diff options
Diffstat (limited to '')
-rw-r--r-- | qsfp.c | 1024 |
1 files changed, 1024 insertions, 0 deletions
@@ -0,0 +1,1024 @@ +/* + * qsfp.c: Implements SFF-8636 based QSFP+/QSFP28 Diagnostics Memory map. + * + * Copyright 2010 Solarflare Communications Inc. + * Aurelien Guillaume <aurelien@iwi.me> (C) 2012 + * Copyright (C) 2014 Cumulus networks Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Freeoftware Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * Vidya Ravipati <vidya@cumulusnetworks.com> + * This implementation is loosely based on current SFP parser + * and SFF-8636 spec Rev 2.7 (ftp://ftp.seagate.com/pub/sff/SFF-8636.PDF) + * by SFF Committee. + */ + +/* + * Description: + * a) The register/memory layout is up to 5 128 byte pages defined by + * a "pages valid" register and switched via a "page select" + * register. Memory of 256 bytes can be memory mapped at a time + * according to SFF 8636. + * b) SFF 8636 based 640 bytes memory layout is presented for parser + * + * SFF 8636 based QSFP Memory Map + * + * 2-Wire Serial Address: 1010000x + * + * Lower Page 00h (128 bytes) + * ====================== + * | | + * |Page Select Byte(127)| + * ====================== + * | + * V + * ---------------------------------------- + * | | | | + * V V V V + * ---------- ---------- --------- ------------ + * | Upper | | Upper | | Upper | | Upper | + * | Page 00h | | Page 01h | | Page 02h | | Page 03h | + * | | |(Optional)| |(Optional)| | (Optional) | + * | | | | | | | | + * | | | | | | | | + * | ID | | AST | | User | | For | + * | Fields | | Table | | EEPROM | | Cable | + * | | | | | Data | | Assemblies | + * | | | | | | | | + * | | | | | | | | + * ----------- ----------- ---------- -------------- + * + * + **/ +#include <stdio.h> +#include <math.h> +#include <errno.h> +#include "internal.h" +#include "sff-common.h" +#include "qsfp.h" +#include "cmis.h" +#include "netlink/extapi.h" + +struct sff8636_memory_map { + const __u8 *lower_memory; + const __u8 *upper_memory[4]; +#define page_00h upper_memory[0x0] +#define page_03h upper_memory[0x3] +}; + +#define SFF8636_PAGE_SIZE 0x80 +#define SFF8636_I2C_ADDRESS 0x50 +#define SFF8636_MAX_CHANNEL_NUM 4 + +#define MAX_DESC_SIZE 42 + +static struct sff8636_aw_flags { + const char *str; /* Human-readable string, null at the end */ + int offset; + __u8 value; /* Alarm is on if (offset & value) != 0. */ +} sff8636_aw_flags[] = { + { "Laser bias current high alarm (Chan 1)", + SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_1_HALARM) }, + { "Laser bias current low alarm (Chan 1)", + SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_1_LALARM) }, + { "Laser bias current high warning (Chan 1)", + SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_1_HWARN) }, + { "Laser bias current low warning (Chan 1)", + SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_1_LWARN) }, + + { "Laser bias current high alarm (Chan 2)", + SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_2_HALARM) }, + { "Laser bias current low alarm (Chan 2)", + SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_2_LALARM) }, + { "Laser bias current high warning (Chan 2)", + SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_2_HWARN) }, + { "Laser bias current low warning (Chan 2)", + SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_2_LWARN) }, + + { "Laser bias current high alarm (Chan 3)", + SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_3_HALARM) }, + { "Laser bias current low alarm (Chan 3)", + SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_3_LALARM) }, + { "Laser bias current high warning (Chan 3)", + SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_3_HWARN) }, + { "Laser bias current low warning (Chan 3)", + SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_3_LWARN) }, + + { "Laser bias current high alarm (Chan 4)", + SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_4_HALARM) }, + { "Laser bias current low alarm (Chan 4)", + SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_4_LALARM) }, + { "Laser bias current high warning (Chan 4)", + SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_4_HWARN) }, + { "Laser bias current low warning (Chan 4)", + SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_4_LWARN) }, + + { "Module temperature high alarm", + SFF8636_TEMP_AW_OFFSET, (SFF8636_TEMP_HALARM_STATUS) }, + { "Module temperature low alarm", + SFF8636_TEMP_AW_OFFSET, (SFF8636_TEMP_LALARM_STATUS) }, + { "Module temperature high warning", + SFF8636_TEMP_AW_OFFSET, (SFF8636_TEMP_HWARN_STATUS) }, + { "Module temperature low warning", + SFF8636_TEMP_AW_OFFSET, (SFF8636_TEMP_LWARN_STATUS) }, + + { "Module voltage high alarm", + SFF8636_VCC_AW_OFFSET, (SFF8636_VCC_HALARM_STATUS) }, + { "Module voltage low alarm", + SFF8636_VCC_AW_OFFSET, (SFF8636_VCC_LALARM_STATUS) }, + { "Module voltage high warning", + SFF8636_VCC_AW_OFFSET, (SFF8636_VCC_HWARN_STATUS) }, + { "Module voltage low warning", + SFF8636_VCC_AW_OFFSET, (SFF8636_VCC_LWARN_STATUS) }, + + { "Laser tx power high alarm (Channel 1)", + SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_1_HALARM) }, + { "Laser tx power low alarm (Channel 1)", + SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_1_LALARM) }, + { "Laser tx power high warning (Channel 1)", + SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_1_HWARN) }, + { "Laser tx power low warning (Channel 1)", + SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_1_LWARN) }, + + { "Laser tx power high alarm (Channel 2)", + SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_2_HALARM) }, + { "Laser tx power low alarm (Channel 2)", + SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_2_LALARM) }, + { "Laser tx power high warning (Channel 2)", + SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_2_HWARN) }, + { "Laser tx power low warning (Channel 2)", + SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_2_LWARN) }, + + { "Laser tx power high alarm (Channel 3)", + SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_3_HALARM) }, + { "Laser tx power low alarm (Channel 3)", + SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_3_LALARM) }, + { "Laser tx power high warning (Channel 3)", + SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_3_HWARN) }, + { "Laser tx power low warning (Channel 3)", + SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_3_LWARN) }, + + { "Laser tx power high alarm (Channel 4)", + SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_4_HALARM) }, + { "Laser tx power low alarm (Channel 4)", + SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_4_LALARM) }, + { "Laser tx power high warning (Channel 4)", + SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_4_HWARN) }, + { "Laser tx power low warning (Channel 4)", + SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_4_LWARN) }, + + { "Laser rx power high alarm (Channel 1)", + SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_1_HALARM) }, + { "Laser rx power low alarm (Channel 1)", + SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_1_LALARM) }, + { "Laser rx power high warning (Channel 1)", + SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_1_HWARN) }, + { "Laser rx power low warning (Channel 1)", + SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_1_LWARN) }, + + { "Laser rx power high alarm (Channel 2)", + SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_2_HALARM) }, + { "Laser rx power low alarm (Channel 2)", + SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_2_LALARM) }, + { "Laser rx power high warning (Channel 2)", + SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_2_HWARN) }, + { "Laser rx power low warning (Channel 2)", + SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_2_LWARN) }, + + { "Laser rx power high alarm (Channel 3)", + SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_3_HALARM) }, + { "Laser rx power low alarm (Channel 3)", + SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_3_LALARM) }, + { "Laser rx power high warning (Channel 3)", + SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_3_HWARN) }, + { "Laser rx power low warning (Channel 3)", + SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_3_LWARN) }, + + { "Laser rx power high alarm (Channel 4)", + SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_4_HALARM) }, + { "Laser rx power low alarm (Channel 4)", + SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_4_LALARM) }, + { "Laser rx power high warning (Channel 4)", + SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_4_HWARN) }, + { "Laser rx power low warning (Channel 4)", + SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_4_LWARN) }, + + { NULL, 0, 0 }, +}; + +static void sff8636_show_identifier(const struct sff8636_memory_map *map) +{ + sff8024_show_identifier(map->lower_memory, SFF8636_ID_OFFSET); +} + +static void sff8636_show_ext_identifier(const struct sff8636_memory_map *map) +{ + printf("\t%-41s : 0x%02x\n", "Extended identifier", + map->page_00h[SFF8636_EXT_ID_OFFSET]); + + static const char *pfx = + "\tExtended identifier description :"; + + switch (map->page_00h[SFF8636_EXT_ID_OFFSET] & + SFF8636_EXT_ID_PWR_CLASS_MASK) { + case SFF8636_EXT_ID_PWR_CLASS_1: + printf("%s 1.5W max. Power consumption\n", pfx); + break; + case SFF8636_EXT_ID_PWR_CLASS_2: + printf("%s 2.0W max. Power consumption\n", pfx); + break; + case SFF8636_EXT_ID_PWR_CLASS_3: + printf("%s 2.5W max. Power consumption\n", pfx); + break; + case SFF8636_EXT_ID_PWR_CLASS_4: + printf("%s 3.5W max. Power consumption\n", pfx); + break; + } + + if (map->page_00h[SFF8636_EXT_ID_OFFSET] & SFF8636_EXT_ID_CDR_TX_MASK) + printf("%s CDR present in TX,", pfx); + else + printf("%s No CDR in TX,", pfx); + + if (map->page_00h[SFF8636_EXT_ID_OFFSET] & SFF8636_EXT_ID_CDR_RX_MASK) + printf(" CDR present in RX\n"); + else + printf(" No CDR in RX\n"); + + switch (map->page_00h[SFF8636_EXT_ID_OFFSET] & + SFF8636_EXT_ID_EPWR_CLASS_MASK) { + case SFF8636_EXT_ID_PWR_CLASS_LEGACY: + printf("%s", pfx); + break; + case SFF8636_EXT_ID_PWR_CLASS_5: + printf("%s 4.0W max. Power consumption,", pfx); + break; + case SFF8636_EXT_ID_PWR_CLASS_6: + printf("%s 4.5W max. Power consumption, ", pfx); + break; + case SFF8636_EXT_ID_PWR_CLASS_7: + printf("%s 5.0W max. Power consumption, ", pfx); + break; + } + if (map->lower_memory[SFF8636_PWR_MODE_OFFSET] & + SFF8636_HIGH_PWR_ENABLE) + printf(" High Power Class (> 3.5 W) enabled\n"); + else + printf(" High Power Class (> 3.5 W) not enabled\n"); + printf("\t%-41s : ", "Power set"); + printf("%s\n", ONOFF(map->lower_memory[SFF8636_PWR_MODE_OFFSET] & + SFF8636_LOW_PWR_SET)); + printf("\t%-41s : ", "Power override"); + printf("%s\n", ONOFF(map->lower_memory[SFF8636_PWR_MODE_OFFSET] & + SFF8636_PWR_OVERRIDE)); +} + +static void sff8636_show_connector(const struct sff8636_memory_map *map) +{ + sff8024_show_connector(map->page_00h, SFF8636_CTOR_OFFSET); +} + +static void sff8636_show_transceiver(const struct sff8636_memory_map *map) +{ + static const char *pfx = + "\tTransceiver type :"; + + printf("\t%-41s : 0x%02x 0x%02x 0x%02x " \ + "0x%02x 0x%02x 0x%02x 0x%02x 0x%02x\n", + "Transceiver codes", + map->page_00h[SFF8636_ETHERNET_COMP_OFFSET], + map->page_00h[SFF8636_SONET_COMP_OFFSET], + map->page_00h[SFF8636_SAS_COMP_OFFSET], + map->page_00h[SFF8636_GIGE_COMP_OFFSET], + map->page_00h[SFF8636_FC_LEN_OFFSET], + map->page_00h[SFF8636_FC_TECH_OFFSET], + map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET], + map->page_00h[SFF8636_FC_SPEED_OFFSET]); + + /* 10G/40G Ethernet Compliance Codes */ + if (map->page_00h[SFF8636_ETHERNET_COMP_OFFSET] & + SFF8636_ETHERNET_10G_LRM) + printf("%s 10G Ethernet: 10G Base-LRM\n", pfx); + if (map->page_00h[SFF8636_ETHERNET_COMP_OFFSET] & + SFF8636_ETHERNET_10G_LR) + printf("%s 10G Ethernet: 10G Base-LR\n", pfx); + if (map->page_00h[SFF8636_ETHERNET_COMP_OFFSET] & + SFF8636_ETHERNET_10G_SR) + printf("%s 10G Ethernet: 10G Base-SR\n", pfx); + if (map->page_00h[SFF8636_ETHERNET_COMP_OFFSET] & + SFF8636_ETHERNET_40G_CR4) + printf("%s 40G Ethernet: 40G Base-CR4\n", pfx); + if (map->page_00h[SFF8636_ETHERNET_COMP_OFFSET] & + SFF8636_ETHERNET_40G_SR4) + printf("%s 40G Ethernet: 40G Base-SR4\n", pfx); + if (map->page_00h[SFF8636_ETHERNET_COMP_OFFSET] & + SFF8636_ETHERNET_40G_LR4) + printf("%s 40G Ethernet: 40G Base-LR4\n", pfx); + if (map->page_00h[SFF8636_ETHERNET_COMP_OFFSET] & + SFF8636_ETHERNET_40G_ACTIVE) + printf("%s 40G Ethernet: 40G Active Cable (XLPPI)\n", pfx); + /* Extended Specification Compliance Codes from SFF-8024 */ + if (map->page_00h[SFF8636_ETHERNET_COMP_OFFSET] & + SFF8636_ETHERNET_RSRVD) { + switch (map->page_00h[SFF8636_OPTION_1_OFFSET]) { + case SFF8636_ETHERNET_UNSPECIFIED: + printf("%s (reserved or unknown)\n", pfx); + break; + case SFF8636_ETHERNET_100G_AOC: + printf("%s 100G Ethernet: 100G AOC or 25GAUI C2M AOC with worst BER of 5x10^(-5)\n", + pfx); + break; + case SFF8636_ETHERNET_100G_SR4: + printf("%s 100G Ethernet: 100G Base-SR4 or 25GBase-SR\n", + pfx); + break; + case SFF8636_ETHERNET_100G_LR4: + printf("%s 100G Ethernet: 100G Base-LR4\n", pfx); + break; + case SFF8636_ETHERNET_100G_ER4: + printf("%s 100G Ethernet: 100G Base-ER4\n", pfx); + break; + case SFF8636_ETHERNET_100G_SR10: + printf("%s 100G Ethernet: 100G Base-SR10\n", pfx); + break; + case SFF8636_ETHERNET_100G_CWDM4_FEC: + printf("%s 100G Ethernet: 100G CWDM4 MSA with FEC\n", pfx); + break; + case SFF8636_ETHERNET_100G_PSM4: + printf("%s 100G Ethernet: 100G PSM4 Parallel SMF\n", pfx); + break; + case SFF8636_ETHERNET_100G_ACC: + printf("%s 100G Ethernet: 100G ACC or 25GAUI C2M ACC with worst BER of 5x10^(-5)\n", + pfx); + break; + case SFF8636_ETHERNET_100G_CWDM4_NO_FEC: + printf("%s 100G Ethernet: 100G CWDM4 MSA without FEC\n", pfx); + break; + case SFF8636_ETHERNET_100G_RSVD1: + printf("%s (reserved or unknown)\n", pfx); + break; + case SFF8636_ETHERNET_100G_CR4: + printf("%s 100G Ethernet: 100G Base-CR4 or 25G Base-CR CA-L\n", + pfx); + break; + case SFF8636_ETHERNET_25G_CR_CA_S: + printf("%s 25G Ethernet: 25G Base-CR CA-S\n", pfx); + break; + case SFF8636_ETHERNET_25G_CR_CA_N: + printf("%s 25G Ethernet: 25G Base-CR CA-N\n", pfx); + break; + case SFF8636_ETHERNET_40G_ER4: + printf("%s 40G Ethernet: 40G Base-ER4\n", pfx); + break; + case SFF8636_ETHERNET_4X10_SR: + printf("%s 4x10G Ethernet: 10G Base-SR\n", pfx); + break; + case SFF8636_ETHERNET_40G_PSM4: + printf("%s 40G Ethernet: 40G PSM4 Parallel SMF\n", pfx); + break; + case SFF8636_ETHERNET_G959_P1I1_2D1: + printf("%s Ethernet: G959.1 profile P1I1-2D1 (10709 MBd, 2km, 1310nm SM)\n", + pfx); + break; + case SFF8636_ETHERNET_G959_P1S1_2D2: + printf("%s Ethernet: G959.1 profile P1S1-2D2 (10709 MBd, 40km, 1550nm SM)\n", + pfx); + break; + case SFF8636_ETHERNET_G959_P1L1_2D2: + printf("%s Ethernet: G959.1 profile P1L1-2D2 (10709 MBd, 80km, 1550nm SM)\n", + pfx); + break; + case SFF8636_ETHERNET_10GT_SFI: + printf("%s 10G Ethernet: 10G Base-T with SFI electrical interface\n", + pfx); + break; + case SFF8636_ETHERNET_100G_CLR4: + printf("%s 100G Ethernet: 100G CLR4\n", pfx); + break; + case SFF8636_ETHERNET_100G_AOC2: + printf("%s 100G Ethernet: 100G AOC or 25GAUI C2M AOC with worst BER of 10^(-12)\n", + pfx); + break; + case SFF8636_ETHERNET_100G_ACC2: + printf("%s 100G Ethernet: 100G ACC or 25GAUI C2M ACC with worst BER of 10^(-12)\n", + pfx); + break; + case SFF8636_ETHERNET_100GE_DWDM2: + printf("%s 100GE-DWDM2 (DWDM transceiver using 2 wavelengths on a 1550 nm DWDM grid with a reach up to 80 km)\n", + pfx); + break; + case SFF8636_ETHERNET_100G_1550NM_WDM: + printf("%s 100G 1550nm WDM (4 wavelengths)\n", pfx); + break; + case SFF8636_ETHERNET_10G_BASET_SR: + printf("%s 10GBASE-T Short Reach (30 meters)\n", pfx); + break; + case SFF8636_ETHERNET_5G_BASET: + printf("%s 5GBASE-T\n", pfx); + break; + case SFF8636_ETHERNET_2HALFG_BASET: + printf("%s 2.5GBASE-T\n", pfx); + break; + case SFF8636_ETHERNET_40G_SWDM4: + printf("%s 40G SWDM4\n", pfx); + break; + case SFF8636_ETHERNET_100G_SWDM4: + printf("%s 100G SWDM4\n", pfx); + break; + case SFF8636_ETHERNET_100G_PAM4_BIDI: + printf("%s 100G PAM4 BiDi\n", pfx); + break; + case SFF8636_ETHERNET_4WDM10_MSA: + printf("%s 4WDM-10 MSA (10km version of 100G CWDM4 with same RS(528,514) FEC in host system)\n", + pfx); + break; + case SFF8636_ETHERNET_4WDM20_MSA: + printf("%s 4WDM-20 MSA (20km version of 100GBASE-LR4 with RS(528,514) FEC in host system)\n", + pfx); + break; + case SFF8636_ETHERNET_4WDM40_MSA: + printf("%s 4WDM-40 MSA (40km reach with APD receiver and RS(528,514) FEC in host system)\n", + pfx); + break; + case SFF8636_ETHERNET_100G_DR: + printf("%s 100GBASE-DR (clause 140), CAUI-4 (no FEC)\n", pfx); + break; + case SFF8636_ETHERNET_100G_FR_NOFEC: + printf("%s 100G-FR or 100GBASE-FR1 (clause 140), CAUI-4 (no FEC)\n", pfx); + break; + case SFF8636_ETHERNET_100G_LR_NOFEC: + printf("%s 100G-LR or 100GBASE-LR1 (clause 140), CAUI-4 (no FEC)\n", pfx); + break; + case SFF8636_ETHERNET_200G_ACC1: + printf("%s Active Copper Cable with 50GAUI, 100GAUI-2 or 200GAUI-4 C2M. Providing a worst BER of 10-6 or below\n", + pfx); + break; + case SFF8636_ETHERNET_200G_AOC1: + printf("%s Active Optical Cable with 50GAUI, 100GAUI-2 or 200GAUI-4 C2M. Providing a worst BER of 10-6 or below\n", + pfx); + break; + case SFF8636_ETHERNET_200G_ACC2: + printf("%s Active Copper Cable with 50GAUI, 100GAUI-2 or 200GAUI-4 C2M. Providing a worst BER of 2.6x10-4 for ACC, 10-5 for AUI, or below\n", + pfx); + break; + case SFF8636_ETHERNET_200G_A0C2: + printf("%s Active Optical Cable with 50GAUI, 100GAUI-2 or 200GAUI-4 C2M. Providing a worst BER of 2.6x10-4 for ACC, 10-5 for AUI, or below\n", + pfx); + break; + case SFF8636_ETHERNET_200G_CR4: + printf("%s 50GBASE-CR, 100GBASE-CR2, or 200GBASE-CR4\n", pfx); + break; + case SFF8636_ETHERNET_200G_SR4: + printf("%s 50GBASE-SR, 100GBASE-SR2, or 200GBASE-SR4\n", pfx); + break; + case SFF8636_ETHERNET_200G_DR4: + printf("%s 50GBASE-FR or 200GBASE-DR4\n", pfx); + break; + case SFF8636_ETHERNET_200G_FR4: + printf("%s 200GBASE-FR4\n", pfx); + break; + case SFF8636_ETHERNET_200G_PSM4: + printf("%s 200G 1550 nm PSM4\n", pfx); + break; + case SFF8636_ETHERNET_50G_LR: + printf("%s 50GBASE-LR\n", pfx); + break; + case SFF8636_ETHERNET_200G_LR4: + printf("%s 200GBASE-LR4\n", pfx); + break; + case SFF8636_ETHERNET_64G_EA: + printf("%s 64GFC EA\n", pfx); + break; + case SFF8636_ETHERNET_64G_SW: + printf("%s 64GFC SW\n", pfx); + break; + case SFF8636_ETHERNET_64G_LW: + printf("%s 64GFC LW\n", pfx); + break; + case SFF8636_ETHERNET_128FC_EA: + printf("%s 128GFC EA\n", pfx); + break; + case SFF8636_ETHERNET_128FC_SW: + printf("%s 128GFC SW\n", pfx); + break; + case SFF8636_ETHERNET_128FC_LW: + printf("%s 128GFC LW\n", pfx); + break; + default: + printf("%s (reserved or unknown)\n", pfx); + break; + } + } + + /* SONET Compliance Codes */ + if (map->page_00h[SFF8636_SONET_COMP_OFFSET] & + (SFF8636_SONET_40G_OTN)) + printf("%s 40G OTN (OTU3B/OTU3C)\n", pfx); + if (map->page_00h[SFF8636_SONET_COMP_OFFSET] & (SFF8636_SONET_OC48_LR)) + printf("%s SONET: OC-48, long reach\n", pfx); + if (map->page_00h[SFF8636_SONET_COMP_OFFSET] & (SFF8636_SONET_OC48_IR)) + printf("%s SONET: OC-48, intermediate reach\n", pfx); + if (map->page_00h[SFF8636_SONET_COMP_OFFSET] & (SFF8636_SONET_OC48_SR)) + printf("%s SONET: OC-48, short reach\n", pfx); + + /* SAS/SATA Compliance Codes */ + if (map->page_00h[SFF8636_SAS_COMP_OFFSET] & (SFF8636_SAS_6G)) + printf("%s SAS 6.0G\n", pfx); + if (map->page_00h[SFF8636_SAS_COMP_OFFSET] & (SFF8636_SAS_3G)) + printf("%s SAS 3.0G\n", pfx); + + /* Ethernet Compliance Codes */ + if (map->page_00h[SFF8636_GIGE_COMP_OFFSET] & SFF8636_GIGE_1000_BASE_T) + printf("%s Ethernet: 1000BASE-T\n", pfx); + if (map->page_00h[SFF8636_GIGE_COMP_OFFSET] & SFF8636_GIGE_1000_BASE_CX) + printf("%s Ethernet: 1000BASE-CX\n", pfx); + if (map->page_00h[SFF8636_GIGE_COMP_OFFSET] & SFF8636_GIGE_1000_BASE_LX) + printf("%s Ethernet: 1000BASE-LX\n", pfx); + if (map->page_00h[SFF8636_GIGE_COMP_OFFSET] & SFF8636_GIGE_1000_BASE_SX) + printf("%s Ethernet: 1000BASE-SX\n", pfx); + + /* Fibre Channel link length */ + if (map->page_00h[SFF8636_FC_LEN_OFFSET] & SFF8636_FC_LEN_VERY_LONG) + printf("%s FC: very long distance (V)\n", pfx); + if (map->page_00h[SFF8636_FC_LEN_OFFSET] & SFF8636_FC_LEN_SHORT) + printf("%s FC: short distance (S)\n", pfx); + if (map->page_00h[SFF8636_FC_LEN_OFFSET] & SFF8636_FC_LEN_INT) + printf("%s FC: intermediate distance (I)\n", pfx); + if (map->page_00h[SFF8636_FC_LEN_OFFSET] & SFF8636_FC_LEN_LONG) + printf("%s FC: long distance (L)\n", pfx); + if (map->page_00h[SFF8636_FC_LEN_OFFSET] & SFF8636_FC_LEN_MED) + printf("%s FC: medium distance (M)\n", pfx); + + /* Fibre Channel transmitter technology */ + if (map->page_00h[SFF8636_FC_LEN_OFFSET] & SFF8636_FC_TECH_LONG_LC) + printf("%s FC: Longwave laser (LC)\n", pfx); + if (map->page_00h[SFF8636_FC_LEN_OFFSET] & SFF8636_FC_TECH_ELEC_INTER) + printf("%s FC: Electrical inter-enclosure (EL)\n", pfx); + if (map->page_00h[SFF8636_FC_TECH_OFFSET] & SFF8636_FC_TECH_ELEC_INTRA) + printf("%s FC: Electrical intra-enclosure (EL)\n", pfx); + if (map->page_00h[SFF8636_FC_TECH_OFFSET] & + SFF8636_FC_TECH_SHORT_WO_OFC) + printf("%s FC: Shortwave laser w/o OFC (SN)\n", pfx); + if (map->page_00h[SFF8636_FC_TECH_OFFSET] & SFF8636_FC_TECH_SHORT_W_OFC) + printf("%s FC: Shortwave laser with OFC (SL)\n", pfx); + if (map->page_00h[SFF8636_FC_TECH_OFFSET] & SFF8636_FC_TECH_LONG_LL) + printf("%s FC: Longwave laser (LL)\n", pfx); + + /* Fibre Channel transmission media */ + if (map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET] & + SFF8636_FC_TRANS_MEDIA_TW) + printf("%s FC: Twin Axial Pair (TW)\n", pfx); + if (map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET] & + SFF8636_FC_TRANS_MEDIA_TP) + printf("%s FC: Twisted Pair (TP)\n", pfx); + if (map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET] & + SFF8636_FC_TRANS_MEDIA_MI) + printf("%s FC: Miniature Coax (MI)\n", pfx); + if (map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET] & + SFF8636_FC_TRANS_MEDIA_TV) + printf("%s FC: Video Coax (TV)\n", pfx); + if (map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET] & + SFF8636_FC_TRANS_MEDIA_M6) + printf("%s FC: Multimode, 62.5m (M6)\n", pfx); + if (map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET] & + SFF8636_FC_TRANS_MEDIA_M5) + printf("%s FC: Multimode, 50m (M5)\n", pfx); + if (map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET] & + SFF8636_FC_TRANS_MEDIA_OM3) + printf("%s FC: Multimode, 50um (OM3)\n", pfx); + if (map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET] & + SFF8636_FC_TRANS_MEDIA_SM) + printf("%s FC: Single Mode (SM)\n", pfx); + + /* Fibre Channel speed */ + if (map->page_00h[SFF8636_FC_SPEED_OFFSET] & SFF8636_FC_SPEED_1200_MBPS) + printf("%s FC: 1200 MBytes/sec\n", pfx); + if (map->page_00h[SFF8636_FC_SPEED_OFFSET] & SFF8636_FC_SPEED_800_MBPS) + printf("%s FC: 800 MBytes/sec\n", pfx); + if (map->page_00h[SFF8636_FC_SPEED_OFFSET] & SFF8636_FC_SPEED_1600_MBPS) + printf("%s FC: 1600 MBytes/sec\n", pfx); + if (map->page_00h[SFF8636_FC_SPEED_OFFSET] & SFF8636_FC_SPEED_400_MBPS) + printf("%s FC: 400 MBytes/sec\n", pfx); + if (map->page_00h[SFF8636_FC_SPEED_OFFSET] & SFF8636_FC_SPEED_200_MBPS) + printf("%s FC: 200 MBytes/sec\n", pfx); + if (map->page_00h[SFF8636_FC_SPEED_OFFSET] & SFF8636_FC_SPEED_100_MBPS) + printf("%s FC: 100 MBytes/sec\n", pfx); +} + +static void sff8636_show_encoding(const struct sff8636_memory_map *map) +{ + sff8024_show_encoding(map->page_00h, SFF8636_ENCODING_OFFSET, + ETH_MODULE_SFF_8636); +} + +static void sff8636_show_rate_identifier(const struct sff8636_memory_map *map) +{ + /* TODO: Need to fix rate select logic */ + printf("\t%-41s : 0x%02x\n", "Rate identifier", + map->page_00h[SFF8636_EXT_RS_OFFSET]); +} + +static void +sff8636_show_wavelength_or_copper_compliance(const struct sff8636_memory_map *map) +{ + printf("\t%-41s : 0x%02x", "Transmitter technology", + map->page_00h[SFF8636_DEVICE_TECH_OFFSET] & + SFF8636_TRANS_TECH_MASK); + + switch (map->page_00h[SFF8636_DEVICE_TECH_OFFSET] & + SFF8636_TRANS_TECH_MASK) { + case SFF8636_TRANS_850_VCSEL: + printf(" (850 nm VCSEL)\n"); + break; + case SFF8636_TRANS_1310_VCSEL: + printf(" (1310 nm VCSEL)\n"); + break; + case SFF8636_TRANS_1550_VCSEL: + printf(" (1550 nm VCSEL)\n"); + break; + case SFF8636_TRANS_1310_FP: + printf(" (1310 nm FP)\n"); + break; + case SFF8636_TRANS_1310_DFB: + printf(" (1310 nm DFB)\n"); + break; + case SFF8636_TRANS_1550_DFB: + printf(" (1550 nm DFB)\n"); + break; + case SFF8636_TRANS_1310_EML: + printf(" (1310 nm EML)\n"); + break; + case SFF8636_TRANS_1550_EML: + printf(" (1550 nm EML)\n"); + break; + case SFF8636_TRANS_OTHERS: + printf(" (Others/Undefined)\n"); + break; + case SFF8636_TRANS_1490_DFB: + printf(" (1490 nm DFB)\n"); + break; + case SFF8636_TRANS_COPPER_PAS_UNEQUAL: + printf(" (Copper cable unequalized)\n"); + break; + case SFF8636_TRANS_COPPER_PAS_EQUAL: + printf(" (Copper cable passive equalized)\n"); + break; + case SFF8636_TRANS_COPPER_LNR_FAR_EQUAL: + printf(" (Copper cable, near and far end limiting active equalizers)\n"); + break; + case SFF8636_TRANS_COPPER_FAR_EQUAL: + printf(" (Copper cable, far end limiting active equalizers)\n"); + break; + case SFF8636_TRANS_COPPER_NEAR_EQUAL: + printf(" (Copper cable, near end limiting active equalizers)\n"); + break; + case SFF8636_TRANS_COPPER_LNR_EQUAL: + printf(" (Copper cable, linear active equalizers)\n"); + break; + } + + if ((map->page_00h[SFF8636_DEVICE_TECH_OFFSET] & + SFF8636_TRANS_TECH_MASK) >= SFF8636_TRANS_COPPER_PAS_UNEQUAL) { + printf("\t%-41s : %udb\n", "Attenuation at 2.5GHz", + map->page_00h[SFF8636_WAVELEN_HIGH_BYTE_OFFSET]); + printf("\t%-41s : %udb\n", "Attenuation at 5.0GHz", + map->page_00h[SFF8636_WAVELEN_LOW_BYTE_OFFSET]); + printf("\t%-41s : %udb\n", "Attenuation at 7.0GHz", + map->page_00h[SFF8636_WAVE_TOL_HIGH_BYTE_OFFSET]); + printf("\t%-41s : %udb\n", "Attenuation at 12.9GHz", + map->page_00h[SFF8636_WAVE_TOL_LOW_BYTE_OFFSET]); + } else { + printf("\t%-41s : %.3lfnm\n", "Laser wavelength", + (((map->page_00h[SFF8636_WAVELEN_HIGH_BYTE_OFFSET] << 8) | + map->page_00h[SFF8636_WAVELEN_LOW_BYTE_OFFSET]) * 0.05)); + printf("\t%-41s : %.3lfnm\n", "Laser wavelength tolerance", + (((map->page_00h[SFF8636_WAVE_TOL_HIGH_BYTE_OFFSET] << 8) | + map->page_00h[SFF8636_WAVE_TOL_LOW_BYTE_OFFSET]) * 0.005)); + } +} + +/* + * 2-byte internal temperature conversions: + * First byte is a signed 8-bit integer, which is the temp decimal part + * Second byte are 1/256th of degree, which are added to the dec part. + */ +#define SFF8636_OFFSET_TO_TEMP(offset) ((__s16)OFFSET_TO_U16(offset)) + +static void sff8636_dom_parse(const struct sff8636_memory_map *map, + struct sff_diags *sd) +{ + const __u8 *id = map->lower_memory; + int i = 0; + + /* Monitoring Thresholds for Alarms and Warnings */ + sd->sfp_voltage[MCURR] = OFFSET_TO_U16_PTR(id, SFF8636_VCC_CURR); + sd->sfp_temp[MCURR] = SFF8636_OFFSET_TO_TEMP(SFF8636_TEMP_CURR); + + if (!map->page_03h) + goto out; + + sd->sfp_voltage[HALRM] = OFFSET_TO_U16_PTR(map->page_03h, + SFF8636_VCC_HALRM); + sd->sfp_voltage[LALRM] = OFFSET_TO_U16_PTR(map->page_03h, + SFF8636_VCC_LALRM); + sd->sfp_voltage[HWARN] = OFFSET_TO_U16_PTR(map->page_03h, + SFF8636_VCC_HWARN); + sd->sfp_voltage[LWARN] = OFFSET_TO_U16_PTR(map->page_03h, + SFF8636_VCC_LWARN); + + sd->sfp_temp[HALRM] = (__s16)OFFSET_TO_U16_PTR(map->page_03h, + SFF8636_TEMP_HALRM); + sd->sfp_temp[LALRM] = (__s16)OFFSET_TO_U16_PTR(map->page_03h, + SFF8636_TEMP_LALRM); + sd->sfp_temp[HWARN] = (__s16)OFFSET_TO_U16_PTR(map->page_03h, + SFF8636_TEMP_HWARN); + sd->sfp_temp[LWARN] = (__s16)OFFSET_TO_U16_PTR(map->page_03h, + SFF8636_TEMP_LWARN); + + sd->bias_cur[HALRM] = OFFSET_TO_U16_PTR(map->page_03h, + SFF8636_TX_BIAS_HALRM); + sd->bias_cur[LALRM] = OFFSET_TO_U16_PTR(map->page_03h, + SFF8636_TX_BIAS_LALRM); + sd->bias_cur[HWARN] = OFFSET_TO_U16_PTR(map->page_03h, + SFF8636_TX_BIAS_HWARN); + sd->bias_cur[LWARN] = OFFSET_TO_U16_PTR(map->page_03h, + SFF8636_TX_BIAS_LWARN); + + sd->tx_power[HALRM] = OFFSET_TO_U16_PTR(map->page_03h, + SFF8636_TX_PWR_HALRM); + sd->tx_power[LALRM] = OFFSET_TO_U16_PTR(map->page_03h, + SFF8636_TX_PWR_LALRM); + sd->tx_power[HWARN] = OFFSET_TO_U16_PTR(map->page_03h, + SFF8636_TX_PWR_HWARN); + sd->tx_power[LWARN] = OFFSET_TO_U16_PTR(map->page_03h, + SFF8636_TX_PWR_LWARN); + + sd->rx_power[HALRM] = OFFSET_TO_U16_PTR(map->page_03h, + SFF8636_RX_PWR_HALRM); + sd->rx_power[LALRM] = OFFSET_TO_U16_PTR(map->page_03h, + SFF8636_RX_PWR_LALRM); + sd->rx_power[HWARN] = OFFSET_TO_U16_PTR(map->page_03h, + SFF8636_RX_PWR_HWARN); + sd->rx_power[LWARN] = OFFSET_TO_U16_PTR(map->page_03h, + SFF8636_RX_PWR_LWARN); + +out: + /* Channel Specific Data */ + for (i = 0; i < SFF8636_MAX_CHANNEL_NUM; i++) { + u8 rx_power_offset, tx_bias_offset; + u8 tx_power_offset; + + switch (i) { + case 0: + rx_power_offset = SFF8636_RX_PWR_1_OFFSET; + tx_power_offset = SFF8636_TX_PWR_1_OFFSET; + tx_bias_offset = SFF8636_TX_BIAS_1_OFFSET; + break; + case 1: + rx_power_offset = SFF8636_RX_PWR_2_OFFSET; + tx_power_offset = SFF8636_TX_PWR_2_OFFSET; + tx_bias_offset = SFF8636_TX_BIAS_2_OFFSET; + break; + case 2: + rx_power_offset = SFF8636_RX_PWR_3_OFFSET; + tx_power_offset = SFF8636_TX_PWR_3_OFFSET; + tx_bias_offset = SFF8636_TX_BIAS_3_OFFSET; + break; + case 3: + rx_power_offset = SFF8636_RX_PWR_4_OFFSET; + tx_power_offset = SFF8636_TX_PWR_4_OFFSET; + tx_bias_offset = SFF8636_TX_BIAS_4_OFFSET; + break; + } + sd->scd[i].bias_cur = OFFSET_TO_U16(tx_bias_offset); + sd->scd[i].rx_power = OFFSET_TO_U16(rx_power_offset); + sd->scd[i].tx_power = OFFSET_TO_U16(tx_power_offset); + } +} + +static void sff8636_show_dom(const struct sff8636_memory_map *map) +{ + struct sff_diags sd = {0}; + char *rx_power_string = NULL; + char power_string[MAX_DESC_SIZE]; + int i; + + /* + * There is no clear identifier to signify the existence of + * optical diagnostics similar to SFF-8472. So checking existence + * of page 3, will provide the gurantee for existence of alarms + * and thresholds + * If pagging support exists, then supports_alarms is marked as 1 + */ + if (map->page_03h) + sd.supports_alarms = 1; + + sd.rx_power_type = map->page_00h[SFF8636_DIAG_TYPE_OFFSET] & + SFF8636_RX_PWR_TYPE_MASK; + sd.tx_power_type = map->page_00h[SFF8636_DIAG_TYPE_OFFSET] & + SFF8636_RX_PWR_TYPE_MASK; + + sff8636_dom_parse(map, &sd); + + PRINT_TEMP("Module temperature", sd.sfp_temp[MCURR]); + PRINT_VCC("Module voltage", sd.sfp_voltage[MCURR]); + + /* + * SFF-8636/8436 spec is not clear whether RX power/ TX bias + * current fields are supported or not. A valid temperature + * reading is used as existence for TX/RX power. + */ + if ((sd.sfp_temp[MCURR] == 0x0) || + (sd.sfp_temp[MCURR] == (__s16)0xFFFF)) + return; + + printf("\t%-41s : %s\n", "Alarm/warning flags implemented", + (sd.supports_alarms ? "Yes" : "No")); + + for (i = 0; i < SFF8636_MAX_CHANNEL_NUM; i++) { + snprintf(power_string, MAX_DESC_SIZE, "%s (Channel %d)", + "Laser tx bias current", i+1); + PRINT_BIAS(power_string, sd.scd[i].bias_cur); + } + + for (i = 0; i < SFF8636_MAX_CHANNEL_NUM; i++) { + snprintf(power_string, MAX_DESC_SIZE, "%s (Channel %d)", + "Transmit avg optical power", i+1); + PRINT_xX_PWR(power_string, sd.scd[i].tx_power); + } + + if (!sd.rx_power_type) + rx_power_string = "Receiver signal OMA"; + else + rx_power_string = "Rcvr signal avg optical power"; + + for (i = 0; i < SFF8636_MAX_CHANNEL_NUM; i++) { + snprintf(power_string, MAX_DESC_SIZE, "%s(Channel %d)", + rx_power_string, i+1); + PRINT_xX_PWR(power_string, sd.scd[i].rx_power); + } + + if (sd.supports_alarms) { + for (i = 0; sff8636_aw_flags[i].str; ++i) { + printf("\t%-41s : %s\n", sff8636_aw_flags[i].str, + map->lower_memory[sff8636_aw_flags[i].offset] + & sff8636_aw_flags[i].value ? "On" : "Off"); + } + + sff_show_thresholds(sd); + } +} + +static void sff8636_show_page_zero(const struct sff8636_memory_map *map) +{ + sff8636_show_ext_identifier(map); + sff8636_show_connector(map); + sff8636_show_transceiver(map); + sff8636_show_encoding(map); + sff_show_value_with_unit(map->page_00h, SFF8636_BR_NOMINAL_OFFSET, + "BR, Nominal", 100, "Mbps"); + sff8636_show_rate_identifier(map); + sff_show_value_with_unit(map->page_00h, SFF8636_SM_LEN_OFFSET, + "Length (SMF,km)", 1, "km"); + sff_show_value_with_unit(map->page_00h, SFF8636_OM3_LEN_OFFSET, + "Length (OM3 50um)", 2, "m"); + sff_show_value_with_unit(map->page_00h, SFF8636_OM2_LEN_OFFSET, + "Length (OM2 50um)", 1, "m"); + sff_show_value_with_unit(map->page_00h, SFF8636_OM1_LEN_OFFSET, + "Length (OM1 62.5um)", 1, "m"); + sff_show_value_with_unit(map->page_00h, SFF8636_CBL_LEN_OFFSET, + "Length (Copper or Active cable)", 1, "m"); + sff8636_show_wavelength_or_copper_compliance(map); + sff_show_ascii(map->page_00h, SFF8636_VENDOR_NAME_START_OFFSET, + SFF8636_VENDOR_NAME_END_OFFSET, "Vendor name"); + sff8024_show_oui(map->page_00h, SFF8636_VENDOR_OUI_OFFSET); + sff_show_ascii(map->page_00h, SFF8636_VENDOR_PN_START_OFFSET, + SFF8636_VENDOR_PN_END_OFFSET, "Vendor PN"); + sff_show_ascii(map->page_00h, SFF8636_VENDOR_REV_START_OFFSET, + SFF8636_VENDOR_REV_END_OFFSET, "Vendor rev"); + sff_show_ascii(map->page_00h, SFF8636_VENDOR_SN_START_OFFSET, + SFF8636_VENDOR_SN_END_OFFSET, "Vendor SN"); + sff_show_ascii(map->page_00h, SFF8636_DATE_YEAR_OFFSET, + SFF8636_DATE_VENDOR_LOT_OFFSET + 1, "Date code"); + sff_show_revision_compliance(map->lower_memory, + SFF8636_REV_COMPLIANCE_OFFSET); +} + +static void sff8636_show_all_common(const struct sff8636_memory_map *map) +{ + sff8636_show_identifier(map); + switch (map->lower_memory[SFF8636_ID_OFFSET]) { + case SFF8024_ID_QSFP: + case SFF8024_ID_QSFP_PLUS: + case SFF8024_ID_QSFP28: + sff8636_show_page_zero(map); + sff8636_show_dom(map); + break; + } +} + +static void sff8636_memory_map_init_buf(struct sff8636_memory_map *map, + const __u8 *id, __u32 eeprom_len) +{ + /* Lower Memory and Page 00h are always present. + * + * Offset into Upper Memory is between page size and twice the page + * size. Therefore, set the base address of each page to base address + * plus page size multiplied by the page number. + */ + map->lower_memory = id; + map->page_00h = id; + + /* Page 03h is only present when the module memory model is paged and + * not flat and when we got a big enough buffer from the kernel. + */ + if (map->lower_memory[SFF8636_STATUS_2_OFFSET] & + SFF8636_STATUS_PAGE_3_PRESENT || + eeprom_len != ETH_MODULE_SFF_8636_MAX_LEN) + return; + + map->page_03h = id + 3 * SFF8636_PAGE_SIZE; +} + +void sff8636_show_all_ioctl(const __u8 *id, __u32 eeprom_len) +{ + struct sff8636_memory_map map = {}; + + if (id[SFF8636_ID_OFFSET] == SFF8024_ID_QSFP_DD || + id[SFF8636_ID_OFFSET] == SFF8024_ID_OSFP || + id[SFF8636_ID_OFFSET] == SFF8024_ID_DSFP) { + cmis_show_all_ioctl(id); + return; + } + + sff8636_memory_map_init_buf(&map, id, eeprom_len); + sff8636_show_all_common(&map); +} + +static void sff8636_request_init(struct ethtool_module_eeprom *request, u8 page, + u32 offset) +{ + request->offset = offset; + request->length = SFF8636_PAGE_SIZE; + request->page = page; + request->bank = 0; + request->i2c_address = SFF8636_I2C_ADDRESS; + request->data = NULL; +} + +static int +sff8636_memory_map_init_pages(struct cmd_context *ctx, + struct sff8636_memory_map *map) +{ + struct ethtool_module_eeprom request; + int ret; + + /* Lower Memory and Page 00h are always present. + * + * Offset into Upper Memory is between page size and twice the page + * size. Therefore, set the base address of each page to its base + * address minus page size. + */ + sff8636_request_init(&request, 0x0, 0); + ret = nl_get_eeprom_page(ctx, &request); + if (ret < 0) + return ret; + map->lower_memory = request.data; + + sff8636_request_init(&request, 0x0, SFF8636_PAGE_SIZE); + ret = nl_get_eeprom_page(ctx, &request); + if (ret < 0) + return ret; + map->page_00h = request.data - SFF8636_PAGE_SIZE; + + /* Page 03h is only present when the module memory model is paged and + * not flat. + */ + if (map->lower_memory[SFF8636_STATUS_2_OFFSET] & + SFF8636_STATUS_PAGE_3_PRESENT) + return 0; + + sff8636_request_init(&request, 0x3, SFF8636_PAGE_SIZE); + ret = nl_get_eeprom_page(ctx, &request); + if (ret < 0) + return ret; + map->page_03h = request.data - SFF8636_PAGE_SIZE; + + return 0; +} + +int sff8636_show_all_nl(struct cmd_context *ctx) +{ + struct sff8636_memory_map map = {}; + int ret; + + ret = sff8636_memory_map_init_pages(ctx, &map); + if (ret < 0) + return ret; + sff8636_show_all_common(&map); + + return 0; +} |