summaryrefslogtreecommitdiffstats
path: root/qsfp.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--qsfp.c1024
1 files changed, 1024 insertions, 0 deletions
diff --git a/qsfp.c b/qsfp.c
new file mode 100644
index 0000000..1fe5de1
--- /dev/null
+++ b/qsfp.c
@@ -0,0 +1,1024 @@
+/*
+ * qsfp.c: Implements SFF-8636 based QSFP+/QSFP28 Diagnostics Memory map.
+ *
+ * Copyright 2010 Solarflare Communications Inc.
+ * Aurelien Guillaume <aurelien@iwi.me> (C) 2012
+ * Copyright (C) 2014 Cumulus networks Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Freeoftware Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * Vidya Ravipati <vidya@cumulusnetworks.com>
+ * This implementation is loosely based on current SFP parser
+ * and SFF-8636 spec Rev 2.7 (ftp://ftp.seagate.com/pub/sff/SFF-8636.PDF)
+ * by SFF Committee.
+ */
+
+/*
+ * Description:
+ * a) The register/memory layout is up to 5 128 byte pages defined by
+ * a "pages valid" register and switched via a "page select"
+ * register. Memory of 256 bytes can be memory mapped at a time
+ * according to SFF 8636.
+ * b) SFF 8636 based 640 bytes memory layout is presented for parser
+ *
+ * SFF 8636 based QSFP Memory Map
+ *
+ * 2-Wire Serial Address: 1010000x
+ *
+ * Lower Page 00h (128 bytes)
+ * ======================
+ * | |
+ * |Page Select Byte(127)|
+ * ======================
+ * |
+ * V
+ * ----------------------------------------
+ * | | | |
+ * V V V V
+ * ---------- ---------- --------- ------------
+ * | Upper | | Upper | | Upper | | Upper |
+ * | Page 00h | | Page 01h | | Page 02h | | Page 03h |
+ * | | |(Optional)| |(Optional)| | (Optional) |
+ * | | | | | | | |
+ * | | | | | | | |
+ * | ID | | AST | | User | | For |
+ * | Fields | | Table | | EEPROM | | Cable |
+ * | | | | | Data | | Assemblies |
+ * | | | | | | | |
+ * | | | | | | | |
+ * ----------- ----------- ---------- --------------
+ *
+ *
+ **/
+#include <stdio.h>
+#include <math.h>
+#include <errno.h>
+#include "internal.h"
+#include "sff-common.h"
+#include "qsfp.h"
+#include "cmis.h"
+#include "netlink/extapi.h"
+
+struct sff8636_memory_map {
+ const __u8 *lower_memory;
+ const __u8 *upper_memory[4];
+#define page_00h upper_memory[0x0]
+#define page_03h upper_memory[0x3]
+};
+
+#define SFF8636_PAGE_SIZE 0x80
+#define SFF8636_I2C_ADDRESS 0x50
+#define SFF8636_MAX_CHANNEL_NUM 4
+
+#define MAX_DESC_SIZE 42
+
+static struct sff8636_aw_flags {
+ const char *str; /* Human-readable string, null at the end */
+ int offset;
+ __u8 value; /* Alarm is on if (offset & value) != 0. */
+} sff8636_aw_flags[] = {
+ { "Laser bias current high alarm (Chan 1)",
+ SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_1_HALARM) },
+ { "Laser bias current low alarm (Chan 1)",
+ SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_1_LALARM) },
+ { "Laser bias current high warning (Chan 1)",
+ SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_1_HWARN) },
+ { "Laser bias current low warning (Chan 1)",
+ SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_1_LWARN) },
+
+ { "Laser bias current high alarm (Chan 2)",
+ SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_2_HALARM) },
+ { "Laser bias current low alarm (Chan 2)",
+ SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_2_LALARM) },
+ { "Laser bias current high warning (Chan 2)",
+ SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_2_HWARN) },
+ { "Laser bias current low warning (Chan 2)",
+ SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_2_LWARN) },
+
+ { "Laser bias current high alarm (Chan 3)",
+ SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_3_HALARM) },
+ { "Laser bias current low alarm (Chan 3)",
+ SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_3_LALARM) },
+ { "Laser bias current high warning (Chan 3)",
+ SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_3_HWARN) },
+ { "Laser bias current low warning (Chan 3)",
+ SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_3_LWARN) },
+
+ { "Laser bias current high alarm (Chan 4)",
+ SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_4_HALARM) },
+ { "Laser bias current low alarm (Chan 4)",
+ SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_4_LALARM) },
+ { "Laser bias current high warning (Chan 4)",
+ SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_4_HWARN) },
+ { "Laser bias current low warning (Chan 4)",
+ SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_4_LWARN) },
+
+ { "Module temperature high alarm",
+ SFF8636_TEMP_AW_OFFSET, (SFF8636_TEMP_HALARM_STATUS) },
+ { "Module temperature low alarm",
+ SFF8636_TEMP_AW_OFFSET, (SFF8636_TEMP_LALARM_STATUS) },
+ { "Module temperature high warning",
+ SFF8636_TEMP_AW_OFFSET, (SFF8636_TEMP_HWARN_STATUS) },
+ { "Module temperature low warning",
+ SFF8636_TEMP_AW_OFFSET, (SFF8636_TEMP_LWARN_STATUS) },
+
+ { "Module voltage high alarm",
+ SFF8636_VCC_AW_OFFSET, (SFF8636_VCC_HALARM_STATUS) },
+ { "Module voltage low alarm",
+ SFF8636_VCC_AW_OFFSET, (SFF8636_VCC_LALARM_STATUS) },
+ { "Module voltage high warning",
+ SFF8636_VCC_AW_OFFSET, (SFF8636_VCC_HWARN_STATUS) },
+ { "Module voltage low warning",
+ SFF8636_VCC_AW_OFFSET, (SFF8636_VCC_LWARN_STATUS) },
+
+ { "Laser tx power high alarm (Channel 1)",
+ SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_1_HALARM) },
+ { "Laser tx power low alarm (Channel 1)",
+ SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_1_LALARM) },
+ { "Laser tx power high warning (Channel 1)",
+ SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_1_HWARN) },
+ { "Laser tx power low warning (Channel 1)",
+ SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_1_LWARN) },
+
+ { "Laser tx power high alarm (Channel 2)",
+ SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_2_HALARM) },
+ { "Laser tx power low alarm (Channel 2)",
+ SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_2_LALARM) },
+ { "Laser tx power high warning (Channel 2)",
+ SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_2_HWARN) },
+ { "Laser tx power low warning (Channel 2)",
+ SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_2_LWARN) },
+
+ { "Laser tx power high alarm (Channel 3)",
+ SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_3_HALARM) },
+ { "Laser tx power low alarm (Channel 3)",
+ SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_3_LALARM) },
+ { "Laser tx power high warning (Channel 3)",
+ SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_3_HWARN) },
+ { "Laser tx power low warning (Channel 3)",
+ SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_3_LWARN) },
+
+ { "Laser tx power high alarm (Channel 4)",
+ SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_4_HALARM) },
+ { "Laser tx power low alarm (Channel 4)",
+ SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_4_LALARM) },
+ { "Laser tx power high warning (Channel 4)",
+ SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_4_HWARN) },
+ { "Laser tx power low warning (Channel 4)",
+ SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_4_LWARN) },
+
+ { "Laser rx power high alarm (Channel 1)",
+ SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_1_HALARM) },
+ { "Laser rx power low alarm (Channel 1)",
+ SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_1_LALARM) },
+ { "Laser rx power high warning (Channel 1)",
+ SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_1_HWARN) },
+ { "Laser rx power low warning (Channel 1)",
+ SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_1_LWARN) },
+
+ { "Laser rx power high alarm (Channel 2)",
+ SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_2_HALARM) },
+ { "Laser rx power low alarm (Channel 2)",
+ SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_2_LALARM) },
+ { "Laser rx power high warning (Channel 2)",
+ SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_2_HWARN) },
+ { "Laser rx power low warning (Channel 2)",
+ SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_2_LWARN) },
+
+ { "Laser rx power high alarm (Channel 3)",
+ SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_3_HALARM) },
+ { "Laser rx power low alarm (Channel 3)",
+ SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_3_LALARM) },
+ { "Laser rx power high warning (Channel 3)",
+ SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_3_HWARN) },
+ { "Laser rx power low warning (Channel 3)",
+ SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_3_LWARN) },
+
+ { "Laser rx power high alarm (Channel 4)",
+ SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_4_HALARM) },
+ { "Laser rx power low alarm (Channel 4)",
+ SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_4_LALARM) },
+ { "Laser rx power high warning (Channel 4)",
+ SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_4_HWARN) },
+ { "Laser rx power low warning (Channel 4)",
+ SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_4_LWARN) },
+
+ { NULL, 0, 0 },
+};
+
+static void sff8636_show_identifier(const struct sff8636_memory_map *map)
+{
+ sff8024_show_identifier(map->lower_memory, SFF8636_ID_OFFSET);
+}
+
+static void sff8636_show_ext_identifier(const struct sff8636_memory_map *map)
+{
+ printf("\t%-41s : 0x%02x\n", "Extended identifier",
+ map->page_00h[SFF8636_EXT_ID_OFFSET]);
+
+ static const char *pfx =
+ "\tExtended identifier description :";
+
+ switch (map->page_00h[SFF8636_EXT_ID_OFFSET] &
+ SFF8636_EXT_ID_PWR_CLASS_MASK) {
+ case SFF8636_EXT_ID_PWR_CLASS_1:
+ printf("%s 1.5W max. Power consumption\n", pfx);
+ break;
+ case SFF8636_EXT_ID_PWR_CLASS_2:
+ printf("%s 2.0W max. Power consumption\n", pfx);
+ break;
+ case SFF8636_EXT_ID_PWR_CLASS_3:
+ printf("%s 2.5W max. Power consumption\n", pfx);
+ break;
+ case SFF8636_EXT_ID_PWR_CLASS_4:
+ printf("%s 3.5W max. Power consumption\n", pfx);
+ break;
+ }
+
+ if (map->page_00h[SFF8636_EXT_ID_OFFSET] & SFF8636_EXT_ID_CDR_TX_MASK)
+ printf("%s CDR present in TX,", pfx);
+ else
+ printf("%s No CDR in TX,", pfx);
+
+ if (map->page_00h[SFF8636_EXT_ID_OFFSET] & SFF8636_EXT_ID_CDR_RX_MASK)
+ printf(" CDR present in RX\n");
+ else
+ printf(" No CDR in RX\n");
+
+ switch (map->page_00h[SFF8636_EXT_ID_OFFSET] &
+ SFF8636_EXT_ID_EPWR_CLASS_MASK) {
+ case SFF8636_EXT_ID_PWR_CLASS_LEGACY:
+ printf("%s", pfx);
+ break;
+ case SFF8636_EXT_ID_PWR_CLASS_5:
+ printf("%s 4.0W max. Power consumption,", pfx);
+ break;
+ case SFF8636_EXT_ID_PWR_CLASS_6:
+ printf("%s 4.5W max. Power consumption, ", pfx);
+ break;
+ case SFF8636_EXT_ID_PWR_CLASS_7:
+ printf("%s 5.0W max. Power consumption, ", pfx);
+ break;
+ }
+ if (map->lower_memory[SFF8636_PWR_MODE_OFFSET] &
+ SFF8636_HIGH_PWR_ENABLE)
+ printf(" High Power Class (> 3.5 W) enabled\n");
+ else
+ printf(" High Power Class (> 3.5 W) not enabled\n");
+ printf("\t%-41s : ", "Power set");
+ printf("%s\n", ONOFF(map->lower_memory[SFF8636_PWR_MODE_OFFSET] &
+ SFF8636_LOW_PWR_SET));
+ printf("\t%-41s : ", "Power override");
+ printf("%s\n", ONOFF(map->lower_memory[SFF8636_PWR_MODE_OFFSET] &
+ SFF8636_PWR_OVERRIDE));
+}
+
+static void sff8636_show_connector(const struct sff8636_memory_map *map)
+{
+ sff8024_show_connector(map->page_00h, SFF8636_CTOR_OFFSET);
+}
+
+static void sff8636_show_transceiver(const struct sff8636_memory_map *map)
+{
+ static const char *pfx =
+ "\tTransceiver type :";
+
+ printf("\t%-41s : 0x%02x 0x%02x 0x%02x " \
+ "0x%02x 0x%02x 0x%02x 0x%02x 0x%02x\n",
+ "Transceiver codes",
+ map->page_00h[SFF8636_ETHERNET_COMP_OFFSET],
+ map->page_00h[SFF8636_SONET_COMP_OFFSET],
+ map->page_00h[SFF8636_SAS_COMP_OFFSET],
+ map->page_00h[SFF8636_GIGE_COMP_OFFSET],
+ map->page_00h[SFF8636_FC_LEN_OFFSET],
+ map->page_00h[SFF8636_FC_TECH_OFFSET],
+ map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET],
+ map->page_00h[SFF8636_FC_SPEED_OFFSET]);
+
+ /* 10G/40G Ethernet Compliance Codes */
+ if (map->page_00h[SFF8636_ETHERNET_COMP_OFFSET] &
+ SFF8636_ETHERNET_10G_LRM)
+ printf("%s 10G Ethernet: 10G Base-LRM\n", pfx);
+ if (map->page_00h[SFF8636_ETHERNET_COMP_OFFSET] &
+ SFF8636_ETHERNET_10G_LR)
+ printf("%s 10G Ethernet: 10G Base-LR\n", pfx);
+ if (map->page_00h[SFF8636_ETHERNET_COMP_OFFSET] &
+ SFF8636_ETHERNET_10G_SR)
+ printf("%s 10G Ethernet: 10G Base-SR\n", pfx);
+ if (map->page_00h[SFF8636_ETHERNET_COMP_OFFSET] &
+ SFF8636_ETHERNET_40G_CR4)
+ printf("%s 40G Ethernet: 40G Base-CR4\n", pfx);
+ if (map->page_00h[SFF8636_ETHERNET_COMP_OFFSET] &
+ SFF8636_ETHERNET_40G_SR4)
+ printf("%s 40G Ethernet: 40G Base-SR4\n", pfx);
+ if (map->page_00h[SFF8636_ETHERNET_COMP_OFFSET] &
+ SFF8636_ETHERNET_40G_LR4)
+ printf("%s 40G Ethernet: 40G Base-LR4\n", pfx);
+ if (map->page_00h[SFF8636_ETHERNET_COMP_OFFSET] &
+ SFF8636_ETHERNET_40G_ACTIVE)
+ printf("%s 40G Ethernet: 40G Active Cable (XLPPI)\n", pfx);
+ /* Extended Specification Compliance Codes from SFF-8024 */
+ if (map->page_00h[SFF8636_ETHERNET_COMP_OFFSET] &
+ SFF8636_ETHERNET_RSRVD) {
+ switch (map->page_00h[SFF8636_OPTION_1_OFFSET]) {
+ case SFF8636_ETHERNET_UNSPECIFIED:
+ printf("%s (reserved or unknown)\n", pfx);
+ break;
+ case SFF8636_ETHERNET_100G_AOC:
+ printf("%s 100G Ethernet: 100G AOC or 25GAUI C2M AOC with worst BER of 5x10^(-5)\n",
+ pfx);
+ break;
+ case SFF8636_ETHERNET_100G_SR4:
+ printf("%s 100G Ethernet: 100G Base-SR4 or 25GBase-SR\n",
+ pfx);
+ break;
+ case SFF8636_ETHERNET_100G_LR4:
+ printf("%s 100G Ethernet: 100G Base-LR4\n", pfx);
+ break;
+ case SFF8636_ETHERNET_100G_ER4:
+ printf("%s 100G Ethernet: 100G Base-ER4\n", pfx);
+ break;
+ case SFF8636_ETHERNET_100G_SR10:
+ printf("%s 100G Ethernet: 100G Base-SR10\n", pfx);
+ break;
+ case SFF8636_ETHERNET_100G_CWDM4_FEC:
+ printf("%s 100G Ethernet: 100G CWDM4 MSA with FEC\n", pfx);
+ break;
+ case SFF8636_ETHERNET_100G_PSM4:
+ printf("%s 100G Ethernet: 100G PSM4 Parallel SMF\n", pfx);
+ break;
+ case SFF8636_ETHERNET_100G_ACC:
+ printf("%s 100G Ethernet: 100G ACC or 25GAUI C2M ACC with worst BER of 5x10^(-5)\n",
+ pfx);
+ break;
+ case SFF8636_ETHERNET_100G_CWDM4_NO_FEC:
+ printf("%s 100G Ethernet: 100G CWDM4 MSA without FEC\n", pfx);
+ break;
+ case SFF8636_ETHERNET_100G_RSVD1:
+ printf("%s (reserved or unknown)\n", pfx);
+ break;
+ case SFF8636_ETHERNET_100G_CR4:
+ printf("%s 100G Ethernet: 100G Base-CR4 or 25G Base-CR CA-L\n",
+ pfx);
+ break;
+ case SFF8636_ETHERNET_25G_CR_CA_S:
+ printf("%s 25G Ethernet: 25G Base-CR CA-S\n", pfx);
+ break;
+ case SFF8636_ETHERNET_25G_CR_CA_N:
+ printf("%s 25G Ethernet: 25G Base-CR CA-N\n", pfx);
+ break;
+ case SFF8636_ETHERNET_40G_ER4:
+ printf("%s 40G Ethernet: 40G Base-ER4\n", pfx);
+ break;
+ case SFF8636_ETHERNET_4X10_SR:
+ printf("%s 4x10G Ethernet: 10G Base-SR\n", pfx);
+ break;
+ case SFF8636_ETHERNET_40G_PSM4:
+ printf("%s 40G Ethernet: 40G PSM4 Parallel SMF\n", pfx);
+ break;
+ case SFF8636_ETHERNET_G959_P1I1_2D1:
+ printf("%s Ethernet: G959.1 profile P1I1-2D1 (10709 MBd, 2km, 1310nm SM)\n",
+ pfx);
+ break;
+ case SFF8636_ETHERNET_G959_P1S1_2D2:
+ printf("%s Ethernet: G959.1 profile P1S1-2D2 (10709 MBd, 40km, 1550nm SM)\n",
+ pfx);
+ break;
+ case SFF8636_ETHERNET_G959_P1L1_2D2:
+ printf("%s Ethernet: G959.1 profile P1L1-2D2 (10709 MBd, 80km, 1550nm SM)\n",
+ pfx);
+ break;
+ case SFF8636_ETHERNET_10GT_SFI:
+ printf("%s 10G Ethernet: 10G Base-T with SFI electrical interface\n",
+ pfx);
+ break;
+ case SFF8636_ETHERNET_100G_CLR4:
+ printf("%s 100G Ethernet: 100G CLR4\n", pfx);
+ break;
+ case SFF8636_ETHERNET_100G_AOC2:
+ printf("%s 100G Ethernet: 100G AOC or 25GAUI C2M AOC with worst BER of 10^(-12)\n",
+ pfx);
+ break;
+ case SFF8636_ETHERNET_100G_ACC2:
+ printf("%s 100G Ethernet: 100G ACC or 25GAUI C2M ACC with worst BER of 10^(-12)\n",
+ pfx);
+ break;
+ case SFF8636_ETHERNET_100GE_DWDM2:
+ printf("%s 100GE-DWDM2 (DWDM transceiver using 2 wavelengths on a 1550 nm DWDM grid with a reach up to 80 km)\n",
+ pfx);
+ break;
+ case SFF8636_ETHERNET_100G_1550NM_WDM:
+ printf("%s 100G 1550nm WDM (4 wavelengths)\n", pfx);
+ break;
+ case SFF8636_ETHERNET_10G_BASET_SR:
+ printf("%s 10GBASE-T Short Reach (30 meters)\n", pfx);
+ break;
+ case SFF8636_ETHERNET_5G_BASET:
+ printf("%s 5GBASE-T\n", pfx);
+ break;
+ case SFF8636_ETHERNET_2HALFG_BASET:
+ printf("%s 2.5GBASE-T\n", pfx);
+ break;
+ case SFF8636_ETHERNET_40G_SWDM4:
+ printf("%s 40G SWDM4\n", pfx);
+ break;
+ case SFF8636_ETHERNET_100G_SWDM4:
+ printf("%s 100G SWDM4\n", pfx);
+ break;
+ case SFF8636_ETHERNET_100G_PAM4_BIDI:
+ printf("%s 100G PAM4 BiDi\n", pfx);
+ break;
+ case SFF8636_ETHERNET_4WDM10_MSA:
+ printf("%s 4WDM-10 MSA (10km version of 100G CWDM4 with same RS(528,514) FEC in host system)\n",
+ pfx);
+ break;
+ case SFF8636_ETHERNET_4WDM20_MSA:
+ printf("%s 4WDM-20 MSA (20km version of 100GBASE-LR4 with RS(528,514) FEC in host system)\n",
+ pfx);
+ break;
+ case SFF8636_ETHERNET_4WDM40_MSA:
+ printf("%s 4WDM-40 MSA (40km reach with APD receiver and RS(528,514) FEC in host system)\n",
+ pfx);
+ break;
+ case SFF8636_ETHERNET_100G_DR:
+ printf("%s 100GBASE-DR (clause 140), CAUI-4 (no FEC)\n", pfx);
+ break;
+ case SFF8636_ETHERNET_100G_FR_NOFEC:
+ printf("%s 100G-FR or 100GBASE-FR1 (clause 140), CAUI-4 (no FEC)\n", pfx);
+ break;
+ case SFF8636_ETHERNET_100G_LR_NOFEC:
+ printf("%s 100G-LR or 100GBASE-LR1 (clause 140), CAUI-4 (no FEC)\n", pfx);
+ break;
+ case SFF8636_ETHERNET_200G_ACC1:
+ printf("%s Active Copper Cable with 50GAUI, 100GAUI-2 or 200GAUI-4 C2M. Providing a worst BER of 10-6 or below\n",
+ pfx);
+ break;
+ case SFF8636_ETHERNET_200G_AOC1:
+ printf("%s Active Optical Cable with 50GAUI, 100GAUI-2 or 200GAUI-4 C2M. Providing a worst BER of 10-6 or below\n",
+ pfx);
+ break;
+ case SFF8636_ETHERNET_200G_ACC2:
+ printf("%s Active Copper Cable with 50GAUI, 100GAUI-2 or 200GAUI-4 C2M. Providing a worst BER of 2.6x10-4 for ACC, 10-5 for AUI, or below\n",
+ pfx);
+ break;
+ case SFF8636_ETHERNET_200G_A0C2:
+ printf("%s Active Optical Cable with 50GAUI, 100GAUI-2 or 200GAUI-4 C2M. Providing a worst BER of 2.6x10-4 for ACC, 10-5 for AUI, or below\n",
+ pfx);
+ break;
+ case SFF8636_ETHERNET_200G_CR4:
+ printf("%s 50GBASE-CR, 100GBASE-CR2, or 200GBASE-CR4\n", pfx);
+ break;
+ case SFF8636_ETHERNET_200G_SR4:
+ printf("%s 50GBASE-SR, 100GBASE-SR2, or 200GBASE-SR4\n", pfx);
+ break;
+ case SFF8636_ETHERNET_200G_DR4:
+ printf("%s 50GBASE-FR or 200GBASE-DR4\n", pfx);
+ break;
+ case SFF8636_ETHERNET_200G_FR4:
+ printf("%s 200GBASE-FR4\n", pfx);
+ break;
+ case SFF8636_ETHERNET_200G_PSM4:
+ printf("%s 200G 1550 nm PSM4\n", pfx);
+ break;
+ case SFF8636_ETHERNET_50G_LR:
+ printf("%s 50GBASE-LR\n", pfx);
+ break;
+ case SFF8636_ETHERNET_200G_LR4:
+ printf("%s 200GBASE-LR4\n", pfx);
+ break;
+ case SFF8636_ETHERNET_64G_EA:
+ printf("%s 64GFC EA\n", pfx);
+ break;
+ case SFF8636_ETHERNET_64G_SW:
+ printf("%s 64GFC SW\n", pfx);
+ break;
+ case SFF8636_ETHERNET_64G_LW:
+ printf("%s 64GFC LW\n", pfx);
+ break;
+ case SFF8636_ETHERNET_128FC_EA:
+ printf("%s 128GFC EA\n", pfx);
+ break;
+ case SFF8636_ETHERNET_128FC_SW:
+ printf("%s 128GFC SW\n", pfx);
+ break;
+ case SFF8636_ETHERNET_128FC_LW:
+ printf("%s 128GFC LW\n", pfx);
+ break;
+ default:
+ printf("%s (reserved or unknown)\n", pfx);
+ break;
+ }
+ }
+
+ /* SONET Compliance Codes */
+ if (map->page_00h[SFF8636_SONET_COMP_OFFSET] &
+ (SFF8636_SONET_40G_OTN))
+ printf("%s 40G OTN (OTU3B/OTU3C)\n", pfx);
+ if (map->page_00h[SFF8636_SONET_COMP_OFFSET] & (SFF8636_SONET_OC48_LR))
+ printf("%s SONET: OC-48, long reach\n", pfx);
+ if (map->page_00h[SFF8636_SONET_COMP_OFFSET] & (SFF8636_SONET_OC48_IR))
+ printf("%s SONET: OC-48, intermediate reach\n", pfx);
+ if (map->page_00h[SFF8636_SONET_COMP_OFFSET] & (SFF8636_SONET_OC48_SR))
+ printf("%s SONET: OC-48, short reach\n", pfx);
+
+ /* SAS/SATA Compliance Codes */
+ if (map->page_00h[SFF8636_SAS_COMP_OFFSET] & (SFF8636_SAS_6G))
+ printf("%s SAS 6.0G\n", pfx);
+ if (map->page_00h[SFF8636_SAS_COMP_OFFSET] & (SFF8636_SAS_3G))
+ printf("%s SAS 3.0G\n", pfx);
+
+ /* Ethernet Compliance Codes */
+ if (map->page_00h[SFF8636_GIGE_COMP_OFFSET] & SFF8636_GIGE_1000_BASE_T)
+ printf("%s Ethernet: 1000BASE-T\n", pfx);
+ if (map->page_00h[SFF8636_GIGE_COMP_OFFSET] & SFF8636_GIGE_1000_BASE_CX)
+ printf("%s Ethernet: 1000BASE-CX\n", pfx);
+ if (map->page_00h[SFF8636_GIGE_COMP_OFFSET] & SFF8636_GIGE_1000_BASE_LX)
+ printf("%s Ethernet: 1000BASE-LX\n", pfx);
+ if (map->page_00h[SFF8636_GIGE_COMP_OFFSET] & SFF8636_GIGE_1000_BASE_SX)
+ printf("%s Ethernet: 1000BASE-SX\n", pfx);
+
+ /* Fibre Channel link length */
+ if (map->page_00h[SFF8636_FC_LEN_OFFSET] & SFF8636_FC_LEN_VERY_LONG)
+ printf("%s FC: very long distance (V)\n", pfx);
+ if (map->page_00h[SFF8636_FC_LEN_OFFSET] & SFF8636_FC_LEN_SHORT)
+ printf("%s FC: short distance (S)\n", pfx);
+ if (map->page_00h[SFF8636_FC_LEN_OFFSET] & SFF8636_FC_LEN_INT)
+ printf("%s FC: intermediate distance (I)\n", pfx);
+ if (map->page_00h[SFF8636_FC_LEN_OFFSET] & SFF8636_FC_LEN_LONG)
+ printf("%s FC: long distance (L)\n", pfx);
+ if (map->page_00h[SFF8636_FC_LEN_OFFSET] & SFF8636_FC_LEN_MED)
+ printf("%s FC: medium distance (M)\n", pfx);
+
+ /* Fibre Channel transmitter technology */
+ if (map->page_00h[SFF8636_FC_LEN_OFFSET] & SFF8636_FC_TECH_LONG_LC)
+ printf("%s FC: Longwave laser (LC)\n", pfx);
+ if (map->page_00h[SFF8636_FC_LEN_OFFSET] & SFF8636_FC_TECH_ELEC_INTER)
+ printf("%s FC: Electrical inter-enclosure (EL)\n", pfx);
+ if (map->page_00h[SFF8636_FC_TECH_OFFSET] & SFF8636_FC_TECH_ELEC_INTRA)
+ printf("%s FC: Electrical intra-enclosure (EL)\n", pfx);
+ if (map->page_00h[SFF8636_FC_TECH_OFFSET] &
+ SFF8636_FC_TECH_SHORT_WO_OFC)
+ printf("%s FC: Shortwave laser w/o OFC (SN)\n", pfx);
+ if (map->page_00h[SFF8636_FC_TECH_OFFSET] & SFF8636_FC_TECH_SHORT_W_OFC)
+ printf("%s FC: Shortwave laser with OFC (SL)\n", pfx);
+ if (map->page_00h[SFF8636_FC_TECH_OFFSET] & SFF8636_FC_TECH_LONG_LL)
+ printf("%s FC: Longwave laser (LL)\n", pfx);
+
+ /* Fibre Channel transmission media */
+ if (map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET] &
+ SFF8636_FC_TRANS_MEDIA_TW)
+ printf("%s FC: Twin Axial Pair (TW)\n", pfx);
+ if (map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET] &
+ SFF8636_FC_TRANS_MEDIA_TP)
+ printf("%s FC: Twisted Pair (TP)\n", pfx);
+ if (map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET] &
+ SFF8636_FC_TRANS_MEDIA_MI)
+ printf("%s FC: Miniature Coax (MI)\n", pfx);
+ if (map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET] &
+ SFF8636_FC_TRANS_MEDIA_TV)
+ printf("%s FC: Video Coax (TV)\n", pfx);
+ if (map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET] &
+ SFF8636_FC_TRANS_MEDIA_M6)
+ printf("%s FC: Multimode, 62.5m (M6)\n", pfx);
+ if (map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET] &
+ SFF8636_FC_TRANS_MEDIA_M5)
+ printf("%s FC: Multimode, 50m (M5)\n", pfx);
+ if (map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET] &
+ SFF8636_FC_TRANS_MEDIA_OM3)
+ printf("%s FC: Multimode, 50um (OM3)\n", pfx);
+ if (map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET] &
+ SFF8636_FC_TRANS_MEDIA_SM)
+ printf("%s FC: Single Mode (SM)\n", pfx);
+
+ /* Fibre Channel speed */
+ if (map->page_00h[SFF8636_FC_SPEED_OFFSET] & SFF8636_FC_SPEED_1200_MBPS)
+ printf("%s FC: 1200 MBytes/sec\n", pfx);
+ if (map->page_00h[SFF8636_FC_SPEED_OFFSET] & SFF8636_FC_SPEED_800_MBPS)
+ printf("%s FC: 800 MBytes/sec\n", pfx);
+ if (map->page_00h[SFF8636_FC_SPEED_OFFSET] & SFF8636_FC_SPEED_1600_MBPS)
+ printf("%s FC: 1600 MBytes/sec\n", pfx);
+ if (map->page_00h[SFF8636_FC_SPEED_OFFSET] & SFF8636_FC_SPEED_400_MBPS)
+ printf("%s FC: 400 MBytes/sec\n", pfx);
+ if (map->page_00h[SFF8636_FC_SPEED_OFFSET] & SFF8636_FC_SPEED_200_MBPS)
+ printf("%s FC: 200 MBytes/sec\n", pfx);
+ if (map->page_00h[SFF8636_FC_SPEED_OFFSET] & SFF8636_FC_SPEED_100_MBPS)
+ printf("%s FC: 100 MBytes/sec\n", pfx);
+}
+
+static void sff8636_show_encoding(const struct sff8636_memory_map *map)
+{
+ sff8024_show_encoding(map->page_00h, SFF8636_ENCODING_OFFSET,
+ ETH_MODULE_SFF_8636);
+}
+
+static void sff8636_show_rate_identifier(const struct sff8636_memory_map *map)
+{
+ /* TODO: Need to fix rate select logic */
+ printf("\t%-41s : 0x%02x\n", "Rate identifier",
+ map->page_00h[SFF8636_EXT_RS_OFFSET]);
+}
+
+static void
+sff8636_show_wavelength_or_copper_compliance(const struct sff8636_memory_map *map)
+{
+ printf("\t%-41s : 0x%02x", "Transmitter technology",
+ map->page_00h[SFF8636_DEVICE_TECH_OFFSET] &
+ SFF8636_TRANS_TECH_MASK);
+
+ switch (map->page_00h[SFF8636_DEVICE_TECH_OFFSET] &
+ SFF8636_TRANS_TECH_MASK) {
+ case SFF8636_TRANS_850_VCSEL:
+ printf(" (850 nm VCSEL)\n");
+ break;
+ case SFF8636_TRANS_1310_VCSEL:
+ printf(" (1310 nm VCSEL)\n");
+ break;
+ case SFF8636_TRANS_1550_VCSEL:
+ printf(" (1550 nm VCSEL)\n");
+ break;
+ case SFF8636_TRANS_1310_FP:
+ printf(" (1310 nm FP)\n");
+ break;
+ case SFF8636_TRANS_1310_DFB:
+ printf(" (1310 nm DFB)\n");
+ break;
+ case SFF8636_TRANS_1550_DFB:
+ printf(" (1550 nm DFB)\n");
+ break;
+ case SFF8636_TRANS_1310_EML:
+ printf(" (1310 nm EML)\n");
+ break;
+ case SFF8636_TRANS_1550_EML:
+ printf(" (1550 nm EML)\n");
+ break;
+ case SFF8636_TRANS_OTHERS:
+ printf(" (Others/Undefined)\n");
+ break;
+ case SFF8636_TRANS_1490_DFB:
+ printf(" (1490 nm DFB)\n");
+ break;
+ case SFF8636_TRANS_COPPER_PAS_UNEQUAL:
+ printf(" (Copper cable unequalized)\n");
+ break;
+ case SFF8636_TRANS_COPPER_PAS_EQUAL:
+ printf(" (Copper cable passive equalized)\n");
+ break;
+ case SFF8636_TRANS_COPPER_LNR_FAR_EQUAL:
+ printf(" (Copper cable, near and far end limiting active equalizers)\n");
+ break;
+ case SFF8636_TRANS_COPPER_FAR_EQUAL:
+ printf(" (Copper cable, far end limiting active equalizers)\n");
+ break;
+ case SFF8636_TRANS_COPPER_NEAR_EQUAL:
+ printf(" (Copper cable, near end limiting active equalizers)\n");
+ break;
+ case SFF8636_TRANS_COPPER_LNR_EQUAL:
+ printf(" (Copper cable, linear active equalizers)\n");
+ break;
+ }
+
+ if ((map->page_00h[SFF8636_DEVICE_TECH_OFFSET] &
+ SFF8636_TRANS_TECH_MASK) >= SFF8636_TRANS_COPPER_PAS_UNEQUAL) {
+ printf("\t%-41s : %udb\n", "Attenuation at 2.5GHz",
+ map->page_00h[SFF8636_WAVELEN_HIGH_BYTE_OFFSET]);
+ printf("\t%-41s : %udb\n", "Attenuation at 5.0GHz",
+ map->page_00h[SFF8636_WAVELEN_LOW_BYTE_OFFSET]);
+ printf("\t%-41s : %udb\n", "Attenuation at 7.0GHz",
+ map->page_00h[SFF8636_WAVE_TOL_HIGH_BYTE_OFFSET]);
+ printf("\t%-41s : %udb\n", "Attenuation at 12.9GHz",
+ map->page_00h[SFF8636_WAVE_TOL_LOW_BYTE_OFFSET]);
+ } else {
+ printf("\t%-41s : %.3lfnm\n", "Laser wavelength",
+ (((map->page_00h[SFF8636_WAVELEN_HIGH_BYTE_OFFSET] << 8) |
+ map->page_00h[SFF8636_WAVELEN_LOW_BYTE_OFFSET]) * 0.05));
+ printf("\t%-41s : %.3lfnm\n", "Laser wavelength tolerance",
+ (((map->page_00h[SFF8636_WAVE_TOL_HIGH_BYTE_OFFSET] << 8) |
+ map->page_00h[SFF8636_WAVE_TOL_LOW_BYTE_OFFSET]) * 0.005));
+ }
+}
+
+/*
+ * 2-byte internal temperature conversions:
+ * First byte is a signed 8-bit integer, which is the temp decimal part
+ * Second byte are 1/256th of degree, which are added to the dec part.
+ */
+#define SFF8636_OFFSET_TO_TEMP(offset) ((__s16)OFFSET_TO_U16(offset))
+
+static void sff8636_dom_parse(const struct sff8636_memory_map *map,
+ struct sff_diags *sd)
+{
+ const __u8 *id = map->lower_memory;
+ int i = 0;
+
+ /* Monitoring Thresholds for Alarms and Warnings */
+ sd->sfp_voltage[MCURR] = OFFSET_TO_U16_PTR(id, SFF8636_VCC_CURR);
+ sd->sfp_temp[MCURR] = SFF8636_OFFSET_TO_TEMP(SFF8636_TEMP_CURR);
+
+ if (!map->page_03h)
+ goto out;
+
+ sd->sfp_voltage[HALRM] = OFFSET_TO_U16_PTR(map->page_03h,
+ SFF8636_VCC_HALRM);
+ sd->sfp_voltage[LALRM] = OFFSET_TO_U16_PTR(map->page_03h,
+ SFF8636_VCC_LALRM);
+ sd->sfp_voltage[HWARN] = OFFSET_TO_U16_PTR(map->page_03h,
+ SFF8636_VCC_HWARN);
+ sd->sfp_voltage[LWARN] = OFFSET_TO_U16_PTR(map->page_03h,
+ SFF8636_VCC_LWARN);
+
+ sd->sfp_temp[HALRM] = (__s16)OFFSET_TO_U16_PTR(map->page_03h,
+ SFF8636_TEMP_HALRM);
+ sd->sfp_temp[LALRM] = (__s16)OFFSET_TO_U16_PTR(map->page_03h,
+ SFF8636_TEMP_LALRM);
+ sd->sfp_temp[HWARN] = (__s16)OFFSET_TO_U16_PTR(map->page_03h,
+ SFF8636_TEMP_HWARN);
+ sd->sfp_temp[LWARN] = (__s16)OFFSET_TO_U16_PTR(map->page_03h,
+ SFF8636_TEMP_LWARN);
+
+ sd->bias_cur[HALRM] = OFFSET_TO_U16_PTR(map->page_03h,
+ SFF8636_TX_BIAS_HALRM);
+ sd->bias_cur[LALRM] = OFFSET_TO_U16_PTR(map->page_03h,
+ SFF8636_TX_BIAS_LALRM);
+ sd->bias_cur[HWARN] = OFFSET_TO_U16_PTR(map->page_03h,
+ SFF8636_TX_BIAS_HWARN);
+ sd->bias_cur[LWARN] = OFFSET_TO_U16_PTR(map->page_03h,
+ SFF8636_TX_BIAS_LWARN);
+
+ sd->tx_power[HALRM] = OFFSET_TO_U16_PTR(map->page_03h,
+ SFF8636_TX_PWR_HALRM);
+ sd->tx_power[LALRM] = OFFSET_TO_U16_PTR(map->page_03h,
+ SFF8636_TX_PWR_LALRM);
+ sd->tx_power[HWARN] = OFFSET_TO_U16_PTR(map->page_03h,
+ SFF8636_TX_PWR_HWARN);
+ sd->tx_power[LWARN] = OFFSET_TO_U16_PTR(map->page_03h,
+ SFF8636_TX_PWR_LWARN);
+
+ sd->rx_power[HALRM] = OFFSET_TO_U16_PTR(map->page_03h,
+ SFF8636_RX_PWR_HALRM);
+ sd->rx_power[LALRM] = OFFSET_TO_U16_PTR(map->page_03h,
+ SFF8636_RX_PWR_LALRM);
+ sd->rx_power[HWARN] = OFFSET_TO_U16_PTR(map->page_03h,
+ SFF8636_RX_PWR_HWARN);
+ sd->rx_power[LWARN] = OFFSET_TO_U16_PTR(map->page_03h,
+ SFF8636_RX_PWR_LWARN);
+
+out:
+ /* Channel Specific Data */
+ for (i = 0; i < SFF8636_MAX_CHANNEL_NUM; i++) {
+ u8 rx_power_offset, tx_bias_offset;
+ u8 tx_power_offset;
+
+ switch (i) {
+ case 0:
+ rx_power_offset = SFF8636_RX_PWR_1_OFFSET;
+ tx_power_offset = SFF8636_TX_PWR_1_OFFSET;
+ tx_bias_offset = SFF8636_TX_BIAS_1_OFFSET;
+ break;
+ case 1:
+ rx_power_offset = SFF8636_RX_PWR_2_OFFSET;
+ tx_power_offset = SFF8636_TX_PWR_2_OFFSET;
+ tx_bias_offset = SFF8636_TX_BIAS_2_OFFSET;
+ break;
+ case 2:
+ rx_power_offset = SFF8636_RX_PWR_3_OFFSET;
+ tx_power_offset = SFF8636_TX_PWR_3_OFFSET;
+ tx_bias_offset = SFF8636_TX_BIAS_3_OFFSET;
+ break;
+ case 3:
+ rx_power_offset = SFF8636_RX_PWR_4_OFFSET;
+ tx_power_offset = SFF8636_TX_PWR_4_OFFSET;
+ tx_bias_offset = SFF8636_TX_BIAS_4_OFFSET;
+ break;
+ }
+ sd->scd[i].bias_cur = OFFSET_TO_U16(tx_bias_offset);
+ sd->scd[i].rx_power = OFFSET_TO_U16(rx_power_offset);
+ sd->scd[i].tx_power = OFFSET_TO_U16(tx_power_offset);
+ }
+}
+
+static void sff8636_show_dom(const struct sff8636_memory_map *map)
+{
+ struct sff_diags sd = {0};
+ char *rx_power_string = NULL;
+ char power_string[MAX_DESC_SIZE];
+ int i;
+
+ /*
+ * There is no clear identifier to signify the existence of
+ * optical diagnostics similar to SFF-8472. So checking existence
+ * of page 3, will provide the gurantee for existence of alarms
+ * and thresholds
+ * If pagging support exists, then supports_alarms is marked as 1
+ */
+ if (map->page_03h)
+ sd.supports_alarms = 1;
+
+ sd.rx_power_type = map->page_00h[SFF8636_DIAG_TYPE_OFFSET] &
+ SFF8636_RX_PWR_TYPE_MASK;
+ sd.tx_power_type = map->page_00h[SFF8636_DIAG_TYPE_OFFSET] &
+ SFF8636_RX_PWR_TYPE_MASK;
+
+ sff8636_dom_parse(map, &sd);
+
+ PRINT_TEMP("Module temperature", sd.sfp_temp[MCURR]);
+ PRINT_VCC("Module voltage", sd.sfp_voltage[MCURR]);
+
+ /*
+ * SFF-8636/8436 spec is not clear whether RX power/ TX bias
+ * current fields are supported or not. A valid temperature
+ * reading is used as existence for TX/RX power.
+ */
+ if ((sd.sfp_temp[MCURR] == 0x0) ||
+ (sd.sfp_temp[MCURR] == (__s16)0xFFFF))
+ return;
+
+ printf("\t%-41s : %s\n", "Alarm/warning flags implemented",
+ (sd.supports_alarms ? "Yes" : "No"));
+
+ for (i = 0; i < SFF8636_MAX_CHANNEL_NUM; i++) {
+ snprintf(power_string, MAX_DESC_SIZE, "%s (Channel %d)",
+ "Laser tx bias current", i+1);
+ PRINT_BIAS(power_string, sd.scd[i].bias_cur);
+ }
+
+ for (i = 0; i < SFF8636_MAX_CHANNEL_NUM; i++) {
+ snprintf(power_string, MAX_DESC_SIZE, "%s (Channel %d)",
+ "Transmit avg optical power", i+1);
+ PRINT_xX_PWR(power_string, sd.scd[i].tx_power);
+ }
+
+ if (!sd.rx_power_type)
+ rx_power_string = "Receiver signal OMA";
+ else
+ rx_power_string = "Rcvr signal avg optical power";
+
+ for (i = 0; i < SFF8636_MAX_CHANNEL_NUM; i++) {
+ snprintf(power_string, MAX_DESC_SIZE, "%s(Channel %d)",
+ rx_power_string, i+1);
+ PRINT_xX_PWR(power_string, sd.scd[i].rx_power);
+ }
+
+ if (sd.supports_alarms) {
+ for (i = 0; sff8636_aw_flags[i].str; ++i) {
+ printf("\t%-41s : %s\n", sff8636_aw_flags[i].str,
+ map->lower_memory[sff8636_aw_flags[i].offset]
+ & sff8636_aw_flags[i].value ? "On" : "Off");
+ }
+
+ sff_show_thresholds(sd);
+ }
+}
+
+static void sff8636_show_page_zero(const struct sff8636_memory_map *map)
+{
+ sff8636_show_ext_identifier(map);
+ sff8636_show_connector(map);
+ sff8636_show_transceiver(map);
+ sff8636_show_encoding(map);
+ sff_show_value_with_unit(map->page_00h, SFF8636_BR_NOMINAL_OFFSET,
+ "BR, Nominal", 100, "Mbps");
+ sff8636_show_rate_identifier(map);
+ sff_show_value_with_unit(map->page_00h, SFF8636_SM_LEN_OFFSET,
+ "Length (SMF,km)", 1, "km");
+ sff_show_value_with_unit(map->page_00h, SFF8636_OM3_LEN_OFFSET,
+ "Length (OM3 50um)", 2, "m");
+ sff_show_value_with_unit(map->page_00h, SFF8636_OM2_LEN_OFFSET,
+ "Length (OM2 50um)", 1, "m");
+ sff_show_value_with_unit(map->page_00h, SFF8636_OM1_LEN_OFFSET,
+ "Length (OM1 62.5um)", 1, "m");
+ sff_show_value_with_unit(map->page_00h, SFF8636_CBL_LEN_OFFSET,
+ "Length (Copper or Active cable)", 1, "m");
+ sff8636_show_wavelength_or_copper_compliance(map);
+ sff_show_ascii(map->page_00h, SFF8636_VENDOR_NAME_START_OFFSET,
+ SFF8636_VENDOR_NAME_END_OFFSET, "Vendor name");
+ sff8024_show_oui(map->page_00h, SFF8636_VENDOR_OUI_OFFSET);
+ sff_show_ascii(map->page_00h, SFF8636_VENDOR_PN_START_OFFSET,
+ SFF8636_VENDOR_PN_END_OFFSET, "Vendor PN");
+ sff_show_ascii(map->page_00h, SFF8636_VENDOR_REV_START_OFFSET,
+ SFF8636_VENDOR_REV_END_OFFSET, "Vendor rev");
+ sff_show_ascii(map->page_00h, SFF8636_VENDOR_SN_START_OFFSET,
+ SFF8636_VENDOR_SN_END_OFFSET, "Vendor SN");
+ sff_show_ascii(map->page_00h, SFF8636_DATE_YEAR_OFFSET,
+ SFF8636_DATE_VENDOR_LOT_OFFSET + 1, "Date code");
+ sff_show_revision_compliance(map->lower_memory,
+ SFF8636_REV_COMPLIANCE_OFFSET);
+}
+
+static void sff8636_show_all_common(const struct sff8636_memory_map *map)
+{
+ sff8636_show_identifier(map);
+ switch (map->lower_memory[SFF8636_ID_OFFSET]) {
+ case SFF8024_ID_QSFP:
+ case SFF8024_ID_QSFP_PLUS:
+ case SFF8024_ID_QSFP28:
+ sff8636_show_page_zero(map);
+ sff8636_show_dom(map);
+ break;
+ }
+}
+
+static void sff8636_memory_map_init_buf(struct sff8636_memory_map *map,
+ const __u8 *id, __u32 eeprom_len)
+{
+ /* Lower Memory and Page 00h are always present.
+ *
+ * Offset into Upper Memory is between page size and twice the page
+ * size. Therefore, set the base address of each page to base address
+ * plus page size multiplied by the page number.
+ */
+ map->lower_memory = id;
+ map->page_00h = id;
+
+ /* Page 03h is only present when the module memory model is paged and
+ * not flat and when we got a big enough buffer from the kernel.
+ */
+ if (map->lower_memory[SFF8636_STATUS_2_OFFSET] &
+ SFF8636_STATUS_PAGE_3_PRESENT ||
+ eeprom_len != ETH_MODULE_SFF_8636_MAX_LEN)
+ return;
+
+ map->page_03h = id + 3 * SFF8636_PAGE_SIZE;
+}
+
+void sff8636_show_all_ioctl(const __u8 *id, __u32 eeprom_len)
+{
+ struct sff8636_memory_map map = {};
+
+ if (id[SFF8636_ID_OFFSET] == SFF8024_ID_QSFP_DD ||
+ id[SFF8636_ID_OFFSET] == SFF8024_ID_OSFP ||
+ id[SFF8636_ID_OFFSET] == SFF8024_ID_DSFP) {
+ cmis_show_all_ioctl(id);
+ return;
+ }
+
+ sff8636_memory_map_init_buf(&map, id, eeprom_len);
+ sff8636_show_all_common(&map);
+}
+
+static void sff8636_request_init(struct ethtool_module_eeprom *request, u8 page,
+ u32 offset)
+{
+ request->offset = offset;
+ request->length = SFF8636_PAGE_SIZE;
+ request->page = page;
+ request->bank = 0;
+ request->i2c_address = SFF8636_I2C_ADDRESS;
+ request->data = NULL;
+}
+
+static int
+sff8636_memory_map_init_pages(struct cmd_context *ctx,
+ struct sff8636_memory_map *map)
+{
+ struct ethtool_module_eeprom request;
+ int ret;
+
+ /* Lower Memory and Page 00h are always present.
+ *
+ * Offset into Upper Memory is between page size and twice the page
+ * size. Therefore, set the base address of each page to its base
+ * address minus page size.
+ */
+ sff8636_request_init(&request, 0x0, 0);
+ ret = nl_get_eeprom_page(ctx, &request);
+ if (ret < 0)
+ return ret;
+ map->lower_memory = request.data;
+
+ sff8636_request_init(&request, 0x0, SFF8636_PAGE_SIZE);
+ ret = nl_get_eeprom_page(ctx, &request);
+ if (ret < 0)
+ return ret;
+ map->page_00h = request.data - SFF8636_PAGE_SIZE;
+
+ /* Page 03h is only present when the module memory model is paged and
+ * not flat.
+ */
+ if (map->lower_memory[SFF8636_STATUS_2_OFFSET] &
+ SFF8636_STATUS_PAGE_3_PRESENT)
+ return 0;
+
+ sff8636_request_init(&request, 0x3, SFF8636_PAGE_SIZE);
+ ret = nl_get_eeprom_page(ctx, &request);
+ if (ret < 0)
+ return ret;
+ map->page_03h = request.data - SFF8636_PAGE_SIZE;
+
+ return 0;
+}
+
+int sff8636_show_all_nl(struct cmd_context *ctx)
+{
+ struct sff8636_memory_map map = {};
+ int ret;
+
+ ret = sff8636_memory_map_init_pages(ctx, &map);
+ if (ret < 0)
+ return ret;
+ sff8636_show_all_common(&map);
+
+ return 0;
+}