diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 14:47:53 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 14:47:53 +0000 |
commit | c8bae7493d2f2910b57f13ded012e86bdcfb0532 (patch) | |
tree | 24e09d9f84dec336720cf393e156089ca2835791 /refs/refs-internal.h | |
parent | Initial commit. (diff) | |
download | git-c8bae7493d2f2910b57f13ded012e86bdcfb0532.tar.xz git-c8bae7493d2f2910b57f13ded012e86bdcfb0532.zip |
Adding upstream version 1:2.39.2.upstream/1%2.39.2upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | refs/refs-internal.h | 737 |
1 files changed, 737 insertions, 0 deletions
diff --git a/refs/refs-internal.h b/refs/refs-internal.h new file mode 100644 index 0000000..69f93b0 --- /dev/null +++ b/refs/refs-internal.h @@ -0,0 +1,737 @@ +#ifndef REFS_REFS_INTERNAL_H +#define REFS_REFS_INTERNAL_H + +#include "cache.h" +#include "refs.h" +#include "iterator.h" + +struct ref_transaction; + +/* + * Data structures and functions for the internal use of the refs + * module. Code outside of the refs module should use only the public + * functions defined in "refs.h", and should *not* include this file. + */ + +/* + * The following flags can appear in `ref_update::flags`. Their + * numerical values must not conflict with those of REF_NO_DEREF and + * REF_FORCE_CREATE_REFLOG, which are also stored in + * `ref_update::flags`. + */ + +/* + * The reference should be updated to new_oid. + */ +#define REF_HAVE_NEW (1 << 2) + +/* + * The current reference's value should be checked to make sure that + * it agrees with old_oid. + */ +#define REF_HAVE_OLD (1 << 3) + +/* + * Used as a flag in ref_update::flags when we want to log a ref + * update but not actually perform it. This is used when a symbolic + * ref update is split up. + */ +#define REF_LOG_ONLY (1 << 7) + +/* + * Return the length of time to retry acquiring a loose reference lock + * before giving up, in milliseconds: + */ +long get_files_ref_lock_timeout_ms(void); + +/* + * Return true iff refname is minimally safe. "Safe" here means that + * deleting a loose reference by this name will not do any damage, for + * example by causing a file that is not a reference to be deleted. + * This function does not check that the reference name is legal; for + * that, use check_refname_format(). + * + * A refname that starts with "refs/" is considered safe iff it + * doesn't contain any "." or ".." components or consecutive '/' + * characters, end with '/', or (on Windows) contain any '\' + * characters. Names that do not start with "refs/" are considered + * safe iff they consist entirely of upper case characters and '_' + * (like "HEAD" and "MERGE_HEAD" but not "config" or "FOO/BAR"). + */ +int refname_is_safe(const char *refname); + +/* + * Helper function: return true if refname, which has the specified + * oid and flags, can be resolved to an object in the database. If the + * referred-to object does not exist, emit a warning and return false. + */ +int ref_resolves_to_object(const char *refname, + struct repository *repo, + const struct object_id *oid, + unsigned int flags); + +enum peel_status { + /* object was peeled successfully: */ + PEEL_PEELED = 0, + + /* + * object cannot be peeled because the named object (or an + * object referred to by a tag in the peel chain), does not + * exist. + */ + PEEL_INVALID = -1, + + /* object cannot be peeled because it is not a tag: */ + PEEL_NON_TAG = -2, + + /* ref_entry contains no peeled value because it is a symref: */ + PEEL_IS_SYMREF = -3, + + /* + * ref_entry cannot be peeled because it is broken (i.e., the + * symbolic reference cannot even be resolved to an object + * name): + */ + PEEL_BROKEN = -4 +}; + +/* + * Peel the named object; i.e., if the object is a tag, resolve the + * tag recursively until a non-tag is found. If successful, store the + * result to oid and return PEEL_PEELED. If the object is not a tag + * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively, + * and leave oid unchanged. + */ +enum peel_status peel_object(const struct object_id *name, struct object_id *oid); + +/** + * Information needed for a single ref update. Set new_oid to the new + * value or to null_oid to delete the ref. To check the old value + * while the ref is locked, set (flags & REF_HAVE_OLD) and set old_oid + * to the old value, or to null_oid to ensure the ref does not exist + * before update. + */ +struct ref_update { + /* + * If (flags & REF_HAVE_NEW), set the reference to this value + * (or delete it, if `new_oid` is `null_oid`). + */ + struct object_id new_oid; + + /* + * If (flags & REF_HAVE_OLD), check that the reference + * previously had this value (or didn't previously exist, if + * `old_oid` is `null_oid`). + */ + struct object_id old_oid; + + /* + * One or more of REF_NO_DEREF, REF_FORCE_CREATE_REFLOG, + * REF_HAVE_NEW, REF_HAVE_OLD, or backend-specific flags. + */ + unsigned int flags; + + void *backend_data; + unsigned int type; + char *msg; + + /* + * If this ref_update was split off of a symref update via + * split_symref_update(), then this member points at that + * update. This is used for two purposes: + * 1. When reporting errors, we report the refname under which + * the update was originally requested. + * 2. When we read the old value of this reference, we + * propagate it back to its parent update for recording in + * the latter's reflog. + */ + struct ref_update *parent_update; + + const char refname[FLEX_ARRAY]; +}; + +int refs_read_raw_ref(struct ref_store *ref_store, const char *refname, + struct object_id *oid, struct strbuf *referent, + unsigned int *type, int *failure_errno); + +/* + * Write an error to `err` and return a nonzero value iff the same + * refname appears multiple times in `refnames`. `refnames` must be + * sorted on entry to this function. + */ +int ref_update_reject_duplicates(struct string_list *refnames, + struct strbuf *err); + +/* + * Add a ref_update with the specified properties to transaction, and + * return a pointer to the new object. This function does not verify + * that refname is well-formed. new_oid and old_oid are only + * dereferenced if the REF_HAVE_NEW and REF_HAVE_OLD bits, + * respectively, are set in flags. + */ +struct ref_update *ref_transaction_add_update( + struct ref_transaction *transaction, + const char *refname, unsigned int flags, + const struct object_id *new_oid, + const struct object_id *old_oid, + const char *msg); + +/* + * Transaction states. + * + * OPEN: The transaction is initialized and new updates can still be + * added to it. An OPEN transaction can be prepared, + * committed, freed, or aborted (freeing and aborting an open + * transaction are equivalent). + * + * PREPARED: ref_transaction_prepare(), which locks all of the + * references involved in the update and checks that the + * update has no errors, has been called successfully for the + * transaction. A PREPARED transaction can be committed or + * aborted. + * + * CLOSED: The transaction is no longer active. A transaction becomes + * CLOSED if there is a failure while building the transaction + * or if a transaction is committed or aborted. A CLOSED + * transaction can only be freed. + */ +enum ref_transaction_state { + REF_TRANSACTION_OPEN = 0, + REF_TRANSACTION_PREPARED = 1, + REF_TRANSACTION_CLOSED = 2 +}; + +/* + * Data structure for holding a reference transaction, which can + * consist of checks and updates to multiple references, carried out + * as atomically as possible. This structure is opaque to callers. + */ +struct ref_transaction { + struct ref_store *ref_store; + struct ref_update **updates; + size_t alloc; + size_t nr; + enum ref_transaction_state state; + void *backend_data; +}; + +/* + * Check for entries in extras that are within the specified + * directory, where dirname is a reference directory name including + * the trailing slash (e.g., "refs/heads/foo/"). Ignore any + * conflicting references that are found in skip. If there is a + * conflicting reference, return its name. + * + * extras and skip must be sorted lists of reference names. Either one + * can be NULL, signifying the empty list. + */ +const char *find_descendant_ref(const char *dirname, + const struct string_list *extras, + const struct string_list *skip); + +/* We allow "recursive" symbolic refs. Only within reason, though */ +#define SYMREF_MAXDEPTH 5 + +/* + * These flags are passed to refs_ref_iterator_begin() (and do_for_each_ref(), + * which feeds it). + */ +enum do_for_each_ref_flags { + /* + * Include broken references in a do_for_each_ref*() iteration, which + * would normally be omitted. This includes both refs that point to + * missing objects (a true repository corruption), ones with illegal + * names (which we prefer not to expose to callers), as well as + * dangling symbolic refs (i.e., those that point to a non-existent + * ref; this is not a corruption, but as they have no valid oid, we + * omit them from normal iteration results). + */ + DO_FOR_EACH_INCLUDE_BROKEN = (1 << 0), + + /* + * Only include per-worktree refs in a do_for_each_ref*() iteration. + * Normally this will be used with a files ref_store, since that's + * where all reference backends will presumably store their + * per-worktree refs. + */ + DO_FOR_EACH_PER_WORKTREE_ONLY = (1 << 1), + + /* + * Omit dangling symrefs from output; this only has an effect with + * INCLUDE_BROKEN, since they are otherwise not included at all. + */ + DO_FOR_EACH_OMIT_DANGLING_SYMREFS = (1 << 2), +}; + +/* + * Reference iterators + * + * A reference iterator encapsulates the state of an in-progress + * iteration over references. Create an instance of `struct + * ref_iterator` via one of the functions in this module. + * + * A freshly-created ref_iterator doesn't yet point at a reference. To + * advance the iterator, call ref_iterator_advance(). If successful, + * this sets the iterator's refname, oid, and flags fields to describe + * the next reference and returns ITER_OK. The data pointed at by + * refname and oid belong to the iterator; if you want to retain them + * after calling ref_iterator_advance() again or calling + * ref_iterator_abort(), you must make a copy. When the iteration has + * been exhausted, ref_iterator_advance() releases any resources + * associated with the iteration, frees the ref_iterator object, and + * returns ITER_DONE. If you want to abort the iteration early, call + * ref_iterator_abort(), which also frees the ref_iterator object and + * any associated resources. If there was an internal error advancing + * to the next entry, ref_iterator_advance() aborts the iteration, + * frees the ref_iterator, and returns ITER_ERROR. + * + * The reference currently being looked at can be peeled by calling + * ref_iterator_peel(). This function is often faster than peel_ref(), + * so it should be preferred when iterating over references. + * + * Putting it all together, a typical iteration looks like this: + * + * int ok; + * struct ref_iterator *iter = ...; + * + * while ((ok = ref_iterator_advance(iter)) == ITER_OK) { + * if (want_to_stop_iteration()) { + * ok = ref_iterator_abort(iter); + * break; + * } + * + * // Access information about the current reference: + * if (!(iter->flags & REF_ISSYMREF)) + * printf("%s is %s\n", iter->refname, oid_to_hex(iter->oid)); + * + * // If you need to peel the reference: + * ref_iterator_peel(iter, &oid); + * } + * + * if (ok != ITER_DONE) + * handle_error(); + */ +struct ref_iterator { + struct ref_iterator_vtable *vtable; + + /* + * Does this `ref_iterator` iterate over references in order + * by refname? + */ + unsigned int ordered : 1; + + const char *refname; + const struct object_id *oid; + unsigned int flags; +}; + +/* + * Advance the iterator to the first or next item and return ITER_OK. + * If the iteration is exhausted, free the resources associated with + * the ref_iterator and return ITER_DONE. On errors, free the iterator + * resources and return ITER_ERROR. It is a bug to use ref_iterator or + * call this function again after it has returned ITER_DONE or + * ITER_ERROR. + */ +int ref_iterator_advance(struct ref_iterator *ref_iterator); + +/* + * If possible, peel the reference currently being viewed by the + * iterator. Return 0 on success. + */ +int ref_iterator_peel(struct ref_iterator *ref_iterator, + struct object_id *peeled); + +/* + * End the iteration before it has been exhausted, freeing the + * reference iterator and any associated resources and returning + * ITER_DONE. If the abort itself failed, return ITER_ERROR. + */ +int ref_iterator_abort(struct ref_iterator *ref_iterator); + +/* + * An iterator over nothing (its first ref_iterator_advance() call + * returns ITER_DONE). + */ +struct ref_iterator *empty_ref_iterator_begin(void); + +/* + * Return true iff ref_iterator is an empty_ref_iterator. + */ +int is_empty_ref_iterator(struct ref_iterator *ref_iterator); + +/* + * Return an iterator that goes over each reference in `refs` for + * which the refname begins with prefix. If trim is non-zero, then + * trim that many characters off the beginning of each refname. + * The output is ordered by refname. + */ +struct ref_iterator *refs_ref_iterator_begin( + struct ref_store *refs, + const char *prefix, int trim, + enum do_for_each_ref_flags flags); + +/* + * A callback function used to instruct merge_ref_iterator how to + * interleave the entries from iter0 and iter1. The function should + * return one of the constants defined in enum iterator_selection. It + * must not advance either of the iterators itself. + * + * The function must be prepared to handle the case that iter0 and/or + * iter1 is NULL, which indicates that the corresponding sub-iterator + * has been exhausted. Its return value must be consistent with the + * current states of the iterators; e.g., it must not return + * ITER_SKIP_1 if iter1 has already been exhausted. + */ +typedef enum iterator_selection ref_iterator_select_fn( + struct ref_iterator *iter0, struct ref_iterator *iter1, + void *cb_data); + +/* + * Iterate over the entries from iter0 and iter1, with the values + * interleaved as directed by the select function. The iterator takes + * ownership of iter0 and iter1 and frees them when the iteration is + * over. A derived class should set `ordered` to 1 or 0 based on + * whether it generates its output in order by reference name. + */ +struct ref_iterator *merge_ref_iterator_begin( + int ordered, + struct ref_iterator *iter0, struct ref_iterator *iter1, + ref_iterator_select_fn *select, void *cb_data); + +/* + * An iterator consisting of the union of the entries from front and + * back. If there are entries common to the two sub-iterators, use the + * one from front. Each iterator must iterate over its entries in + * strcmp() order by refname for this to work. + * + * The new iterator takes ownership of its arguments and frees them + * when the iteration is over. As a convenience to callers, if front + * or back is an empty_ref_iterator, then abort that one immediately + * and return the other iterator directly, without wrapping it. + */ +struct ref_iterator *overlay_ref_iterator_begin( + struct ref_iterator *front, struct ref_iterator *back); + +/* + * Wrap iter0, only letting through the references whose names start + * with prefix. If trim is set, set iter->refname to the name of the + * reference with that many characters trimmed off the front; + * otherwise set it to the full refname. The new iterator takes over + * ownership of iter0 and frees it when iteration is over. It makes + * its own copy of prefix. + * + * As an convenience to callers, if prefix is the empty string and + * trim is zero, this function returns iter0 directly, without + * wrapping it. + * + * The resulting ref_iterator is ordered if iter0 is. + */ +struct ref_iterator *prefix_ref_iterator_begin(struct ref_iterator *iter0, + const char *prefix, + int trim); + +/* Internal implementation of reference iteration: */ + +/* + * Base class constructor for ref_iterators. Initialize the + * ref_iterator part of iter, setting its vtable pointer as specified. + * `ordered` should be set to 1 if the iterator will iterate over + * references in order by refname; otherwise it should be set to 0. + * This is meant to be called only by the initializers of derived + * classes. + */ +void base_ref_iterator_init(struct ref_iterator *iter, + struct ref_iterator_vtable *vtable, + int ordered); + +/* + * Base class destructor for ref_iterators. Destroy the ref_iterator + * part of iter and shallow-free the object. This is meant to be + * called only by the destructors of derived classes. + */ +void base_ref_iterator_free(struct ref_iterator *iter); + +/* Virtual function declarations for ref_iterators: */ + +/* + * backend-specific implementation of ref_iterator_advance. For symrefs, the + * function should set REF_ISSYMREF, and it should also dereference the symref + * to provide the OID referent. It should respect do_for_each_ref_flags + * that were passed to refs_ref_iterator_begin(). + */ +typedef int ref_iterator_advance_fn(struct ref_iterator *ref_iterator); + +/* + * Peels the current ref, returning 0 for success or -1 for failure. + */ +typedef int ref_iterator_peel_fn(struct ref_iterator *ref_iterator, + struct object_id *peeled); + +/* + * Implementations of this function should free any resources specific + * to the derived class, then call base_ref_iterator_free() to clean + * up and free the ref_iterator object. + */ +typedef int ref_iterator_abort_fn(struct ref_iterator *ref_iterator); + +struct ref_iterator_vtable { + ref_iterator_advance_fn *advance; + ref_iterator_peel_fn *peel; + ref_iterator_abort_fn *abort; +}; + +/* + * current_ref_iter is a performance hack: when iterating over + * references using the for_each_ref*() functions, current_ref_iter is + * set to the reference iterator before calling the callback function. + * If the callback function calls peel_ref(), then peel_ref() first + * checks whether the reference to be peeled is the one referred to by + * the iterator (it usually is) and if so, asks the iterator for the + * peeled version of the reference if it is available. This avoids a + * refname lookup in a common case. current_ref_iter is set to NULL + * when the iteration is over. + */ +extern struct ref_iterator *current_ref_iter; + +/* + * The common backend for the for_each_*ref* functions. Call fn for + * each reference in iter. If the iterator itself ever returns + * ITER_ERROR, return -1. If fn ever returns a non-zero value, stop + * the iteration and return that value. Otherwise, return 0. In any + * case, free the iterator when done. This function is basically an + * adapter between the callback style of reference iteration and the + * iterator style. + */ +int do_for_each_repo_ref_iterator(struct repository *r, + struct ref_iterator *iter, + each_repo_ref_fn fn, void *cb_data); + +struct ref_store; + +/* refs backends */ + +/* ref_store_init flags */ +#define REF_STORE_READ (1 << 0) +#define REF_STORE_WRITE (1 << 1) /* can perform update operations */ +#define REF_STORE_ODB (1 << 2) /* has access to object database */ +#define REF_STORE_MAIN (1 << 3) +#define REF_STORE_ALL_CAPS (REF_STORE_READ | \ + REF_STORE_WRITE | \ + REF_STORE_ODB | \ + REF_STORE_MAIN) + +/* + * Initialize the ref_store for the specified gitdir. These functions + * should call base_ref_store_init() to initialize the shared part of + * the ref_store and to record the ref_store for later lookup. + */ +typedef struct ref_store *ref_store_init_fn(struct repository *repo, + const char *gitdir, + unsigned int flags); + +typedef int ref_init_db_fn(struct ref_store *refs, struct strbuf *err); + +typedef int ref_transaction_prepare_fn(struct ref_store *refs, + struct ref_transaction *transaction, + struct strbuf *err); + +typedef int ref_transaction_finish_fn(struct ref_store *refs, + struct ref_transaction *transaction, + struct strbuf *err); + +typedef int ref_transaction_abort_fn(struct ref_store *refs, + struct ref_transaction *transaction, + struct strbuf *err); + +typedef int ref_transaction_commit_fn(struct ref_store *refs, + struct ref_transaction *transaction, + struct strbuf *err); + +typedef int pack_refs_fn(struct ref_store *ref_store, unsigned int flags); +typedef int create_symref_fn(struct ref_store *ref_store, + const char *ref_target, + const char *refs_heads_master, + const char *logmsg); +typedef int delete_refs_fn(struct ref_store *ref_store, const char *msg, + struct string_list *refnames, unsigned int flags); +typedef int rename_ref_fn(struct ref_store *ref_store, + const char *oldref, const char *newref, + const char *logmsg); +typedef int copy_ref_fn(struct ref_store *ref_store, + const char *oldref, const char *newref, + const char *logmsg); + +/* + * Iterate over the references in `ref_store` whose names start with + * `prefix`. `prefix` is matched as a literal string, without regard + * for path separators. If prefix is NULL or the empty string, iterate + * over all references in `ref_store`. The output is ordered by + * refname. + */ +typedef struct ref_iterator *ref_iterator_begin_fn( + struct ref_store *ref_store, + const char *prefix, unsigned int flags); + +/* reflog functions */ + +/* + * Iterate over the references in the specified ref_store that have a + * reflog. The refs are iterated over in arbitrary order. + */ +typedef struct ref_iterator *reflog_iterator_begin_fn( + struct ref_store *ref_store); + +typedef int for_each_reflog_ent_fn(struct ref_store *ref_store, + const char *refname, + each_reflog_ent_fn fn, + void *cb_data); +typedef int for_each_reflog_ent_reverse_fn(struct ref_store *ref_store, + const char *refname, + each_reflog_ent_fn fn, + void *cb_data); +typedef int reflog_exists_fn(struct ref_store *ref_store, const char *refname); +typedef int create_reflog_fn(struct ref_store *ref_store, const char *refname, + struct strbuf *err); +typedef int delete_reflog_fn(struct ref_store *ref_store, const char *refname); +typedef int reflog_expire_fn(struct ref_store *ref_store, + const char *refname, + unsigned int flags, + reflog_expiry_prepare_fn prepare_fn, + reflog_expiry_should_prune_fn should_prune_fn, + reflog_expiry_cleanup_fn cleanup_fn, + void *policy_cb_data); + +/* + * Read a reference from the specified reference store, non-recursively. + * Set type to describe the reference, and: + * + * - If refname is the name of a normal reference, fill in oid + * (leaving referent unchanged). + * + * - If refname is the name of a symbolic reference, write the full + * name of the reference to which it refers (e.g. + * "refs/heads/master") to referent and set the REF_ISSYMREF bit in + * type (leaving oid unchanged). The caller is responsible for + * validating that referent is a valid reference name. + * + * WARNING: refname might be used as part of a filename, so it is + * important from a security standpoint that it be safe in the sense + * of refname_is_safe(). Moreover, for symrefs this function sets + * referent to whatever the repository says, which might not be a + * properly-formatted or even safe reference name. NEITHER INPUT NOR + * OUTPUT REFERENCE NAMES ARE VALIDATED WITHIN THIS FUNCTION. + * + * Return 0 on success, or -1 on failure. If the ref exists but is neither a + * symbolic ref nor an object ID, it is broken. In this case set REF_ISBROKEN in + * type, and return -1 (failure_errno should not be ENOENT) + * + * failure_errno provides errno codes that are interpreted beyond error + * reporting. The following error codes have special meaning: + * * ENOENT: the ref doesn't exist + * * EISDIR: ref name is a directory + * * ENOTDIR: ref prefix is not a directory + * + * Backend-specific flags might be set in type as well, regardless of + * outcome. + * + * It is OK for refname to point into referent. If so: + * + * - if the function succeeds with REF_ISSYMREF, referent will be + * overwritten and the memory formerly pointed to by it might be + * changed or even freed. + * + * - in all other cases, referent will be untouched, and therefore + * refname will still be valid and unchanged. + */ +typedef int read_raw_ref_fn(struct ref_store *ref_store, const char *refname, + struct object_id *oid, struct strbuf *referent, + unsigned int *type, int *failure_errno); + +/* + * Read a symbolic reference from the specified reference store. This function + * is optional: if not implemented by a backend, then `read_raw_ref_fn` is used + * to read the symbolcic reference instead. It is intended to be implemented + * only in case the backend can optimize the reading of symbolic references. + * + * Return 0 on success, or -1 on failure. `referent` will be set to the target + * of the symbolic reference on success. This function explicitly does not + * distinguish between error cases and the reference not being a symbolic + * reference to allow backends to optimize this operation in case symbolic and + * non-symbolic references are treated differently. + */ +typedef int read_symbolic_ref_fn(struct ref_store *ref_store, const char *refname, + struct strbuf *referent); + +struct ref_storage_be { + struct ref_storage_be *next; + const char *name; + ref_store_init_fn *init; + ref_init_db_fn *init_db; + + ref_transaction_prepare_fn *transaction_prepare; + ref_transaction_finish_fn *transaction_finish; + ref_transaction_abort_fn *transaction_abort; + ref_transaction_commit_fn *initial_transaction_commit; + + pack_refs_fn *pack_refs; + create_symref_fn *create_symref; + delete_refs_fn *delete_refs; + rename_ref_fn *rename_ref; + copy_ref_fn *copy_ref; + + ref_iterator_begin_fn *iterator_begin; + read_raw_ref_fn *read_raw_ref; + read_symbolic_ref_fn *read_symbolic_ref; + + reflog_iterator_begin_fn *reflog_iterator_begin; + for_each_reflog_ent_fn *for_each_reflog_ent; + for_each_reflog_ent_reverse_fn *for_each_reflog_ent_reverse; + reflog_exists_fn *reflog_exists; + create_reflog_fn *create_reflog; + delete_reflog_fn *delete_reflog; + reflog_expire_fn *reflog_expire; +}; + +extern struct ref_storage_be refs_be_files; +extern struct ref_storage_be refs_be_packed; + +/* + * A representation of the reference store for the main repository or + * a submodule. The ref_store instances for submodules are kept in a + * hash map; see get_submodule_ref_store() for more info. + */ +struct ref_store { + /* The backend describing this ref_store's storage scheme: */ + const struct ref_storage_be *be; + + struct repository *repo; + + /* + * The gitdir that this ref_store applies to. Note that this is not + * necessarily repo->gitdir if the repo has multiple worktrees. + */ + char *gitdir; +}; + +/* + * Parse contents of a loose ref file. *failure_errno maybe be set to EINVAL for + * invalid contents. + */ +int parse_loose_ref_contents(const char *buf, struct object_id *oid, + struct strbuf *referent, unsigned int *type, + int *failure_errno); + +/* + * Fill in the generic part of refs and add it to our collection of + * reference stores. + */ +void base_ref_store_init(struct ref_store *refs, struct repository *repo, + const char *path, const struct ref_storage_be *be); + +/* + * Support GIT_TRACE_REFS by optionally wrapping the given ref_store instance. + */ +struct ref_store *maybe_debug_wrap_ref_store(const char *gitdir, struct ref_store *store); + +#endif /* REFS_REFS_INTERNAL_H */ |