summaryrefslogtreecommitdiffstats
path: root/refs/refs-internal.h
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 14:47:53 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 14:47:53 +0000
commitc8bae7493d2f2910b57f13ded012e86bdcfb0532 (patch)
tree24e09d9f84dec336720cf393e156089ca2835791 /refs/refs-internal.h
parentInitial commit. (diff)
downloadgit-c8bae7493d2f2910b57f13ded012e86bdcfb0532.tar.xz
git-c8bae7493d2f2910b57f13ded012e86bdcfb0532.zip
Adding upstream version 1:2.39.2.upstream/1%2.39.2upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'refs/refs-internal.h')
-rw-r--r--refs/refs-internal.h737
1 files changed, 737 insertions, 0 deletions
diff --git a/refs/refs-internal.h b/refs/refs-internal.h
new file mode 100644
index 0000000..69f93b0
--- /dev/null
+++ b/refs/refs-internal.h
@@ -0,0 +1,737 @@
+#ifndef REFS_REFS_INTERNAL_H
+#define REFS_REFS_INTERNAL_H
+
+#include "cache.h"
+#include "refs.h"
+#include "iterator.h"
+
+struct ref_transaction;
+
+/*
+ * Data structures and functions for the internal use of the refs
+ * module. Code outside of the refs module should use only the public
+ * functions defined in "refs.h", and should *not* include this file.
+ */
+
+/*
+ * The following flags can appear in `ref_update::flags`. Their
+ * numerical values must not conflict with those of REF_NO_DEREF and
+ * REF_FORCE_CREATE_REFLOG, which are also stored in
+ * `ref_update::flags`.
+ */
+
+/*
+ * The reference should be updated to new_oid.
+ */
+#define REF_HAVE_NEW (1 << 2)
+
+/*
+ * The current reference's value should be checked to make sure that
+ * it agrees with old_oid.
+ */
+#define REF_HAVE_OLD (1 << 3)
+
+/*
+ * Used as a flag in ref_update::flags when we want to log a ref
+ * update but not actually perform it. This is used when a symbolic
+ * ref update is split up.
+ */
+#define REF_LOG_ONLY (1 << 7)
+
+/*
+ * Return the length of time to retry acquiring a loose reference lock
+ * before giving up, in milliseconds:
+ */
+long get_files_ref_lock_timeout_ms(void);
+
+/*
+ * Return true iff refname is minimally safe. "Safe" here means that
+ * deleting a loose reference by this name will not do any damage, for
+ * example by causing a file that is not a reference to be deleted.
+ * This function does not check that the reference name is legal; for
+ * that, use check_refname_format().
+ *
+ * A refname that starts with "refs/" is considered safe iff it
+ * doesn't contain any "." or ".." components or consecutive '/'
+ * characters, end with '/', or (on Windows) contain any '\'
+ * characters. Names that do not start with "refs/" are considered
+ * safe iff they consist entirely of upper case characters and '_'
+ * (like "HEAD" and "MERGE_HEAD" but not "config" or "FOO/BAR").
+ */
+int refname_is_safe(const char *refname);
+
+/*
+ * Helper function: return true if refname, which has the specified
+ * oid and flags, can be resolved to an object in the database. If the
+ * referred-to object does not exist, emit a warning and return false.
+ */
+int ref_resolves_to_object(const char *refname,
+ struct repository *repo,
+ const struct object_id *oid,
+ unsigned int flags);
+
+enum peel_status {
+ /* object was peeled successfully: */
+ PEEL_PEELED = 0,
+
+ /*
+ * object cannot be peeled because the named object (or an
+ * object referred to by a tag in the peel chain), does not
+ * exist.
+ */
+ PEEL_INVALID = -1,
+
+ /* object cannot be peeled because it is not a tag: */
+ PEEL_NON_TAG = -2,
+
+ /* ref_entry contains no peeled value because it is a symref: */
+ PEEL_IS_SYMREF = -3,
+
+ /*
+ * ref_entry cannot be peeled because it is broken (i.e., the
+ * symbolic reference cannot even be resolved to an object
+ * name):
+ */
+ PEEL_BROKEN = -4
+};
+
+/*
+ * Peel the named object; i.e., if the object is a tag, resolve the
+ * tag recursively until a non-tag is found. If successful, store the
+ * result to oid and return PEEL_PEELED. If the object is not a tag
+ * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively,
+ * and leave oid unchanged.
+ */
+enum peel_status peel_object(const struct object_id *name, struct object_id *oid);
+
+/**
+ * Information needed for a single ref update. Set new_oid to the new
+ * value or to null_oid to delete the ref. To check the old value
+ * while the ref is locked, set (flags & REF_HAVE_OLD) and set old_oid
+ * to the old value, or to null_oid to ensure the ref does not exist
+ * before update.
+ */
+struct ref_update {
+ /*
+ * If (flags & REF_HAVE_NEW), set the reference to this value
+ * (or delete it, if `new_oid` is `null_oid`).
+ */
+ struct object_id new_oid;
+
+ /*
+ * If (flags & REF_HAVE_OLD), check that the reference
+ * previously had this value (or didn't previously exist, if
+ * `old_oid` is `null_oid`).
+ */
+ struct object_id old_oid;
+
+ /*
+ * One or more of REF_NO_DEREF, REF_FORCE_CREATE_REFLOG,
+ * REF_HAVE_NEW, REF_HAVE_OLD, or backend-specific flags.
+ */
+ unsigned int flags;
+
+ void *backend_data;
+ unsigned int type;
+ char *msg;
+
+ /*
+ * If this ref_update was split off of a symref update via
+ * split_symref_update(), then this member points at that
+ * update. This is used for two purposes:
+ * 1. When reporting errors, we report the refname under which
+ * the update was originally requested.
+ * 2. When we read the old value of this reference, we
+ * propagate it back to its parent update for recording in
+ * the latter's reflog.
+ */
+ struct ref_update *parent_update;
+
+ const char refname[FLEX_ARRAY];
+};
+
+int refs_read_raw_ref(struct ref_store *ref_store, const char *refname,
+ struct object_id *oid, struct strbuf *referent,
+ unsigned int *type, int *failure_errno);
+
+/*
+ * Write an error to `err` and return a nonzero value iff the same
+ * refname appears multiple times in `refnames`. `refnames` must be
+ * sorted on entry to this function.
+ */
+int ref_update_reject_duplicates(struct string_list *refnames,
+ struct strbuf *err);
+
+/*
+ * Add a ref_update with the specified properties to transaction, and
+ * return a pointer to the new object. This function does not verify
+ * that refname is well-formed. new_oid and old_oid are only
+ * dereferenced if the REF_HAVE_NEW and REF_HAVE_OLD bits,
+ * respectively, are set in flags.
+ */
+struct ref_update *ref_transaction_add_update(
+ struct ref_transaction *transaction,
+ const char *refname, unsigned int flags,
+ const struct object_id *new_oid,
+ const struct object_id *old_oid,
+ const char *msg);
+
+/*
+ * Transaction states.
+ *
+ * OPEN: The transaction is initialized and new updates can still be
+ * added to it. An OPEN transaction can be prepared,
+ * committed, freed, or aborted (freeing and aborting an open
+ * transaction are equivalent).
+ *
+ * PREPARED: ref_transaction_prepare(), which locks all of the
+ * references involved in the update and checks that the
+ * update has no errors, has been called successfully for the
+ * transaction. A PREPARED transaction can be committed or
+ * aborted.
+ *
+ * CLOSED: The transaction is no longer active. A transaction becomes
+ * CLOSED if there is a failure while building the transaction
+ * or if a transaction is committed or aborted. A CLOSED
+ * transaction can only be freed.
+ */
+enum ref_transaction_state {
+ REF_TRANSACTION_OPEN = 0,
+ REF_TRANSACTION_PREPARED = 1,
+ REF_TRANSACTION_CLOSED = 2
+};
+
+/*
+ * Data structure for holding a reference transaction, which can
+ * consist of checks and updates to multiple references, carried out
+ * as atomically as possible. This structure is opaque to callers.
+ */
+struct ref_transaction {
+ struct ref_store *ref_store;
+ struct ref_update **updates;
+ size_t alloc;
+ size_t nr;
+ enum ref_transaction_state state;
+ void *backend_data;
+};
+
+/*
+ * Check for entries in extras that are within the specified
+ * directory, where dirname is a reference directory name including
+ * the trailing slash (e.g., "refs/heads/foo/"). Ignore any
+ * conflicting references that are found in skip. If there is a
+ * conflicting reference, return its name.
+ *
+ * extras and skip must be sorted lists of reference names. Either one
+ * can be NULL, signifying the empty list.
+ */
+const char *find_descendant_ref(const char *dirname,
+ const struct string_list *extras,
+ const struct string_list *skip);
+
+/* We allow "recursive" symbolic refs. Only within reason, though */
+#define SYMREF_MAXDEPTH 5
+
+/*
+ * These flags are passed to refs_ref_iterator_begin() (and do_for_each_ref(),
+ * which feeds it).
+ */
+enum do_for_each_ref_flags {
+ /*
+ * Include broken references in a do_for_each_ref*() iteration, which
+ * would normally be omitted. This includes both refs that point to
+ * missing objects (a true repository corruption), ones with illegal
+ * names (which we prefer not to expose to callers), as well as
+ * dangling symbolic refs (i.e., those that point to a non-existent
+ * ref; this is not a corruption, but as they have no valid oid, we
+ * omit them from normal iteration results).
+ */
+ DO_FOR_EACH_INCLUDE_BROKEN = (1 << 0),
+
+ /*
+ * Only include per-worktree refs in a do_for_each_ref*() iteration.
+ * Normally this will be used with a files ref_store, since that's
+ * where all reference backends will presumably store their
+ * per-worktree refs.
+ */
+ DO_FOR_EACH_PER_WORKTREE_ONLY = (1 << 1),
+
+ /*
+ * Omit dangling symrefs from output; this only has an effect with
+ * INCLUDE_BROKEN, since they are otherwise not included at all.
+ */
+ DO_FOR_EACH_OMIT_DANGLING_SYMREFS = (1 << 2),
+};
+
+/*
+ * Reference iterators
+ *
+ * A reference iterator encapsulates the state of an in-progress
+ * iteration over references. Create an instance of `struct
+ * ref_iterator` via one of the functions in this module.
+ *
+ * A freshly-created ref_iterator doesn't yet point at a reference. To
+ * advance the iterator, call ref_iterator_advance(). If successful,
+ * this sets the iterator's refname, oid, and flags fields to describe
+ * the next reference and returns ITER_OK. The data pointed at by
+ * refname and oid belong to the iterator; if you want to retain them
+ * after calling ref_iterator_advance() again or calling
+ * ref_iterator_abort(), you must make a copy. When the iteration has
+ * been exhausted, ref_iterator_advance() releases any resources
+ * associated with the iteration, frees the ref_iterator object, and
+ * returns ITER_DONE. If you want to abort the iteration early, call
+ * ref_iterator_abort(), which also frees the ref_iterator object and
+ * any associated resources. If there was an internal error advancing
+ * to the next entry, ref_iterator_advance() aborts the iteration,
+ * frees the ref_iterator, and returns ITER_ERROR.
+ *
+ * The reference currently being looked at can be peeled by calling
+ * ref_iterator_peel(). This function is often faster than peel_ref(),
+ * so it should be preferred when iterating over references.
+ *
+ * Putting it all together, a typical iteration looks like this:
+ *
+ * int ok;
+ * struct ref_iterator *iter = ...;
+ *
+ * while ((ok = ref_iterator_advance(iter)) == ITER_OK) {
+ * if (want_to_stop_iteration()) {
+ * ok = ref_iterator_abort(iter);
+ * break;
+ * }
+ *
+ * // Access information about the current reference:
+ * if (!(iter->flags & REF_ISSYMREF))
+ * printf("%s is %s\n", iter->refname, oid_to_hex(iter->oid));
+ *
+ * // If you need to peel the reference:
+ * ref_iterator_peel(iter, &oid);
+ * }
+ *
+ * if (ok != ITER_DONE)
+ * handle_error();
+ */
+struct ref_iterator {
+ struct ref_iterator_vtable *vtable;
+
+ /*
+ * Does this `ref_iterator` iterate over references in order
+ * by refname?
+ */
+ unsigned int ordered : 1;
+
+ const char *refname;
+ const struct object_id *oid;
+ unsigned int flags;
+};
+
+/*
+ * Advance the iterator to the first or next item and return ITER_OK.
+ * If the iteration is exhausted, free the resources associated with
+ * the ref_iterator and return ITER_DONE. On errors, free the iterator
+ * resources and return ITER_ERROR. It is a bug to use ref_iterator or
+ * call this function again after it has returned ITER_DONE or
+ * ITER_ERROR.
+ */
+int ref_iterator_advance(struct ref_iterator *ref_iterator);
+
+/*
+ * If possible, peel the reference currently being viewed by the
+ * iterator. Return 0 on success.
+ */
+int ref_iterator_peel(struct ref_iterator *ref_iterator,
+ struct object_id *peeled);
+
+/*
+ * End the iteration before it has been exhausted, freeing the
+ * reference iterator and any associated resources and returning
+ * ITER_DONE. If the abort itself failed, return ITER_ERROR.
+ */
+int ref_iterator_abort(struct ref_iterator *ref_iterator);
+
+/*
+ * An iterator over nothing (its first ref_iterator_advance() call
+ * returns ITER_DONE).
+ */
+struct ref_iterator *empty_ref_iterator_begin(void);
+
+/*
+ * Return true iff ref_iterator is an empty_ref_iterator.
+ */
+int is_empty_ref_iterator(struct ref_iterator *ref_iterator);
+
+/*
+ * Return an iterator that goes over each reference in `refs` for
+ * which the refname begins with prefix. If trim is non-zero, then
+ * trim that many characters off the beginning of each refname.
+ * The output is ordered by refname.
+ */
+struct ref_iterator *refs_ref_iterator_begin(
+ struct ref_store *refs,
+ const char *prefix, int trim,
+ enum do_for_each_ref_flags flags);
+
+/*
+ * A callback function used to instruct merge_ref_iterator how to
+ * interleave the entries from iter0 and iter1. The function should
+ * return one of the constants defined in enum iterator_selection. It
+ * must not advance either of the iterators itself.
+ *
+ * The function must be prepared to handle the case that iter0 and/or
+ * iter1 is NULL, which indicates that the corresponding sub-iterator
+ * has been exhausted. Its return value must be consistent with the
+ * current states of the iterators; e.g., it must not return
+ * ITER_SKIP_1 if iter1 has already been exhausted.
+ */
+typedef enum iterator_selection ref_iterator_select_fn(
+ struct ref_iterator *iter0, struct ref_iterator *iter1,
+ void *cb_data);
+
+/*
+ * Iterate over the entries from iter0 and iter1, with the values
+ * interleaved as directed by the select function. The iterator takes
+ * ownership of iter0 and iter1 and frees them when the iteration is
+ * over. A derived class should set `ordered` to 1 or 0 based on
+ * whether it generates its output in order by reference name.
+ */
+struct ref_iterator *merge_ref_iterator_begin(
+ int ordered,
+ struct ref_iterator *iter0, struct ref_iterator *iter1,
+ ref_iterator_select_fn *select, void *cb_data);
+
+/*
+ * An iterator consisting of the union of the entries from front and
+ * back. If there are entries common to the two sub-iterators, use the
+ * one from front. Each iterator must iterate over its entries in
+ * strcmp() order by refname for this to work.
+ *
+ * The new iterator takes ownership of its arguments and frees them
+ * when the iteration is over. As a convenience to callers, if front
+ * or back is an empty_ref_iterator, then abort that one immediately
+ * and return the other iterator directly, without wrapping it.
+ */
+struct ref_iterator *overlay_ref_iterator_begin(
+ struct ref_iterator *front, struct ref_iterator *back);
+
+/*
+ * Wrap iter0, only letting through the references whose names start
+ * with prefix. If trim is set, set iter->refname to the name of the
+ * reference with that many characters trimmed off the front;
+ * otherwise set it to the full refname. The new iterator takes over
+ * ownership of iter0 and frees it when iteration is over. It makes
+ * its own copy of prefix.
+ *
+ * As an convenience to callers, if prefix is the empty string and
+ * trim is zero, this function returns iter0 directly, without
+ * wrapping it.
+ *
+ * The resulting ref_iterator is ordered if iter0 is.
+ */
+struct ref_iterator *prefix_ref_iterator_begin(struct ref_iterator *iter0,
+ const char *prefix,
+ int trim);
+
+/* Internal implementation of reference iteration: */
+
+/*
+ * Base class constructor for ref_iterators. Initialize the
+ * ref_iterator part of iter, setting its vtable pointer as specified.
+ * `ordered` should be set to 1 if the iterator will iterate over
+ * references in order by refname; otherwise it should be set to 0.
+ * This is meant to be called only by the initializers of derived
+ * classes.
+ */
+void base_ref_iterator_init(struct ref_iterator *iter,
+ struct ref_iterator_vtable *vtable,
+ int ordered);
+
+/*
+ * Base class destructor for ref_iterators. Destroy the ref_iterator
+ * part of iter and shallow-free the object. This is meant to be
+ * called only by the destructors of derived classes.
+ */
+void base_ref_iterator_free(struct ref_iterator *iter);
+
+/* Virtual function declarations for ref_iterators: */
+
+/*
+ * backend-specific implementation of ref_iterator_advance. For symrefs, the
+ * function should set REF_ISSYMREF, and it should also dereference the symref
+ * to provide the OID referent. It should respect do_for_each_ref_flags
+ * that were passed to refs_ref_iterator_begin().
+ */
+typedef int ref_iterator_advance_fn(struct ref_iterator *ref_iterator);
+
+/*
+ * Peels the current ref, returning 0 for success or -1 for failure.
+ */
+typedef int ref_iterator_peel_fn(struct ref_iterator *ref_iterator,
+ struct object_id *peeled);
+
+/*
+ * Implementations of this function should free any resources specific
+ * to the derived class, then call base_ref_iterator_free() to clean
+ * up and free the ref_iterator object.
+ */
+typedef int ref_iterator_abort_fn(struct ref_iterator *ref_iterator);
+
+struct ref_iterator_vtable {
+ ref_iterator_advance_fn *advance;
+ ref_iterator_peel_fn *peel;
+ ref_iterator_abort_fn *abort;
+};
+
+/*
+ * current_ref_iter is a performance hack: when iterating over
+ * references using the for_each_ref*() functions, current_ref_iter is
+ * set to the reference iterator before calling the callback function.
+ * If the callback function calls peel_ref(), then peel_ref() first
+ * checks whether the reference to be peeled is the one referred to by
+ * the iterator (it usually is) and if so, asks the iterator for the
+ * peeled version of the reference if it is available. This avoids a
+ * refname lookup in a common case. current_ref_iter is set to NULL
+ * when the iteration is over.
+ */
+extern struct ref_iterator *current_ref_iter;
+
+/*
+ * The common backend for the for_each_*ref* functions. Call fn for
+ * each reference in iter. If the iterator itself ever returns
+ * ITER_ERROR, return -1. If fn ever returns a non-zero value, stop
+ * the iteration and return that value. Otherwise, return 0. In any
+ * case, free the iterator when done. This function is basically an
+ * adapter between the callback style of reference iteration and the
+ * iterator style.
+ */
+int do_for_each_repo_ref_iterator(struct repository *r,
+ struct ref_iterator *iter,
+ each_repo_ref_fn fn, void *cb_data);
+
+struct ref_store;
+
+/* refs backends */
+
+/* ref_store_init flags */
+#define REF_STORE_READ (1 << 0)
+#define REF_STORE_WRITE (1 << 1) /* can perform update operations */
+#define REF_STORE_ODB (1 << 2) /* has access to object database */
+#define REF_STORE_MAIN (1 << 3)
+#define REF_STORE_ALL_CAPS (REF_STORE_READ | \
+ REF_STORE_WRITE | \
+ REF_STORE_ODB | \
+ REF_STORE_MAIN)
+
+/*
+ * Initialize the ref_store for the specified gitdir. These functions
+ * should call base_ref_store_init() to initialize the shared part of
+ * the ref_store and to record the ref_store for later lookup.
+ */
+typedef struct ref_store *ref_store_init_fn(struct repository *repo,
+ const char *gitdir,
+ unsigned int flags);
+
+typedef int ref_init_db_fn(struct ref_store *refs, struct strbuf *err);
+
+typedef int ref_transaction_prepare_fn(struct ref_store *refs,
+ struct ref_transaction *transaction,
+ struct strbuf *err);
+
+typedef int ref_transaction_finish_fn(struct ref_store *refs,
+ struct ref_transaction *transaction,
+ struct strbuf *err);
+
+typedef int ref_transaction_abort_fn(struct ref_store *refs,
+ struct ref_transaction *transaction,
+ struct strbuf *err);
+
+typedef int ref_transaction_commit_fn(struct ref_store *refs,
+ struct ref_transaction *transaction,
+ struct strbuf *err);
+
+typedef int pack_refs_fn(struct ref_store *ref_store, unsigned int flags);
+typedef int create_symref_fn(struct ref_store *ref_store,
+ const char *ref_target,
+ const char *refs_heads_master,
+ const char *logmsg);
+typedef int delete_refs_fn(struct ref_store *ref_store, const char *msg,
+ struct string_list *refnames, unsigned int flags);
+typedef int rename_ref_fn(struct ref_store *ref_store,
+ const char *oldref, const char *newref,
+ const char *logmsg);
+typedef int copy_ref_fn(struct ref_store *ref_store,
+ const char *oldref, const char *newref,
+ const char *logmsg);
+
+/*
+ * Iterate over the references in `ref_store` whose names start with
+ * `prefix`. `prefix` is matched as a literal string, without regard
+ * for path separators. If prefix is NULL or the empty string, iterate
+ * over all references in `ref_store`. The output is ordered by
+ * refname.
+ */
+typedef struct ref_iterator *ref_iterator_begin_fn(
+ struct ref_store *ref_store,
+ const char *prefix, unsigned int flags);
+
+/* reflog functions */
+
+/*
+ * Iterate over the references in the specified ref_store that have a
+ * reflog. The refs are iterated over in arbitrary order.
+ */
+typedef struct ref_iterator *reflog_iterator_begin_fn(
+ struct ref_store *ref_store);
+
+typedef int for_each_reflog_ent_fn(struct ref_store *ref_store,
+ const char *refname,
+ each_reflog_ent_fn fn,
+ void *cb_data);
+typedef int for_each_reflog_ent_reverse_fn(struct ref_store *ref_store,
+ const char *refname,
+ each_reflog_ent_fn fn,
+ void *cb_data);
+typedef int reflog_exists_fn(struct ref_store *ref_store, const char *refname);
+typedef int create_reflog_fn(struct ref_store *ref_store, const char *refname,
+ struct strbuf *err);
+typedef int delete_reflog_fn(struct ref_store *ref_store, const char *refname);
+typedef int reflog_expire_fn(struct ref_store *ref_store,
+ const char *refname,
+ unsigned int flags,
+ reflog_expiry_prepare_fn prepare_fn,
+ reflog_expiry_should_prune_fn should_prune_fn,
+ reflog_expiry_cleanup_fn cleanup_fn,
+ void *policy_cb_data);
+
+/*
+ * Read a reference from the specified reference store, non-recursively.
+ * Set type to describe the reference, and:
+ *
+ * - If refname is the name of a normal reference, fill in oid
+ * (leaving referent unchanged).
+ *
+ * - If refname is the name of a symbolic reference, write the full
+ * name of the reference to which it refers (e.g.
+ * "refs/heads/master") to referent and set the REF_ISSYMREF bit in
+ * type (leaving oid unchanged). The caller is responsible for
+ * validating that referent is a valid reference name.
+ *
+ * WARNING: refname might be used as part of a filename, so it is
+ * important from a security standpoint that it be safe in the sense
+ * of refname_is_safe(). Moreover, for symrefs this function sets
+ * referent to whatever the repository says, which might not be a
+ * properly-formatted or even safe reference name. NEITHER INPUT NOR
+ * OUTPUT REFERENCE NAMES ARE VALIDATED WITHIN THIS FUNCTION.
+ *
+ * Return 0 on success, or -1 on failure. If the ref exists but is neither a
+ * symbolic ref nor an object ID, it is broken. In this case set REF_ISBROKEN in
+ * type, and return -1 (failure_errno should not be ENOENT)
+ *
+ * failure_errno provides errno codes that are interpreted beyond error
+ * reporting. The following error codes have special meaning:
+ * * ENOENT: the ref doesn't exist
+ * * EISDIR: ref name is a directory
+ * * ENOTDIR: ref prefix is not a directory
+ *
+ * Backend-specific flags might be set in type as well, regardless of
+ * outcome.
+ *
+ * It is OK for refname to point into referent. If so:
+ *
+ * - if the function succeeds with REF_ISSYMREF, referent will be
+ * overwritten and the memory formerly pointed to by it might be
+ * changed or even freed.
+ *
+ * - in all other cases, referent will be untouched, and therefore
+ * refname will still be valid and unchanged.
+ */
+typedef int read_raw_ref_fn(struct ref_store *ref_store, const char *refname,
+ struct object_id *oid, struct strbuf *referent,
+ unsigned int *type, int *failure_errno);
+
+/*
+ * Read a symbolic reference from the specified reference store. This function
+ * is optional: if not implemented by a backend, then `read_raw_ref_fn` is used
+ * to read the symbolcic reference instead. It is intended to be implemented
+ * only in case the backend can optimize the reading of symbolic references.
+ *
+ * Return 0 on success, or -1 on failure. `referent` will be set to the target
+ * of the symbolic reference on success. This function explicitly does not
+ * distinguish between error cases and the reference not being a symbolic
+ * reference to allow backends to optimize this operation in case symbolic and
+ * non-symbolic references are treated differently.
+ */
+typedef int read_symbolic_ref_fn(struct ref_store *ref_store, const char *refname,
+ struct strbuf *referent);
+
+struct ref_storage_be {
+ struct ref_storage_be *next;
+ const char *name;
+ ref_store_init_fn *init;
+ ref_init_db_fn *init_db;
+
+ ref_transaction_prepare_fn *transaction_prepare;
+ ref_transaction_finish_fn *transaction_finish;
+ ref_transaction_abort_fn *transaction_abort;
+ ref_transaction_commit_fn *initial_transaction_commit;
+
+ pack_refs_fn *pack_refs;
+ create_symref_fn *create_symref;
+ delete_refs_fn *delete_refs;
+ rename_ref_fn *rename_ref;
+ copy_ref_fn *copy_ref;
+
+ ref_iterator_begin_fn *iterator_begin;
+ read_raw_ref_fn *read_raw_ref;
+ read_symbolic_ref_fn *read_symbolic_ref;
+
+ reflog_iterator_begin_fn *reflog_iterator_begin;
+ for_each_reflog_ent_fn *for_each_reflog_ent;
+ for_each_reflog_ent_reverse_fn *for_each_reflog_ent_reverse;
+ reflog_exists_fn *reflog_exists;
+ create_reflog_fn *create_reflog;
+ delete_reflog_fn *delete_reflog;
+ reflog_expire_fn *reflog_expire;
+};
+
+extern struct ref_storage_be refs_be_files;
+extern struct ref_storage_be refs_be_packed;
+
+/*
+ * A representation of the reference store for the main repository or
+ * a submodule. The ref_store instances for submodules are kept in a
+ * hash map; see get_submodule_ref_store() for more info.
+ */
+struct ref_store {
+ /* The backend describing this ref_store's storage scheme: */
+ const struct ref_storage_be *be;
+
+ struct repository *repo;
+
+ /*
+ * The gitdir that this ref_store applies to. Note that this is not
+ * necessarily repo->gitdir if the repo has multiple worktrees.
+ */
+ char *gitdir;
+};
+
+/*
+ * Parse contents of a loose ref file. *failure_errno maybe be set to EINVAL for
+ * invalid contents.
+ */
+int parse_loose_ref_contents(const char *buf, struct object_id *oid,
+ struct strbuf *referent, unsigned int *type,
+ int *failure_errno);
+
+/*
+ * Fill in the generic part of refs and add it to our collection of
+ * reference stores.
+ */
+void base_ref_store_init(struct ref_store *refs, struct repository *repo,
+ const char *path, const struct ref_storage_be *be);
+
+/*
+ * Support GIT_TRACE_REFS by optionally wrapping the given ref_store instance.
+ */
+struct ref_store *maybe_debug_wrap_ref_store(const char *gitdir, struct ref_store *store);
+
+#endif /* REFS_REFS_INTERNAL_H */