1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
|
/*
* hash.c Non-thread-safe split-ordered hash table.
*
* The weird "reverse" function is based on an idea from
* "Split-Ordered Lists - Lock-free Resizable Hash Tables", with
* modifications so that they're not lock-free. :(
*
* However, the split-order idea allows a fast & easy splitting of the
* hash bucket chain when the hash table is resized. Without it, we'd
* have to check & update the pointers for every node in the buck chain,
* rather than being able to move 1/2 of the entries in the chain with
* one update.
*
* Version: $Id$
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*
* Copyright 2005,2006 The FreeRADIUS server project
*/
RCSID("$Id$")
#include <freeradius-devel/libradius.h>
/*
* A reasonable number of buckets to start off with.
* Should be a power of two.
*/
#define FR_HASH_NUM_BUCKETS (64)
struct fr_hash_entry_s {
fr_hash_entry_t *next;
uint32_t reversed;
uint32_t key;
void const *data;
};
struct fr_hash_table_t {
int num_elements;
int num_buckets; /* power of 2 */
int next_grow;
int mask;
fr_hash_table_free_t free;
fr_hash_table_hash_t hash;
fr_hash_table_cmp_t cmp;
fr_hash_entry_t null;
fr_hash_entry_t **buckets;
};
#ifdef TESTING
static int grow = 0;
#endif
/*
* perl -e 'foreach $i (0..255) {$r = 0; foreach $j (0 .. 7 ) { if (($i & ( 1<< $j)) != 0) { $r |= (1 << (7 - $j));}} print $r, ", ";if (($i & 7) == 7) {print "\n";}}'
*/
static const uint8_t reversed_byte[256] = {
0, 128, 64, 192, 32, 160, 96, 224,
16, 144, 80, 208, 48, 176, 112, 240,
8, 136, 72, 200, 40, 168, 104, 232,
24, 152, 88, 216, 56, 184, 120, 248,
4, 132, 68, 196, 36, 164, 100, 228,
20, 148, 84, 212, 52, 180, 116, 244,
12, 140, 76, 204, 44, 172, 108, 236,
28, 156, 92, 220, 60, 188, 124, 252,
2, 130, 66, 194, 34, 162, 98, 226,
18, 146, 82, 210, 50, 178, 114, 242,
10, 138, 74, 202, 42, 170, 106, 234,
26, 154, 90, 218, 58, 186, 122, 250,
6, 134, 70, 198, 38, 166, 102, 230,
22, 150, 86, 214, 54, 182, 118, 246,
14, 142, 78, 206, 46, 174, 110, 238,
30, 158, 94, 222, 62, 190, 126, 254,
1, 129, 65, 193, 33, 161, 97, 225,
17, 145, 81, 209, 49, 177, 113, 241,
9, 137, 73, 201, 41, 169, 105, 233,
25, 153, 89, 217, 57, 185, 121, 249,
5, 133, 69, 197, 37, 165, 101, 229,
21, 149, 85, 213, 53, 181, 117, 245,
13, 141, 77, 205, 45, 173, 109, 237,
29, 157, 93, 221, 61, 189, 125, 253,
3, 131, 67, 195, 35, 163, 99, 227,
19, 147, 83, 211, 51, 179, 115, 243,
11, 139, 75, 203, 43, 171, 107, 235,
27, 155, 91, 219, 59, 187, 123, 251,
7, 135, 71, 199, 39, 167, 103, 231,
23, 151, 87, 215, 55, 183, 119, 247,
15, 143, 79, 207, 47, 175, 111, 239,
31, 159, 95, 223, 63, 191, 127, 255
};
/*
* perl -e 'foreach $i (0..255) {$r = 0;foreach $j (0 .. 7) { $r = $i & (1 << (7 - $j)); last if ($r)} print $i & ~($r), ", ";if (($i & 7) == 7) {print "\n";}}'
*/
static uint8_t parent_byte[256] = {
0, 0, 0, 1, 0, 1, 2, 3,
0, 1, 2, 3, 4, 5, 6, 7,
0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15,
0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31,
0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63,
0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79,
80, 81, 82, 83, 84, 85, 86, 87,
88, 89, 90, 91, 92, 93, 94, 95,
96, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111,
112, 113, 114, 115, 116, 117, 118, 119,
120, 121, 122, 123, 124, 125, 126, 127
};
/*
* Reverse a key.
*/
static uint32_t reverse(uint32_t key)
{
return ((reversed_byte[key & 0xff] << 24) |
(reversed_byte[(key >> 8) & 0xff] << 16) |
(reversed_byte[(key >> 16) & 0xff] << 8) |
(reversed_byte[(key >> 24) & 0xff]));
}
/*
* Take the parent by discarding the highest bit that is set.
*/
static uint32_t parent_of(uint32_t key)
{
if (key > 0x00ffffff)
return (key & 0x00ffffff) | (parent_byte[key >> 24] << 24);
if (key > 0x0000ffff)
return (key & 0x0000ffff) | (parent_byte[key >> 16] << 16);
if (key > 0x000000ff)
return (key & 0x000000ff) | (parent_byte[key >> 8] << 8);
return parent_byte[key];
}
static fr_hash_entry_t *list_find(fr_hash_table_t *ht,
fr_hash_entry_t *head,
uint32_t reversed,
void const *data)
{
fr_hash_entry_t *cur;
for (cur = head; cur != &ht->null; cur = cur->next) {
if (cur->reversed == reversed) {
if (ht->cmp) {
int cmp = ht->cmp(data, cur->data);
if (cmp > 0) break;
if (cmp < 0) continue;
}
return cur;
}
if (cur->reversed > reversed) break;
}
return NULL;
}
/*
* Inserts a new entry into the list, in order.
*/
static int list_insert(fr_hash_table_t *ht,
fr_hash_entry_t **head, fr_hash_entry_t *node)
{
fr_hash_entry_t **last, *cur;
last = head;
for (cur = *head; cur != &ht->null; cur = cur->next) {
if (cur->reversed > node->reversed) break;
last = &(cur->next);
if (cur->reversed == node->reversed) {
if (ht->cmp) {
int cmp = ht->cmp(node->data, cur->data);
if (cmp > 0) break;
if (cmp < 0) continue;
}
return 0;
}
}
node->next = *last;
*last = node;
return 1;
}
/*
* Delete an entry from the list.
*/
static int list_delete(fr_hash_table_t *ht,
fr_hash_entry_t **head, fr_hash_entry_t *node)
{
fr_hash_entry_t **last, *cur;
last = head;
for (cur = *head; cur != &ht->null; cur = cur->next) {
if (cur == node) break;
last = &(cur->next);
}
*last = node->next;
return 1;
}
/*
* Create the table.
*
* Memory usage in bytes is (20/3) * number of entries.
*/
fr_hash_table_t *fr_hash_table_create(fr_hash_table_hash_t hashNode,
fr_hash_table_cmp_t cmpNode,
fr_hash_table_free_t freeNode)
{
fr_hash_table_t *ht;
if (!hashNode) return NULL;
ht = malloc(sizeof(*ht));
if (!ht) return NULL;
memset(ht, 0, sizeof(*ht));
ht->free = freeNode;
ht->hash = hashNode;
ht->cmp = cmpNode;
ht->num_buckets = FR_HASH_NUM_BUCKETS;
ht->mask = ht->num_buckets - 1;
/*
* Have a default load factor of 2.5. In practice this
* means that the average load will hit 3 before the
* table grows.
*/
ht->next_grow = (ht->num_buckets << 1) + (ht->num_buckets >> 1);
ht->buckets = malloc(sizeof(*ht->buckets) * ht->num_buckets);
if (!ht->buckets) {
free(ht);
return NULL;
}
memset(ht->buckets, 0, sizeof(*ht->buckets) * ht->num_buckets);
ht->null.reversed = ~0;
ht->null.key = ~0;
ht->null.next = &ht->null;
ht->buckets[0] = &ht->null;
return ht;
}
/*
* If the current bucket is uninitialized, initialize it
* by recursively copying information from the parent.
*
* We may have a situation where entry E is a parent to 2 other
* entries E' and E". If we split E into E and E', then the
* nodes meant for E" end up in E or E', either of which is
* wrong. To solve that problem, we walk down the whole chain,
* inserting the elements into the correct place.
*/
static void fr_hash_table_fixup(fr_hash_table_t *ht, uint32_t entry)
{
uint32_t parent_entry;
fr_hash_entry_t **last, *cur;
uint32_t this;
parent_entry = parent_of(entry);
/* parent_entry == entry if and only if entry == 0 */
if (!ht->buckets[parent_entry]) {
fr_hash_table_fixup(ht, parent_entry);
}
/*
* Keep walking down cur, trying to find entries that
* don't belong here any more. There may be multiple
* ones, so we can't have a naive algorithm...
*/
last = &ht->buckets[parent_entry];
this = parent_entry;
for (cur = *last; cur != &ht->null; cur = cur->next) {
uint32_t real_entry;
real_entry = cur->key & ht->mask;
if (real_entry != this) { /* ht->buckets[real_entry] == NULL */
*last = &ht->null;
ht->buckets[real_entry] = cur;
this = real_entry;
}
last = &(cur->next);
}
/*
* We may NOT have initialized this bucket, so do it now.
*/
if (!ht->buckets[entry]) ht->buckets[entry] = &ht->null;
}
/*
* This should be a power of two. Changing it to 4 doesn't seem
* to make any difference.
*/
#define GROW_FACTOR (2)
/*
* Grow the hash table.
*/
static void fr_hash_table_grow(fr_hash_table_t *ht)
{
fr_hash_entry_t **buckets;
buckets = malloc(sizeof(*buckets) * GROW_FACTOR * ht->num_buckets);
if (!buckets) return;
memcpy(buckets, ht->buckets,
sizeof(*buckets) * ht->num_buckets);
memset(&buckets[ht->num_buckets], 0,
sizeof(*buckets) * ht->num_buckets);
free(ht->buckets);
ht->buckets = buckets;
ht->num_buckets *= GROW_FACTOR;
ht->next_grow *= GROW_FACTOR;
ht->mask = ht->num_buckets - 1;
#ifdef TESTING
grow = 1;
fprintf(stderr, "GROW TO %d\n", ht->num_buckets);
#endif
}
/*
* Insert data.
*/
int fr_hash_table_insert(fr_hash_table_t *ht, void const *data)
{
uint32_t key;
uint32_t entry;
uint32_t reversed;
fr_hash_entry_t *node;
if (!ht || !data) return 0;
key = ht->hash(data);
entry = key & ht->mask;
reversed = reverse(key);
if (!ht->buckets[entry]) fr_hash_table_fixup(ht, entry);
/*
* If we try to do our own memory allocation here, the
* speedup is only ~15% or so, which isn't worth it.
*/
node = malloc(sizeof(*node));
if (!node) return 0;
memset(node, 0, sizeof(*node));
node->next = &ht->null;
node->reversed = reversed;
node->key = key;
node->data = data;
/* already in the table, can't insert it */
if (!list_insert(ht, &ht->buckets[entry], node)) {
free(node);
return 0;
}
/*
* Check the load factor, and grow the table if
* necessary.
*/
ht->num_elements++;
if (ht->num_elements >= ht->next_grow) {
fr_hash_table_grow(ht);
}
return 1;
}
/*
* Internal find a node routine.
*/
static fr_hash_entry_t *fr_hash_table_find(fr_hash_table_t *ht, void const *data)
{
uint32_t key;
uint32_t entry;
uint32_t reversed;
if (!ht) return NULL;
key = ht->hash(data);
entry = key & ht->mask;
reversed = reverse(key);
if (!ht->buckets[entry]) fr_hash_table_fixup(ht, entry);
return list_find(ht, ht->buckets[entry], reversed, data);
}
/*
* Replace old data with new data, OR insert if there is no old.
*/
int fr_hash_table_replace(fr_hash_table_t *ht, void const *data)
{
fr_hash_entry_t *node;
void *tofree;
if (!ht || !data) return 0;
node = fr_hash_table_find(ht, data);
if (!node) {
return fr_hash_table_insert(ht, data);
}
if (ht->free) {
memcpy(&tofree, &node->data, sizeof(tofree));
ht->free(tofree);
}
node->data = data;
return 1;
}
/*
* Find data from a template
*/
void *fr_hash_table_finddata(fr_hash_table_t *ht, void const *data)
{
fr_hash_entry_t *node;
void *out;
node = fr_hash_table_find(ht, data);
if (!node) return NULL;
memcpy(&out, &node->data, sizeof(out));
return out;
}
/*
* Yank an entry from the hash table, without freeing the data.
*/
void *fr_hash_table_yank(fr_hash_table_t *ht, void const *data)
{
uint32_t key;
uint32_t entry;
uint32_t reversed;
void *old;
fr_hash_entry_t *node;
if (!ht) return NULL;
key = ht->hash(data);
entry = key & ht->mask;
reversed = reverse(key);
if (!ht->buckets[entry]) fr_hash_table_fixup(ht, entry);
node = list_find(ht, ht->buckets[entry], reversed, data);
if (!node) return NULL;
list_delete(ht, &ht->buckets[entry], node);
ht->num_elements--;
memcpy(&old, &node->data, sizeof(old));
free(node);
return old;
}
/*
* Delete a piece of data from the hash table.
*/
int fr_hash_table_delete(fr_hash_table_t *ht, void const *data)
{
void *old;
old = fr_hash_table_yank(ht, data);
if (!old) return 0;
if (ht->free) ht->free(old);
return 1;
}
/*
* Free a hash table
*/
void fr_hash_table_free(fr_hash_table_t *ht)
{
int i;
fr_hash_entry_t *node, *next;
if (!ht) return;
/*
* Walk over the buckets, freeing them all.
*/
for (i = 0; i < ht->num_buckets; i++) {
if (ht->buckets[i]) for (node = ht->buckets[i];
node != &ht->null;
node = next) {
next = node->next;
if (node->data && ht->free) {
void *tofree;
memcpy(&tofree, &node->data, sizeof(tofree));
ht->free(tofree);
}
free(node);
}
}
free(ht->buckets);
free(ht);
}
/*
* Count number of elements
*/
int fr_hash_table_num_elements(fr_hash_table_t *ht)
{
if (!ht) return 0;
return ht->num_elements;
}
/*
* Walk over the nodes, allowing deletes & inserts to happen.
*/
int fr_hash_table_walk(fr_hash_table_t *ht,
fr_hash_table_walk_t callback,
void *context)
{
int i, rcode;
if (!ht || !callback) return 0;
for (i = ht->num_buckets - 1; i >= 0; i--) {
fr_hash_entry_t *node, *next;
/*
* Ensure that the current bucket is filled.
*/
if (!ht->buckets[i]) fr_hash_table_fixup(ht, i);
for (node = ht->buckets[i]; node != &ht->null; node = next) {
void *arg;
next = node->next;
memcpy(&arg, &node->data, sizeof(arg));
rcode = callback(context, arg);
if (rcode != 0) return rcode;
}
}
return 0;
}
/** Iterate over entries in a hash table
*
* @note If the hash table is modified the iterator should be considered invalidated.
*
* @param[in] ht to iterate over.
* @param[in] iter Pointer to an iterator struct, used to maintain
* state between calls.
* @return
* - User data.
* - NULL if at the end of the list.
*/
void *fr_hash_table_iter_next(fr_hash_table_t *ht, fr_hash_iter_t *iter)
{
fr_hash_entry_t *node;
uint32_t i;
void *out;
/*
* Return the next element in the bucket
*/
if (iter->node != &ht->null) {
node = iter->node;
iter->node = node->next;
memcpy(&out, &node->data, sizeof(out)); /* const issues */
return out;
}
if (iter->bucket == 0) return NULL;
/*
* We might have to go through multiple empty
* buckets to find one that contains something
* we should return
*/
i = iter->bucket - 1;
for (;;) {
if (!ht->buckets[i]) fr_hash_table_fixup(ht, i);
node = ht->buckets[i];
if (node == &ht->null) {
if (i == 0) break;
i--;
continue; /* This bucket was empty too... */
}
iter->node = node->next; /* Store the next one to examine */
iter->bucket = i;
memcpy(&out, &node->data, sizeof(out)); /* const issues */
return out;
}
iter->bucket = i;
return NULL;
}
/** Initialise an iterator
*
* @note If the hash table is modified the iterator should be considered invalidated.
*
* @param[in] ht to iterate over.
* @param[out] iter to initialise.
* @return
* - The first entry in the hash table.
* - NULL if the hash table is empty.
*/
void *fr_hash_table_iter_init(fr_hash_table_t *ht, fr_hash_iter_t *iter)
{
iter->bucket = ht->num_buckets;
iter->node = &ht->null;
return fr_hash_table_iter_next(ht, iter);
}
#ifdef TESTING
/*
* Show what the hash table is doing.
*/
int fr_hash_table_info(fr_hash_table_t *ht)
{
int i, a, collisions, uninitialized;
int array[256];
if (!ht) return 0;
uninitialized = collisions = 0;
memset(array, 0, sizeof(array));
for (i = 0; i < ht->num_buckets; i++) {
uint32_t key;
int load;
fr_hash_entry_t *node, *next;
/*
* If we haven't inserted or looked up an entry
* in a bucket, it's uninitialized.
*/
if (!ht->buckets[i]) {
uninitialized++;
continue;
}
load = 0;
key = ~0;
for (node = ht->buckets[i]; node != &ht->null; node = next) {
if (node->reversed == key) {
collisions++;
} else {
key = node->reversed;
}
next = node->next;
load++;
}
if (load > 255) load = 255;
array[load]++;
}
printf("HASH TABLE %p\tbuckets: %d\t(%d uninitialized)\n", ht,
ht->num_buckets, uninitialized);
printf("\tnum entries %d\thash collisions %d\n",
ht->num_elements, collisions);
a = 0;
for (i = 1; i < 256; i++) {
if (!array[i]) continue;
printf("%d\t%d\n", i, array[i]);
/*
* Since the entries are ordered, the lookup cost
* for any one element in a chain is (on average)
* the cost of walking half of the chain.
*/
if (i > 1) {
a += array[i] * i;
}
}
a /= 2;
a += array[1];
printf("\texpected lookup cost = %d/%d or %f\n\n",
ht->num_elements, a,
(float) ht->num_elements / (float) a);
return 0;
}
#endif
#define FNV_MAGIC_INIT (0x811c9dc5)
#define FNV_MAGIC_PRIME (0x01000193)
/*
* A fast hash function. For details, see:
*
* http://www.isthe.com/chongo/tech/comp/fnv/
*
* Which also includes public domain source. We've re-written
* it here for our purposes.
*/
uint32_t fr_hash(void const *data, size_t size)
{
uint8_t const *p = data;
uint8_t const *q = p + size;
uint32_t hash = FNV_MAGIC_INIT;
/*
* FNV-1 hash each octet in the buffer
*/
while (p != q) {
/*
* XOR the 8-bit quantity into the bottom of
* the hash.
*/
hash ^= (uint32_t) (*p++);
/*
* Multiple by 32-bit magic FNV prime, mod 2^32
*/
hash *= FNV_MAGIC_PRIME;
#if 0
/*
* Potential optimization.
*/
hash += (hash<<1) + (hash<<4) + (hash<<7) + (hash<<8) + (hash<<24);
#endif
}
return hash;
}
/*
* Continue hashing data.
*/
uint32_t fr_hash_update(void const *data, size_t size, uint32_t hash)
{
uint8_t const *p = data;
uint8_t const *q = p + size;
while (p != q) {
hash *= FNV_MAGIC_PRIME;
hash ^= (uint32_t) (*p++);
}
return hash;
}
/*
* Hash a C string, so we loop over it once.
*/
uint32_t fr_hash_string(char const *p)
{
uint32_t hash = FNV_MAGIC_INIT;
while (*p) {
hash *= FNV_MAGIC_PRIME;
hash ^= (uint32_t) (*p++);
}
return hash;
}
#ifdef TESTING
/*
* cc -g -DTESTING -I ../include hash.c -o hash
*
* ./hash
*/
static uint32_t hash_int(void const *data)
{
return fr_hash((int *) data, sizeof(int));
}
#define MAX 1024*1024
int main(int argc, char **argv)
{
int i, *p, *q, k;
fr_hash_table_t *ht;
int *array;
ht = fr_hash_table_create(hash_int, NULL, NULL);
if (!ht) {
fprintf(stderr, "Hash create failed\n");
fr_exit(1);
}
array = malloc(sizeof(int) * MAX);
if (!array) fr_exit(1);
for (i = 0; i < MAX; i++) {
p = array + i;
*p = i;
if (!fr_hash_table_insert(ht, p)) {
fprintf(stderr, "Failed insert %08x\n", i);
fr_exit(1);
}
#ifdef TEST_INSERT
q = fr_hash_table_finddata(ht, p);
if (q != p) {
fprintf(stderr, "Bad data %d\n", i);
fr_exit(1);
}
#endif
}
fr_hash_table_info(ht);
/*
* Build this to see how lookups result in shortening
* of the hash chains.
*/
if (1) {
for (i = 0; i < MAX ; i++) {
q = fr_hash_table_finddata(ht, &i);
if (!q || *q != i) {
fprintf(stderr, "Failed finding %d\n", i);
fr_exit(1);
}
#if 0
if (!fr_hash_table_delete(ht, &i)) {
fprintf(stderr, "Failed deleting %d\n", i);
fr_exit(1);
}
q = fr_hash_table_finddata(ht, &i);
if (q) {
fprintf(stderr, "Failed to delete %08x\n", i);
fr_exit(1);
}
#endif
}
fr_hash_table_info(ht);
}
fr_hash_table_free(ht);
free(array);
fr_exit(0);
}
#endif
|