNSIGNED_MINUS(0xffffffffU) == 0x00000001U); test_assert(UNSIGNED_MINUS(0xfffffffeU) == 0x00000002U); test_assert(UNSIGNED_MINUS(0xfffffffdU) == 0x00000003U); // 64 bit test_assert(UNSIGNED_MINUS(0x0000000000000000ULL) == 0x0000000000000000ULL); test_assert(UNSIGNED_MINUS(0x0000000000000001ULL) == 0xffffffffffffffffULL); test_assert(UNSIGNED_MINUS(0x0000000000000002ULL) == 0xfffffffffffffffeULL); test_assert(UNSIGNED_MINUS(0x0000000000000003ULL) == 0xfffffffffffffffdULL); //.. test_assert(UNSIGNED_MINUS(0x7fffffffffffffffULL) == 0x8000000000000001ULL); test_assert(UNSIGNED_MINUS(0x8000000000000000ULL) == 0x8000000000000000ULL); test_assert(UNSIGNED_MINUS(0x8000000000000001ULL) == 0x7fffffffffffffffULL); //.. test_assert(UNSIGNED_MINUS(0xffffffffffffffffULL) == 0x0000000000000001ULL); test_assert(UNSIGNED_MINUS(0xfffffffffffffffeULL) == 0x0000000000000002ULL); test_assert(UNSIGNED_MINUS(0xfffffffffffffffdULL) == 0x0000000000000003ULL); test_end(); } /* nearest_power(0) = error bits_requiredXX(0) = 0 nearest_power(1) = 1 = 1<<0 bits_requiredXX(1) = 1 nearest_power(2) = 2 = 1<<1 bits_requiredXX(2) = 2 nearest_power(3) = 4 = 1<<2 bits_requiredXX(3) = 2 nearest_power(4) = 4 = 1<<2 bits_requiredXX(4) = 3 nearest_power(5) = 8 = 1<<3 bits_requiredXX(5) = 3 nearest_power(7) = 8 = 1<<3 bits_requiredXX(7) = 3 nearest_power(8) = 8 = 1<<3 bits_requiredXX(8) = 4 */ /* nearest_power(num) == 1ULL << bits_required64(num-1) */ static void test_nearest_power(void) { unsigned int b; size_t num; test_begin("nearest_power()"); test_assert(nearest_power(1)==1); test_assert(nearest_power(2)==2); for (b = 2; b < CHAR_BIT*sizeof(size_t) - 1; ++b) { /* b=2 tests 3,4,5; b=3 tests 7,8,9; ... b=30 tests ~1G */ num = (size_t)1 << b; test_assert_idx(nearest_power(num-1) == num, b); test_assert_idx(nearest_power(num ) == num, b); test_assert_idx(nearest_power(num+1) == num<<1, b); } /* With 32-bit size_t, now: b=31 tests 2G-1, 2G, not 2G+1. */ num = (size_t)1 << b; test_assert_idx(nearest_power(num-1) == num, b); test_assert_idx(nearest_power(num ) == num, b); /* i_assert()s: test_assert_idx(nearest_power(num+1) == num<<1, b); */ test_end(); } static void test_bits_is_power_of_two(void) { test_begin("bits_is_power_of_two()"); for (unsigned int i = 0; i < 64; i++) test_assert_idx(bits_is_power_of_two(1ULL << i), i); for (unsigned int i = 2; i < 64; i++) { test_assert_idx(!bits_is_power_of_two((1ULL << i) - 1), i); test_assert_idx(!bits_is_power_of_two((1ULL << i) + 1), i); } test_assert(!bits_is_power_of_two(0)); test_assert(!bits_is_power_of_two(0xffffffffffffffffULL)); test_assert( bits_is_power_of_two(0x8000000000000000ULL)); test_end(); } static void test_bits_requiredXX(void) { /* As ..64 depends on ..32 and tests it twice, * and ..32 depends on ..16 and tests it twice, * etc., we only test ..64 */ unsigned int b; test_begin("bits_requiredXX()"); test_assert(bits_required64(0) == 0); test_assert(bits_required64(1) == 1); test_assert(bits_required64(2) == 2); for (b = 2; b < 64; ++b) { /* b=2 tests 3,4,5; b=3 tests 7,8,9; ... */ uint64_t num = 1ULL << b; test_assert_idx(bits_required64(num-1) == b, b); test_assert_idx(bits_required64(num ) == b+1, b); test_assert_idx(bits_required64(num+1) == b+1, b); } test_end(); } static void test_sum_overflows(void) { #define MAX64 (uint64_t)-1 static const struct { uint64_t a, b; bool overflows; } tests[] = { { MAX64-1, 1, FALSE }, { MAX64, 1, TRUE }, { MAX64-1, 1, FALSE }, { MAX64-1, 2, TRUE }, { MAX64-1, MAX64-1, TRUE }, { MAX64-1, MAX64, TRUE }, { MAX64, MAX64, TRUE } }; unsigned int i; test_begin("UINT64_SUM_OVERFLOWS"); for (i = 0; i < N_ELEMENTS(tests); i++) test_assert(UINT64_SUM_OVERFLOWS(tests[i].a, tests[i].b) == tests[i].overflows); test_end(); } static void ATTR_NO_SANITIZE_INTEGER ATTR_NO_SANITIZE_IMPLICIT_CONVERSION test_bits_fraclog(void) { unsigned int fracbits; for (fracbits = 0; fracbits < 6; fracbits++) { static char name[] = "fraclog x-bit"; name[8] = '0'+ fracbits; test_begin(name); unsigned int i; unsigned int last_end = ~0u; for (i = 0; i < BITS_FRACLOG_BUCKETS(fracbits); i++) { unsigned int start = bits_fraclog_bucket_start(i, fracbits); unsigned int end = bits_fraclog_bucket_end(i, fracbits); test_assert_idx(start == last_end + 1, i); last_end = end; test_assert_idx(bits_fraclog(start, fracbits) == i, i); test_assert_idx(bits_fraclog(end, fracbits) == i, i); } test_assert_idx(last_end == ~0u, fracbits); test_end(); } } /* The compiler *should* generate different code when the fracbits parameter is a compile-time constant, so we also need to check that's the case. */ static void ATTR_NO_SANITIZE_INTEGER ATTR_NO_SANITIZE_IMPLICIT_CONVERSION test_bits_fraclog_const(void) { #define FRACBITS 2 #define STR2(s) #s #define STR(s) STR2(s) test_begin("fraclog constant " STR(FRACBITS) " bit"); unsigned int i; unsigned int last_end = ~0u; for (i = 0; i < BITS_FRACLOG_BUCKETS(FRACBITS); i++) { unsigned int start = bits_fraclog_bucket_start(i, FRACBITS); unsigned int end = bits_fraclog_bucket_end(i, FRACBITS); test_assert_idx(start == last_end + 1, i); last_end = end; test_assert_idx(bits_fraclog(start, FRACBITS) == i, i); test_assert_idx(bits_fraclog(end, FRACBITS) == i, i); } test_assert(last_end == ~0u); test_end(); } static void test_bits_rotl32(void) { test_begin("bits_rotl32"); test_assert(bits_rotl32(0x1c00000eU, 3) == 0xe0000070U); test_assert(bits_rotl32(0xe0000070U, 5) == 0x00000e1cU); test_assert(bits_rotl32(0x00000e1cU, 0) == 0x00000e1cU); test_assert(bits_rotl32(0x1c00000eU, 3 + 32) == 0xe0000070U); test_end(); } static void test_bits_rotl64(void) { test_begin("bits_rotl64"); test_assert(bits_rotl64(0x1c0000000000000eUL, 3) == 0xe000000000000070UL); test_assert(bits_rotl64(0xe000000000000070UL, 5) == 0x0000000000000e1cUL); test_assert(bits_rotl64(0x0000000000000e1cUL, 0) == 0x0000000000000e1cUL); test_assert(bits_rotl64(0x1c0000000000000eUL, 3 + 64) == 0xe000000000000070UL); test_end(); } static void test_bits_rotr32(void) { test_begin("bits_rotr32"); test_assert(bits_rotr32(0x1c00000eU, 3) == 0xc3800001U); test_assert(bits_rotr32(0xc3800001U, 5) == 0x0e1c0000U); test_assert(bits_rotr32(0x00000e1cU, 0) == 0x00000e1cU); test_assert(bits_rotr32(0x1c00000eU, 3 + 32) == 0xc3800001U); test_end(); } static void test_bits_rotr64(void) { test_begin("bits_rotr64"); test_assert(bits_rotr64(0x1c0000000000000eUL, 3) == 0xc380000000000001UL); test_assert(bits_rotr64(0xc380000000000001UL, 5) == 0x0e1c000000000000UL); test_assert(bits_rotr64(0x0000000000000e1cUL, 0) == 0x0000000000000e1cUL); test_assert(bits_rotr64(0x1c0000000000000eUL, 3 + 64) == 0xc380000000000001UL); test_end(); } static void test_bit_tests(void) { test_begin("HAS_..._BITS() macro tests"); test_assert(HAS_NO_BITS(1,0)); test_assert(HAS_NO_BITS(2,~2U)); test_assert(!HAS_NO_BITS(2,2)); /* OUCH - this vacuously true expression fails. However, if you are dumb enough to use 0 as bits, then it will also fail in the verbose case that this macro replaces, it's not a regression. */ /* test_assert(HAS_ANY_BITS(6,0)); */ test_assert(HAS_ANY_BITS(3,1)); test_assert(HAS_ANY_BITS(2,3)); test_assert(!HAS_ANY_BITS(7,~(7U|128U))); test_assert(HAS_ALL_BITS(0,0)); test_assert(HAS_ALL_BITS(30,14)); test_assert(!HAS_ALL_BITS(~1U,~0U)); /* Trap double-evaluation */ unsigned int v=10,b=2; test_assert(!HAS_NO_BITS(v++, b++) && v==11 && b==3); test_assert(HAS_ANY_BITS(v++, b++) && v==12 && b==4); test_assert(HAS_ALL_BITS(v++, b++) && v==13 && b==5); test_end(); } void test_bits(void) { test_bits_unsigned_minus(); test_nearest_power(); test_bits_is_power_of_two(); test_bits_requiredXX(); test_bits_fraclog(); test_bits_fraclog_const(); test_bits_rotl32(); test_bits_rotr32(); test_bits_rotl64(); test_bits_rotr64(); test_sum_overflows(); test_bit_tests(); }