1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
|
/*
* Generic implementation of hash-based key value mappings.
*/
#include "cache.h"
#include "hashmap.h"
#define FNV32_BASE ((unsigned int) 0x811c9dc5)
#define FNV32_PRIME ((unsigned int) 0x01000193)
unsigned int strhash(const char *str)
{
unsigned int c, hash = FNV32_BASE;
while ((c = (unsigned char) *str++))
hash = (hash * FNV32_PRIME) ^ c;
return hash;
}
unsigned int strihash(const char *str)
{
unsigned int c, hash = FNV32_BASE;
while ((c = (unsigned char) *str++)) {
if (c >= 'a' && c <= 'z')
c -= 'a' - 'A';
hash = (hash * FNV32_PRIME) ^ c;
}
return hash;
}
unsigned int memhash(const void *buf, size_t len)
{
unsigned int hash = FNV32_BASE;
unsigned char *ucbuf = (unsigned char *) buf;
while (len--) {
unsigned int c = *ucbuf++;
hash = (hash * FNV32_PRIME) ^ c;
}
return hash;
}
unsigned int memihash(const void *buf, size_t len)
{
unsigned int hash = FNV32_BASE;
unsigned char *ucbuf = (unsigned char *) buf;
while (len--) {
unsigned int c = *ucbuf++;
if (c >= 'a' && c <= 'z')
c -= 'a' - 'A';
hash = (hash * FNV32_PRIME) ^ c;
}
return hash;
}
/*
* Incorporate another chunk of data into a memihash
* computation.
*/
unsigned int memihash_cont(unsigned int hash_seed, const void *buf, size_t len)
{
unsigned int hash = hash_seed;
unsigned char *ucbuf = (unsigned char *) buf;
while (len--) {
unsigned int c = *ucbuf++;
if (c >= 'a' && c <= 'z')
c -= 'a' - 'A';
hash = (hash * FNV32_PRIME) ^ c;
}
return hash;
}
#define HASHMAP_INITIAL_SIZE 64
/* grow / shrink by 2^2 */
#define HASHMAP_RESIZE_BITS 2
/* load factor in percent */
#define HASHMAP_LOAD_FACTOR 80
static void alloc_table(struct hashmap *map, unsigned int size)
{
map->tablesize = size;
CALLOC_ARRAY(map->table, size);
/* calculate resize thresholds for new size */
map->grow_at = (unsigned int) ((uint64_t) size * HASHMAP_LOAD_FACTOR / 100);
if (size <= HASHMAP_INITIAL_SIZE)
map->shrink_at = 0;
else
/*
* The shrink-threshold must be slightly smaller than
* (grow-threshold / resize-factor) to prevent erratic resizing,
* thus we divide by (resize-factor + 1).
*/
map->shrink_at = map->grow_at / ((1 << HASHMAP_RESIZE_BITS) + 1);
}
static inline int entry_equals(const struct hashmap *map,
const struct hashmap_entry *e1,
const struct hashmap_entry *e2,
const void *keydata)
{
return (e1 == e2) ||
(e1->hash == e2->hash &&
!map->cmpfn(map->cmpfn_data, e1, e2, keydata));
}
static inline unsigned int bucket(const struct hashmap *map,
const struct hashmap_entry *key)
{
return key->hash & (map->tablesize - 1);
}
int hashmap_bucket(const struct hashmap *map, unsigned int hash)
{
return hash & (map->tablesize - 1);
}
static void rehash(struct hashmap *map, unsigned int newsize)
{
/* map->table MUST NOT be NULL when this function is called */
unsigned int i, oldsize = map->tablesize;
struct hashmap_entry **oldtable = map->table;
alloc_table(map, newsize);
for (i = 0; i < oldsize; i++) {
struct hashmap_entry *e = oldtable[i];
while (e) {
struct hashmap_entry *next = e->next;
unsigned int b = bucket(map, e);
e->next = map->table[b];
map->table[b] = e;
e = next;
}
}
free(oldtable);
}
static inline struct hashmap_entry **find_entry_ptr(const struct hashmap *map,
const struct hashmap_entry *key, const void *keydata)
{
/* map->table MUST NOT be NULL when this function is called */
struct hashmap_entry **e = &map->table[bucket(map, key)];
while (*e && !entry_equals(map, *e, key, keydata))
e = &(*e)->next;
return e;
}
static int always_equal(const void *cmp_data UNUSED,
const struct hashmap_entry *entry1 UNUSED,
const struct hashmap_entry *entry2 UNUSED,
const void *keydata UNUSED)
{
return 0;
}
void hashmap_init(struct hashmap *map, hashmap_cmp_fn equals_function,
const void *cmpfn_data, size_t initial_size)
{
unsigned int size = HASHMAP_INITIAL_SIZE;
memset(map, 0, sizeof(*map));
map->cmpfn = equals_function ? equals_function : always_equal;
map->cmpfn_data = cmpfn_data;
/* calculate initial table size and allocate the table */
initial_size = (unsigned int) ((uint64_t) initial_size * 100
/ HASHMAP_LOAD_FACTOR);
while (initial_size > size)
size <<= HASHMAP_RESIZE_BITS;
alloc_table(map, size);
/*
* Keep track of the number of items in the map and
* allow the map to automatically grow as necessary.
*/
map->do_count_items = 1;
}
static void free_individual_entries(struct hashmap *map, ssize_t entry_offset)
{
struct hashmap_iter iter;
struct hashmap_entry *e;
hashmap_iter_init(map, &iter);
while ((e = hashmap_iter_next(&iter)))
/*
* like container_of, but using caller-calculated
* offset (caller being hashmap_clear_and_free)
*/
free((char *)e - entry_offset);
}
void hashmap_partial_clear_(struct hashmap *map, ssize_t entry_offset)
{
if (!map || !map->table)
return;
if (entry_offset >= 0) /* called by hashmap_clear_entries */
free_individual_entries(map, entry_offset);
memset(map->table, 0, map->tablesize * sizeof(struct hashmap_entry *));
map->shrink_at = 0;
map->private_size = 0;
}
void hashmap_clear_(struct hashmap *map, ssize_t entry_offset)
{
if (!map || !map->table)
return;
if (entry_offset >= 0) /* called by hashmap_clear_and_free */
free_individual_entries(map, entry_offset);
free(map->table);
memset(map, 0, sizeof(*map));
}
struct hashmap_entry *hashmap_get(const struct hashmap *map,
const struct hashmap_entry *key,
const void *keydata)
{
if (!map->table)
return NULL;
return *find_entry_ptr(map, key, keydata);
}
struct hashmap_entry *hashmap_get_next(const struct hashmap *map,
const struct hashmap_entry *entry)
{
struct hashmap_entry *e = entry->next;
for (; e; e = e->next)
if (entry_equals(map, entry, e, NULL))
return e;
return NULL;
}
void hashmap_add(struct hashmap *map, struct hashmap_entry *entry)
{
unsigned int b;
if (!map->table)
alloc_table(map, HASHMAP_INITIAL_SIZE);
b = bucket(map, entry);
/* add entry */
entry->next = map->table[b];
map->table[b] = entry;
/* fix size and rehash if appropriate */
if (map->do_count_items) {
map->private_size++;
if (map->private_size > map->grow_at)
rehash(map, map->tablesize << HASHMAP_RESIZE_BITS);
}
}
struct hashmap_entry *hashmap_remove(struct hashmap *map,
const struct hashmap_entry *key,
const void *keydata)
{
struct hashmap_entry *old;
struct hashmap_entry **e;
if (!map->table)
return NULL;
e = find_entry_ptr(map, key, keydata);
if (!*e)
return NULL;
/* remove existing entry */
old = *e;
*e = old->next;
old->next = NULL;
/* fix size and rehash if appropriate */
if (map->do_count_items) {
map->private_size--;
if (map->private_size < map->shrink_at)
rehash(map, map->tablesize >> HASHMAP_RESIZE_BITS);
}
return old;
}
struct hashmap_entry *hashmap_put(struct hashmap *map,
struct hashmap_entry *entry)
{
struct hashmap_entry *old = hashmap_remove(map, entry, NULL);
hashmap_add(map, entry);
return old;
}
void hashmap_iter_init(struct hashmap *map, struct hashmap_iter *iter)
{
iter->map = map;
iter->tablepos = 0;
iter->next = NULL;
}
struct hashmap_entry *hashmap_iter_next(struct hashmap_iter *iter)
{
struct hashmap_entry *current = iter->next;
for (;;) {
if (current) {
iter->next = current->next;
return current;
}
if (iter->tablepos >= iter->map->tablesize)
return NULL;
current = iter->map->table[iter->tablepos++];
}
}
struct pool_entry {
struct hashmap_entry ent;
size_t len;
unsigned char data[FLEX_ARRAY];
};
static int pool_entry_cmp(const void *cmp_data UNUSED,
const struct hashmap_entry *eptr,
const struct hashmap_entry *entry_or_key,
const void *keydata)
{
const struct pool_entry *e1, *e2;
e1 = container_of(eptr, const struct pool_entry, ent);
e2 = container_of(entry_or_key, const struct pool_entry, ent);
return e1->data != keydata &&
(e1->len != e2->len || memcmp(e1->data, keydata, e1->len));
}
const void *memintern(const void *data, size_t len)
{
static struct hashmap map;
struct pool_entry key, *e;
/* initialize string pool hashmap */
if (!map.tablesize)
hashmap_init(&map, pool_entry_cmp, NULL, 0);
/* lookup interned string in pool */
hashmap_entry_init(&key.ent, memhash(data, len));
key.len = len;
e = hashmap_get_entry(&map, &key, ent, data);
if (!e) {
/* not found: create it */
FLEX_ALLOC_MEM(e, data, data, len);
hashmap_entry_init(&e->ent, key.ent.hash);
e->len = len;
hashmap_add(&map, &e->ent);
}
return e->data;
}
|