@deftypefun {int} {gnutls_privkey_generate2} (gnutls_privkey_t @var{pkey}, gnutls_pk_algorithm_t @var{algo}, unsigned int @var{bits}, unsigned int @var{flags}, const gnutls_keygen_data_st * @var{data}, unsigned @var{data_size}) @var{pkey}: The private key @var{algo}: is one of the algorithms in @code{gnutls_pk_algorithm_t} . @var{bits}: the size of the modulus @var{flags}: Must be zero or flags from @code{gnutls_privkey_flags_t} . @var{data}: Allow specifying @code{gnutls_keygen_data_st} types such as the seed to be used. @var{data_size}: The number of @code{data} available. This function will generate a random private key. Note that this function must be called on an initialized private key. The flag @code{GNUTLS_PRIVKEY_FLAG_PROVABLE} instructs the key generation process to use algorithms like Shawe-Taylor (from FIPS PUB186-4) which generate provable parameters out of a seed for RSA and DSA keys. On DSA keys the PQG parameters are generated using the seed, while on RSA the two primes. To specify an explicit seed (by default a random seed is used), use the @code{data} with a @code{GNUTLS_KEYGEN_SEED} type. Note that when generating an elliptic curve key, the curve can be substituted in the place of the bits parameter using the @code{GNUTLS_CURVE_TO_BITS()} macro. To export the generated keys in memory or in files it is recommended to use the PKCS@code{8} form as it can handle all key types, and can store additional parameters such as the seed, in case of provable RSA or DSA keys. Generated keys can be exported in memory using @code{gnutls_privkey_export_x509()} , and then with @code{gnutls_x509_privkey_export2_pkcs8()} . If key generation is part of your application, avoid setting the number of bits directly, and instead use @code{gnutls_sec_param_to_pk_bits()} . That way the generated keys will adapt to the security levels of the underlying GnuTLS library. @strong{Returns:} On success, @code{GNUTLS_E_SUCCESS} (0) is returned, otherwise a negative error value. @strong{Since:} 3.5.0 @end deftypefun