/*
* Copyright (C) 2000-2016 Free Software Foundation, Inc.
* Copyright (C) 2016 Red Hat, Inc.
*
* Author: Nikos Mavrogiannopoulos
*
* This file is part of GnuTLS.
*
* The GnuTLS is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see
*
*/
#include "gnutls_int.h"
#include "errors.h"
#include
#include
#include
#include
#include
#include
#include
#include "crypto-api.h"
#include "iov.h"
#include "intprops.h"
typedef struct api_cipher_hd_st {
cipher_hd_st ctx_enc;
cipher_hd_st ctx_dec;
} api_cipher_hd_st;
/**
* gnutls_cipher_init:
* @handle: is a #gnutls_cipher_hd_t type
* @cipher: the encryption algorithm to use
* @key: the key to be used for encryption/decryption
* @iv: the IV to use (if not applicable set NULL)
*
* This function will initialize the @handle context to be usable
* for encryption/decryption of data. This will effectively use the
* current crypto backend in use by gnutls or the cryptographic
* accelerator in use.
*
* Returns: Zero or a negative error code on error.
*
* Since: 2.10.0
**/
int
gnutls_cipher_init(gnutls_cipher_hd_t * handle,
gnutls_cipher_algorithm_t cipher,
const gnutls_datum_t * key, const gnutls_datum_t * iv)
{
api_cipher_hd_st *h;
int ret;
const cipher_entry_st* e;
bool not_approved = false;
if (!is_cipher_algo_allowed(cipher)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(GNUTLS_E_UNWANTED_ALGORITHM);
} else if (!is_cipher_algo_approved_in_fips(cipher)) {
not_approved = true;
}
e = cipher_to_entry(cipher);
if (e == NULL || (e->flags & GNUTLS_CIPHER_FLAG_ONLY_AEAD)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
}
h = gnutls_calloc(1, sizeof(api_cipher_hd_st));
if (h == NULL) {
gnutls_assert();
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return GNUTLS_E_MEMORY_ERROR;
}
ret =
_gnutls_cipher_init(&h->ctx_enc, e, key,
iv, 1);
if (ret < 0) {
gnutls_free(h);
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return ret;
}
if (_gnutls_cipher_type(e) == CIPHER_BLOCK) {
ret =
_gnutls_cipher_init(&h->ctx_dec, e, key, iv, 0);
if (ret < 0) {
gnutls_free(h);
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return ret;
}
}
*handle = h;
if (not_approved) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_NOT_APPROVED);
} else {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_APPROVED);
}
return ret;
}
/**
* gnutls_cipher_tag:
* @handle: is a #gnutls_cipher_hd_t type
* @tag: will hold the tag
* @tag_size: the length of the tag to return
*
* This function operates on authenticated encryption with
* associated data (AEAD) ciphers and will return the
* output tag.
*
* Returns: Zero or a negative error code on error.
*
* Since: 3.0
**/
int
gnutls_cipher_tag(gnutls_cipher_hd_t handle, void *tag, size_t tag_size)
{
api_cipher_hd_st *h = handle;
if (_gnutls_cipher_is_aead(&h->ctx_enc) == 0)
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
_gnutls_cipher_tag(&h->ctx_enc, tag, tag_size);
return 0;
}
/**
* gnutls_cipher_add_auth:
* @handle: is a #gnutls_cipher_hd_t type
* @ptext: the data to be authenticated
* @ptext_size: the length of the data
*
* This function operates on authenticated encryption with
* associated data (AEAD) ciphers and authenticate the
* input data. This function can only be called once
* and before any encryption operations.
*
* Returns: Zero or a negative error code on error.
*
* Since: 3.0
**/
int
gnutls_cipher_add_auth(gnutls_cipher_hd_t handle, const void *ptext,
size_t ptext_size)
{
api_cipher_hd_st *h = handle;
int ret;
if (_gnutls_cipher_is_aead(&h->ctx_enc) == 0) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
}
ret = _gnutls_cipher_auth(&h->ctx_enc, ptext, ptext_size);
if (ret < 0) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
}
return ret;
}
/**
* gnutls_cipher_set_iv:
* @handle: is a #gnutls_cipher_hd_t type
* @iv: the IV to set
* @ivlen: the length of the IV
*
* This function will set the IV to be used for the next
* encryption block.
*
* Since: 3.0
**/
void
gnutls_cipher_set_iv(gnutls_cipher_hd_t handle, void *iv, size_t ivlen)
{
api_cipher_hd_st *h = handle;
if (_gnutls_cipher_setiv(&h->ctx_enc, iv, ivlen) < 0) {
_gnutls_switch_lib_state(LIB_STATE_ERROR);
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
}
if (_gnutls_cipher_type(h->ctx_enc.e) == CIPHER_BLOCK) {
if (_gnutls_cipher_setiv(&h->ctx_dec, iv, ivlen) < 0) {
_gnutls_switch_lib_state(LIB_STATE_ERROR);
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
}
}
}
/*-
* _gnutls_cipher_get_iv:
* @handle: is a #gnutls_cipher_hd_t type
* @iv: the IV to set
* @ivlen: the length of the IV
*
* This function will retrieve the internally calculated IV value. It is
* intended to be used for modes like CFB. @iv must have @ivlen length
* at least.
*
* This is solely for validation purposes of our crypto
* implementation. For other purposes, the IV can be typically
* calculated from the initial IV value and the subsequent ciphertext
* values. As such, this function only works with the internally
* registered ciphers.
*
* Returns: The length of IV or a negative error code on error.
*
* Since: 3.6.8
-*/
int
_gnutls_cipher_get_iv(gnutls_cipher_hd_t handle, void *iv, size_t ivlen)
{
api_cipher_hd_st *h = handle;
return _gnutls_cipher_getiv(&h->ctx_enc, iv, ivlen);
}
/*-
* _gnutls_cipher_set_key:
* @handle: is a #gnutls_cipher_hd_t type
* @key: the key to set
* @keylen: the length of the key
*
* This function will set the key used by the cipher
*
* This is solely for validation purposes of our crypto
* implementation. For other purposes, the key should be set at the time of
* cipher setup. As such, this function only works with the internally
* registered ciphers.
*
* Returns: Zero or a negative error code on error.
*
* Since: 3.6.14
-*/
int
_gnutls_cipher_set_key(gnutls_cipher_hd_t handle, void *key, size_t keylen)
{
api_cipher_hd_st *h = handle;
int ret;
ret = _gnutls_cipher_setkey(&h->ctx_enc, key, keylen);
if (ret < 0) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
}
return ret;
}
/**
* gnutls_cipher_encrypt:
* @handle: is a #gnutls_cipher_hd_t type
* @ptext: the data to encrypt
* @ptext_len: the length of data to encrypt
*
* This function will encrypt the given data using the algorithm
* specified by the context.
*
* Returns: Zero or a negative error code on error.
*
* Since: 2.10.0
**/
int
gnutls_cipher_encrypt(gnutls_cipher_hd_t handle, void *ptext,
size_t ptext_len)
{
api_cipher_hd_st *h = handle;
int ret;
ret = _gnutls_cipher_encrypt(&h->ctx_enc, ptext, ptext_len);
if (ret < 0) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
} else {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_APPROVED);
}
return ret;
}
/**
* gnutls_cipher_decrypt:
* @handle: is a #gnutls_cipher_hd_t type
* @ctext: the data to decrypt
* @ctext_len: the length of data to decrypt
*
* This function will decrypt the given data using the algorithm
* specified by the context.
*
* Note that in AEAD ciphers, this will not check the tag. You will
* need to compare the tag sent with the value returned from gnutls_cipher_tag().
*
* Returns: Zero or a negative error code on error.
*
* Since: 2.10.0
**/
int
gnutls_cipher_decrypt(gnutls_cipher_hd_t handle, void *ctext,
size_t ctext_len)
{
api_cipher_hd_st *h = handle;
int ret;
if (_gnutls_cipher_type(h->ctx_enc.e) != CIPHER_BLOCK) {
ret = _gnutls_cipher_decrypt(&h->ctx_enc, ctext,
ctext_len);
} else {
ret = _gnutls_cipher_decrypt(&h->ctx_dec, ctext,
ctext_len);
}
if (ret < 0) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
} else {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_APPROVED);
}
return ret;
}
/**
* gnutls_cipher_encrypt2:
* @handle: is a #gnutls_cipher_hd_t type
* @ptext: the data to encrypt
* @ptext_len: the length of data to encrypt
* @ctext: the encrypted data
* @ctext_len: the available length for encrypted data
*
* This function will encrypt the given data using the algorithm
* specified by the context. For block ciphers the @ptext_len must be
* a multiple of the block size. For the supported ciphers the encrypted
* data length will equal the plaintext size.
*
* Returns: Zero or a negative error code on error.
*
* Since: 2.12.0
**/
int
gnutls_cipher_encrypt2(gnutls_cipher_hd_t handle, const void *ptext,
size_t ptext_len, void *ctext,
size_t ctext_len)
{
api_cipher_hd_st *h = handle;
int ret;
ret = _gnutls_cipher_encrypt2(&h->ctx_enc, ptext, ptext_len,
ctext, ctext_len);
if (ret < 0) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
} else {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_APPROVED);
}
return ret;
}
/**
* gnutls_cipher_decrypt2:
* @handle: is a #gnutls_cipher_hd_t type
* @ctext: the data to decrypt
* @ctext_len: the length of data to decrypt
* @ptext: the decrypted data
* @ptext_len: the available length for decrypted data
*
* This function will decrypt the given data using the algorithm
* specified by the context. For block ciphers the @ctext_len must be
* a multiple of the block size. For the supported ciphers the plaintext
* data length will equal the ciphertext size.
*
* Note that in AEAD ciphers, this will not check the tag. You will
* need to compare the tag sent with the value returned from gnutls_cipher_tag().
*
* Returns: Zero or a negative error code on error.
*
* Since: 2.12.0
**/
int
gnutls_cipher_decrypt2(gnutls_cipher_hd_t handle, const void *ctext,
size_t ctext_len, void *ptext, size_t ptext_len)
{
api_cipher_hd_st *h = handle;
int ret;
if (_gnutls_cipher_type(h->ctx_enc.e) != CIPHER_BLOCK) {
ret = _gnutls_cipher_decrypt2(&h->ctx_enc, ctext,
ctext_len, ptext,
ptext_len);
} else {
ret = _gnutls_cipher_decrypt2(&h->ctx_dec, ctext,
ctext_len, ptext,
ptext_len);
}
if (ret < 0) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
} else {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_APPROVED);
}
return ret;
}
/**
* gnutls_cipher_encrypt3:
* @handle: is a #gnutls_cipher_hd_t type
* @ptext: the data to encrypt
* @ptext_len: the length of data to encrypt
* @ctext: the encrypted data
* @ctext_len: the length of encrypted data (initially must hold the maximum available size)
* @flags: flags for padding
*
* This function will encrypt the given data using the algorithm
* specified by the context. For block ciphers, @ptext_len is
* typically a multiple of the block size. If not, the caller can
* instruct the function to pad the last block according to @flags.
* Currently, the only available padding scheme is
* %GNUTLS_CIPHER_PADDING_PKCS7.
*
* If @ctext is not %NULL, it must hold enough space to store
* resulting cipher text. To check the required size, this function
* can be called with @ctext set to %NULL. Then @ctext_len will be
* updated without performing actual encryption.
*
* Returns: Zero or a negative error code on error.
*
* Since: 3.7.7
**/
int
gnutls_cipher_encrypt3(gnutls_cipher_hd_t handle,
const void *ptext, size_t ptext_len,
void *ctext, size_t *ctext_len,
unsigned flags)
{
api_cipher_hd_st *h = handle;
const cipher_entry_st *e = h->ctx_enc.e;
int block_size = _gnutls_cipher_get_block_size(e);
int ret = 0;
if (unlikely(ctext_len == NULL)) {
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
}
if (_gnutls_cipher_type(e) == CIPHER_BLOCK &&
(flags & GNUTLS_CIPHER_PADDING_PKCS7)) {
size_t n, r;
uint8_t last_block[MAX_CIPHER_BLOCK_SIZE];
const uint8_t *p = ptext;
uint8_t *c = ctext;
if (!INT_ADD_OK(ptext_len, block_size, &n)) {
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
}
n = (n / block_size) * block_size;
if (!ctext) {
*ctext_len = n;
return 0;
}
if (*ctext_len < n) {
return gnutls_assert_val(GNUTLS_E_SHORT_MEMORY_BUFFER);
}
/* Encrypt up to the last complete block */
r = ptext_len % block_size;
ret = _gnutls_cipher_encrypt2(&h->ctx_enc,
ptext, ptext_len - r,
ctext, ptext_len - r);
if (ret < 0) {
goto error;
}
/* Encrypt the last block with padding */
gnutls_memset(last_block, block_size - r, sizeof(last_block));
if (r > 0) {
memcpy(last_block, &p[ptext_len - r], r);
}
ret = _gnutls_cipher_encrypt2(&h->ctx_enc,
last_block, block_size,
&c[ptext_len - r], block_size);
if (ret < 0) {
goto error;
}
*ctext_len = n;
} else {
if (!ctext) {
*ctext_len = ptext_len;
return 0;
}
ret = _gnutls_cipher_encrypt2(&h->ctx_enc, ptext, ptext_len,
ctext, *ctext_len);
if (ret < 0) {
goto error;
}
*ctext_len = ptext_len;
}
error:
if (ret < 0) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
} else {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_APPROVED);
}
return ret;
}
/**
* gnutls_cipher_decrypt3:
* @handle: is a #gnutls_cipher_hd_t type
* @ctext: the data to decrypt
* @ctext_len: the length of data to decrypt
* @ptext: the decrypted data
* @ptext_len: the available length for decrypted data
* @flags: flags for padding
*
* This function will decrypt the given data using the algorithm
* specified by the context. If @flags is specified, padding for the
* decrypted data will be removed accordingly and @ptext_len will be
* updated.
*
* Returns: Zero or a negative error code on error.
*
* Since: 3.7.7
**/
int
gnutls_cipher_decrypt3(gnutls_cipher_hd_t handle,
const void *ctext, size_t ctext_len,
void *ptext, size_t *ptext_len,
unsigned flags)
{
api_cipher_hd_st *h = handle;
int ret;
ret = gnutls_cipher_decrypt2(handle,
ctext, ctext_len,
ptext, *ptext_len);
if (ret < 0) {
return ret;
}
if (_gnutls_cipher_type(h->ctx_enc.e) == CIPHER_BLOCK &&
(flags & GNUTLS_CIPHER_PADDING_PKCS7)) {
uint8_t *p = ptext;
uint8_t padding = p[*ptext_len - 1];
if (!padding || padding > _gnutls_cipher_get_block_size(h->ctx_enc.e)) {
return gnutls_assert_val(GNUTLS_E_DECRYPTION_FAILED);
}
/* Check that the prior bytes are all PADDING */
for (size_t i = *ptext_len - padding; i < *ptext_len; i++) {
if (padding != p[*ptext_len - 1]) {
return gnutls_assert_val(GNUTLS_E_DECRYPTION_FAILED);
}
}
*ptext_len -= padding;
}
return 0;
}
/**
* gnutls_cipher_deinit:
* @handle: is a #gnutls_cipher_hd_t type
*
* This function will deinitialize all resources occupied by the given
* encryption context.
*
* Since: 2.10.0
**/
void gnutls_cipher_deinit(gnutls_cipher_hd_t handle)
{
api_cipher_hd_st *h = handle;
_gnutls_cipher_deinit(&h->ctx_enc);
if (_gnutls_cipher_type(h->ctx_enc.e) == CIPHER_BLOCK)
_gnutls_cipher_deinit(&h->ctx_dec);
gnutls_free(handle);
}
/* HMAC */
/**
* gnutls_hmac_init:
* @dig: is a #gnutls_hmac_hd_t type
* @algorithm: the HMAC algorithm to use
* @key: the key to be used for encryption
* @keylen: the length of the key
*
* This function will initialize an context that can be used to
* produce a Message Authentication Code (MAC) of data. This will
* effectively use the current crypto backend in use by gnutls or the
* cryptographic accelerator in use.
*
* Note that despite the name of this function, it can be used
* for other MAC algorithms than HMAC.
*
* Returns: Zero or a negative error code on error.
*
* Since: 2.10.0
**/
int
gnutls_hmac_init(gnutls_hmac_hd_t * dig,
gnutls_mac_algorithm_t algorithm,
const void *key, size_t keylen)
{
int ret;
bool not_approved = false;
/* MD5 is only allowed internally for TLS */
if (!is_mac_algo_allowed(algorithm)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(GNUTLS_E_UNWANTED_ALGORITHM);
} else if (!is_mac_algo_approved_in_fips(algorithm)) {
not_approved = true;
}
/* Key lengths of less than 112 bits are not approved */
if (keylen < 14) {
not_approved = true;
}
*dig = gnutls_malloc(sizeof(mac_hd_st));
if (*dig == NULL) {
gnutls_assert();
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return GNUTLS_E_MEMORY_ERROR;
}
ret = _gnutls_mac_init(((mac_hd_st *) * dig),
mac_to_entry(algorithm), key, keylen);
if (ret < 0) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
} else if (not_approved) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_NOT_APPROVED);
} else {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_APPROVED);
}
return ret;
}
/**
* gnutls_hmac_set_nonce:
* @handle: is a #gnutls_hmac_hd_t type
* @nonce: the data to set as nonce
* @nonce_len: the length of data
*
* This function will set the nonce in the MAC algorithm.
*
* Since: 3.2.0
**/
void
gnutls_hmac_set_nonce(gnutls_hmac_hd_t handle, const void *nonce,
size_t nonce_len)
{
_gnutls_mac_set_nonce((mac_hd_st *) handle, nonce, nonce_len);
}
/**
* gnutls_hmac:
* @handle: is a #gnutls_hmac_hd_t type
* @ptext: the data to hash
* @ptext_len: the length of data to hash
*
* This function will hash the given data using the algorithm
* specified by the context.
*
* Returns: Zero or a negative error code on error.
*
* Since: 2.10.0
**/
int gnutls_hmac(gnutls_hmac_hd_t handle, const void *ptext, size_t ptext_len)
{
int ret;
ret = _gnutls_mac((mac_hd_st *) handle, ptext, ptext_len);
if (ret < 0) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
} else {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_APPROVED);
}
return ret;
}
/**
* gnutls_hmac_output:
* @handle: is a #gnutls_hmac_hd_t type
* @digest: is the output value of the MAC
*
* This function will output the current MAC value
* and reset the state of the MAC.
*
* Since: 2.10.0
**/
void gnutls_hmac_output(gnutls_hmac_hd_t handle, void *digest)
{
_gnutls_mac_output((mac_hd_st *) handle, digest);
}
/**
* gnutls_hmac_deinit:
* @handle: is a #gnutls_hmac_hd_t type
* @digest: is the output value of the MAC
*
* This function will deinitialize all resources occupied by
* the given hmac context.
*
* Since: 2.10.0
**/
void gnutls_hmac_deinit(gnutls_hmac_hd_t handle, void *digest)
{
_gnutls_mac_deinit((mac_hd_st *) handle, digest);
gnutls_free(handle);
}
/**
* gnutls_hmac_get_len:
* @algorithm: the hmac algorithm to use
*
* This function will return the length of the output data
* of the given hmac algorithm.
*
* Returns: The length or zero on error.
*
* Since: 2.10.0
**/
unsigned gnutls_hmac_get_len(gnutls_mac_algorithm_t algorithm)
{
return _gnutls_mac_get_algo_len(mac_to_entry(algorithm));
}
/**
* gnutls_hmac_get_key_size:
* @algorithm: the mac algorithm to use
*
* This function will return the size of the key to be used with this
* algorithm. On the algorithms which may accept arbitrary key sizes,
* the returned size is the MAC key size used in the TLS protocol.
*
* Returns: The key size or zero on error.
*
* Since: 3.6.12
**/
unsigned gnutls_hmac_get_key_size(gnutls_mac_algorithm_t algorithm)
{
return _gnutls_mac_get_key_size(mac_to_entry(algorithm));
}
/**
* gnutls_hmac_fast:
* @algorithm: the hash algorithm to use
* @key: the key to use
* @keylen: the length of the key
* @ptext: the data to hash
* @ptext_len: the length of data to hash
* @digest: is the output value of the hash
*
* This convenience function will hash the given data and return output
* on a single call. Note, this call will not work for MAC algorithms
* that require nonce (like UMAC or GMAC).
*
* Returns: Zero or a negative error code on error.
*
* Since: 2.10.0
**/
int
gnutls_hmac_fast(gnutls_mac_algorithm_t algorithm,
const void *key, size_t keylen,
const void *ptext, size_t ptext_len, void *digest)
{
int ret;
bool not_approved = false;
if (!is_mac_algo_allowed(algorithm)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(GNUTLS_E_UNWANTED_ALGORITHM);
} else if (!is_mac_algo_approved_in_fips(algorithm)) {
not_approved = true;
}
/* Key lengths of less than 112 bits are not approved */
if (keylen < 14) {
not_approved = true;
}
ret = _gnutls_mac_fast(algorithm, key, keylen, ptext, ptext_len,
digest);
if (ret < 0) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
} else if (not_approved) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_NOT_APPROVED);
} else {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_APPROVED);
}
return ret;
}
/**
* gnutls_hmac_copy:
* @handle: is a #gnutls_hmac_hd_t type
*
* This function will create a copy of MAC context, containing all its current
* state. Copying contexts for MACs registered using
* gnutls_crypto_register_mac() is not supported and will always result in an
* error. In addition to that, some of the MAC implementations do not support
* this operation. Applications should check the return value and provide a
* proper fallback.
*
* Returns: new MAC context or NULL in case of an error.
*
* Since: 3.6.9
*/
gnutls_hmac_hd_t gnutls_hmac_copy(gnutls_hmac_hd_t handle)
{
gnutls_hmac_hd_t dig;
dig = gnutls_malloc(sizeof(mac_hd_st));
if (dig == NULL) {
gnutls_assert();
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return NULL;
}
if (_gnutls_mac_copy((const mac_hd_st *) handle, (mac_hd_st *)dig) != GNUTLS_E_SUCCESS) {
gnutls_assert();
gnutls_free(dig);
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return NULL;
}
return dig;
}
/* HASH */
/**
* gnutls_hash_init:
* @dig: is a #gnutls_hash_hd_t type
* @algorithm: the hash algorithm to use
*
* This function will initialize an context that can be used to
* produce a Message Digest of data. This will effectively use the
* current crypto backend in use by gnutls or the cryptographic
* accelerator in use.
*
* Returns: Zero or a negative error code on error.
*
* Since: 2.10.0
**/
int
gnutls_hash_init(gnutls_hash_hd_t * dig,
gnutls_digest_algorithm_t algorithm)
{
int ret;
bool not_approved = false;
if (!is_mac_algo_allowed(DIG_TO_MAC(algorithm))) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(GNUTLS_E_UNWANTED_ALGORITHM);
} else if (!is_mac_algo_approved_in_fips(DIG_TO_MAC(algorithm))) {
not_approved = true;
}
*dig = gnutls_malloc(sizeof(digest_hd_st));
if (*dig == NULL) {
gnutls_assert();
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return GNUTLS_E_MEMORY_ERROR;
}
ret = _gnutls_hash_init(((digest_hd_st *) * dig),
hash_to_entry(algorithm));
if (ret < 0) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
} else if (not_approved) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_NOT_APPROVED);
} else {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_APPROVED);
}
return ret;
}
/**
* gnutls_hash:
* @handle: is a #gnutls_hash_hd_t type
* @ptext: the data to hash
* @ptext_len: the length of data to hash
*
* This function will hash the given data using the algorithm
* specified by the context.
*
* Returns: Zero or a negative error code on error.
*
* Since: 2.10.0
**/
int gnutls_hash(gnutls_hash_hd_t handle, const void *ptext, size_t ptext_len)
{
int ret;
ret = _gnutls_hash((digest_hd_st *) handle, ptext, ptext_len);
if (ret < 0) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
}
return ret;
}
/**
* gnutls_hash_output:
* @handle: is a #gnutls_hash_hd_t type
* @digest: is the output value of the hash
*
* This function will output the current hash value
* and reset the state of the hash.
*
* Since: 2.10.0
**/
void gnutls_hash_output(gnutls_hash_hd_t handle, void *digest)
{
_gnutls_hash_output((digest_hd_st *) handle, digest);
}
/**
* gnutls_hash_deinit:
* @handle: is a #gnutls_hash_hd_t type
* @digest: is the output value of the hash
*
* This function will deinitialize all resources occupied by
* the given hash context.
*
* Since: 2.10.0
**/
void gnutls_hash_deinit(gnutls_hash_hd_t handle, void *digest)
{
_gnutls_hash_deinit((digest_hd_st *) handle, digest);
gnutls_free(handle);
}
/**
* gnutls_hash_get_len:
* @algorithm: the hash algorithm to use
*
* This function will return the length of the output data
* of the given hash algorithm.
*
* Returns: The length or zero on error.
*
* Since: 2.10.0
**/
unsigned gnutls_hash_get_len(gnutls_digest_algorithm_t algorithm)
{
return _gnutls_hash_get_algo_len(hash_to_entry(algorithm));
}
/**
* gnutls_hash_fast:
* @algorithm: the hash algorithm to use
* @ptext: the data to hash
* @ptext_len: the length of data to hash
* @digest: is the output value of the hash
*
* This convenience function will hash the given data and return output
* on a single call.
*
* Returns: Zero or a negative error code on error.
*
* Since: 2.10.0
**/
int
gnutls_hash_fast(gnutls_digest_algorithm_t algorithm,
const void *ptext, size_t ptext_len, void *digest)
{
int ret;
bool not_approved = false;
if (!is_mac_algo_allowed(DIG_TO_MAC(algorithm))) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(GNUTLS_E_UNWANTED_ALGORITHM);
} else if (!is_mac_algo_approved_in_fips(DIG_TO_MAC(algorithm))) {
not_approved = true;
}
ret = _gnutls_hash_fast(algorithm, ptext, ptext_len, digest);
if (ret < 0) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
} else if (not_approved) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_NOT_APPROVED);
}
return ret;
}
/**
* gnutls_hash_copy:
* @handle: is a #gnutls_hash_hd_t type
*
* This function will create a copy of Message Digest context, containing all
* its current state. Copying contexts for Message Digests registered using
* gnutls_crypto_register_digest() is not supported and will always result in
* an error. In addition to that, some of the Message Digest implementations do
* not support this operation. Applications should check the return value and
* provide a proper fallback.
*
* Returns: new Message Digest context or NULL in case of an error.
*
* Since: 3.6.9
*/
gnutls_hash_hd_t gnutls_hash_copy(gnutls_hash_hd_t handle)
{
gnutls_hash_hd_t dig;
dig = gnutls_malloc(sizeof(digest_hd_st));
if (dig == NULL) {
gnutls_assert();
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return NULL;
}
if (_gnutls_hash_copy((const digest_hd_st *) handle, (digest_hd_st *)dig) != GNUTLS_E_SUCCESS) {
gnutls_assert();
gnutls_free(dig);
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return NULL;
}
return dig;
}
/**
* gnutls_key_generate:
* @key: is a pointer to a #gnutls_datum_t which will contain a newly
* created key
* @key_size: the number of bytes of the key
*
* Generates a random key of @key_size bytes.
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, or an
* error code.
*
* Since: 3.0
**/
int gnutls_key_generate(gnutls_datum_t * key, unsigned int key_size)
{
int ret;
FAIL_IF_LIB_ERROR;
#ifdef ENABLE_FIPS140
/* The FIPS140 approved RNGs are not allowed to be used
* to extract key sizes longer than their original seed.
*/
if (_gnutls_fips_mode_enabled() != 0 &&
key_size > FIPS140_RND_KEY_SIZE)
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
#endif
key->size = key_size;
key->data = gnutls_malloc(key->size);
if (!key->data) {
gnutls_assert();
return GNUTLS_E_MEMORY_ERROR;
}
ret = gnutls_rnd(GNUTLS_RND_RANDOM, key->data, key->size);
if (ret < 0) {
gnutls_assert();
_gnutls_free_datum(key);
return ret;
}
return 0;
}
/* AEAD API */
/**
* gnutls_aead_cipher_init:
* @handle: is a #gnutls_aead_cipher_hd_t type.
* @cipher: the authenticated-encryption algorithm to use
* @key: The key to be used for encryption
*
* This function will initialize an context that can be used for
* encryption/decryption of data. This will effectively use the
* current crypto backend in use by gnutls or the cryptographic
* accelerator in use.
*
* Returns: Zero or a negative error code on error.
*
* Since: 3.4.0
**/
int gnutls_aead_cipher_init(gnutls_aead_cipher_hd_t *handle,
gnutls_cipher_algorithm_t cipher,
const gnutls_datum_t *key)
{
api_aead_cipher_hd_st *h;
const cipher_entry_st *e;
int ret;
bool not_approved = false;
if (!is_cipher_algo_allowed(cipher)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(GNUTLS_E_UNWANTED_ALGORITHM);
} else if (!is_cipher_algo_approved_in_fips(cipher)) {
not_approved = true;
}
e = cipher_to_entry(cipher);
if (e == NULL || e->type != CIPHER_AEAD) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
}
h = gnutls_calloc(1, sizeof(api_aead_cipher_hd_st));
if (h == NULL) {
gnutls_assert();
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return GNUTLS_E_MEMORY_ERROR;
}
ret = _gnutls_aead_cipher_init(h, cipher, key);
if (ret < 0) {
gnutls_free(h);
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return ret;
}
*handle = h;
if (not_approved) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_NOT_APPROVED);
} else {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_APPROVED);
}
return ret;
}
/**
* gnutls_aead_cipher_set_key:
* @handle: is a #gnutls_aead_cipher_hd_t type.
* @key: The key to be used for encryption
*
* This function will set a new key without re-initializing the
* context.
*
* Returns: Zero or a negative error code on error.
*
* Since: 3.7.5
**/
int gnutls_aead_cipher_set_key(gnutls_aead_cipher_hd_t handle,
const gnutls_datum_t *key)
{
const cipher_entry_st* e;
int ret;
e = cipher_to_entry(handle->ctx_enc.e->id);
if (e == NULL || e->type != CIPHER_AEAD) {
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
}
ret = handle->ctx_enc.setkey(handle->ctx_enc.handle,
key->data, key->size);
if (ret < 0) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
}
return ret;
}
/**
* gnutls_aead_cipher_decrypt:
* @handle: is a #gnutls_aead_cipher_hd_t type.
* @nonce: the nonce to set
* @nonce_len: The length of the nonce
* @auth: additional data to be authenticated
* @auth_len: The length of the data
* @tag_size: The size of the tag to use (use zero for the default)
* @ctext: the data to decrypt (including the authentication tag)
* @ctext_len: the length of data to decrypt (includes tag size)
* @ptext: the decrypted data
* @ptext_len: the length of decrypted data (initially must hold the maximum available size)
*
* This function will decrypt the given data using the algorithm
* specified by the context. This function must be provided the complete
* data to be decrypted, including the authentication tag. On several
* AEAD ciphers, the authentication tag is appended to the ciphertext,
* though this is not a general rule. This function will fail if
* the tag verification fails.
*
* Returns: Zero or a negative error code on verification failure or other error.
*
* Since: 3.4.0
**/
int
gnutls_aead_cipher_decrypt(gnutls_aead_cipher_hd_t handle,
const void *nonce, size_t nonce_len,
const void *auth, size_t auth_len,
size_t tag_size,
const void *ctext, size_t ctext_len,
void *ptext, size_t *ptext_len)
{
int ret;
api_aead_cipher_hd_st *h = handle;
if (tag_size == 0)
tag_size = _gnutls_cipher_get_tag_size(h->ctx_enc.e);
else if (tag_size > (unsigned)_gnutls_cipher_get_tag_size(h->ctx_enc.e)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
}
if (unlikely(ctext_len < tag_size)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(GNUTLS_E_DECRYPTION_FAILED);
}
ret = _gnutls_aead_cipher_decrypt(&h->ctx_enc,
nonce, nonce_len,
auth, auth_len,
tag_size,
ctext, ctext_len,
ptext, *ptext_len);
if (unlikely(ret < 0)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(ret);
} else {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_APPROVED);
}
/* That assumes that AEAD ciphers are stream */
*ptext_len = ctext_len - tag_size;
return 0;
}
/**
* gnutls_aead_cipher_encrypt:
* @handle: is a #gnutls_aead_cipher_hd_t type.
* @nonce: the nonce to set
* @nonce_len: The length of the nonce
* @auth: additional data to be authenticated
* @auth_len: The length of the data
* @tag_size: The size of the tag to use (use zero for the default)
* @ptext: the data to encrypt
* @ptext_len: The length of data to encrypt
* @ctext: the encrypted data including authentication tag
* @ctext_len: the length of encrypted data (initially must hold the maximum available size, including space for tag)
*
* This function will encrypt the given data using the algorithm
* specified by the context. The output data will contain the
* authentication tag.
*
* Returns: Zero or a negative error code on error.
*
* Since: 3.4.0
**/
int
gnutls_aead_cipher_encrypt(gnutls_aead_cipher_hd_t handle,
const void *nonce, size_t nonce_len,
const void *auth, size_t auth_len,
size_t tag_size,
const void *ptext, size_t ptext_len,
void *ctext, size_t *ctext_len)
{
api_aead_cipher_hd_st *h = handle;
int ret;
if (tag_size == 0)
tag_size = _gnutls_cipher_get_tag_size(h->ctx_enc.e);
else if (tag_size > (unsigned)_gnutls_cipher_get_tag_size(h->ctx_enc.e)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
}
if (unlikely(*ctext_len < ptext_len + tag_size)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(GNUTLS_E_SHORT_MEMORY_BUFFER);
}
ret = _gnutls_aead_cipher_encrypt(&h->ctx_enc,
nonce, nonce_len,
auth, auth_len,
tag_size,
ptext, ptext_len,
ctext, *ctext_len);
if (unlikely(ret < 0)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(ret);
} else {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_APPROVED);
}
/* That assumes that AEAD ciphers are stream */
*ctext_len = ptext_len + tag_size;
return 0;
}
struct iov_store_st {
void *data;
size_t length;
size_t capacity;
};
static void iov_store_free(struct iov_store_st *s)
{
gnutls_free(s->data);
}
static int iov_store_grow(struct iov_store_st *s, size_t length)
{
void *new_data;
size_t new_capacity = s->capacity;
if (INT_ADD_OVERFLOW(new_capacity, length)) {
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
}
new_capacity += length;
new_data = gnutls_realloc(s->data, new_capacity);
if (!new_data) {
return gnutls_assert_val(GNUTLS_E_MEMORY_ERROR);
}
s->data = new_data;
s->capacity = new_capacity;
return 0;
}
static int
append_from_iov(struct iov_store_st *dst, const giovec_t *iov, int iovcnt)
{
if (iovcnt > 0) {
int i;
uint8_t *p;
void *new_data;
size_t new_capacity = dst->capacity;
for (i = 0; i < iovcnt; i++) {
if (INT_ADD_OVERFLOW(new_capacity, iov[i].iov_len)) {
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
}
new_capacity += iov[i].iov_len;
}
new_data = gnutls_realloc(dst->data, new_capacity);
if (!new_data) {
return gnutls_assert_val(GNUTLS_E_MEMORY_ERROR);
}
dst->data = new_data;
dst->capacity = new_capacity;
p = (uint8_t *) dst->data + dst->length;
for (i = 0; i < iovcnt; i++) {
if (iov[i].iov_len > 0) {
memcpy(p, iov[i].iov_base, iov[i].iov_len);
}
p += iov[i].iov_len;
dst->length += iov[i].iov_len;
}
}
return 0;
}
static int
copy_to_iov(const uint8_t *data, size_t size,
const giovec_t *iov, int iovcnt)
{
size_t offset = 0;
int i;
for (i = 0; i < iovcnt && size > 0; i++) {
size_t to_copy = MIN(size, iov[i].iov_len);
memcpy(iov[i].iov_base, (uint8_t *) data + offset, to_copy);
offset += to_copy;
size -= to_copy;
}
if (size > 0)
return gnutls_assert_val(GNUTLS_E_SHORT_MEMORY_BUFFER);
return 0;
}
#define IOV_STORE_INIT { NULL, 0, 0 }
static int
aead_cipher_encryptv_fallback(gnutls_aead_cipher_hd_t handle,
const void *nonce, size_t nonce_len,
const giovec_t *auth_iov, int auth_iovcnt,
size_t tag_size,
const giovec_t *iov, int iovcnt,
void *ctext, size_t *ctext_len)
{
struct iov_store_st auth = IOV_STORE_INIT;
struct iov_store_st ptext = IOV_STORE_INIT;
int ret;
if (tag_size == 0)
tag_size = _gnutls_cipher_get_tag_size(handle->ctx_enc.e);
else if (tag_size > (unsigned)_gnutls_cipher_get_tag_size(handle->ctx_enc.e)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
}
ret = append_from_iov(&auth, auth_iov, auth_iovcnt);
if (ret < 0) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(ret);
}
ret = append_from_iov(&ptext, iov, iovcnt);
if (ret < 0) {
iov_store_free(&auth);
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(ret);
}
ret = gnutls_aead_cipher_encrypt(handle, nonce, nonce_len,
auth.data, auth.length,
tag_size,
ptext.data, ptext.length,
ctext, ctext_len);
iov_store_free(&auth);
iov_store_free(&ptext);
/* FIPS operation state is set by gnutls_aead_cipher_encrypt */
return ret;
}
static int
aead_cipher_encryptv(gnutls_aead_cipher_hd_t handle,
const void *nonce, size_t nonce_len,
const giovec_t *auth_iov, int auth_iovcnt,
size_t tag_size,
const giovec_t *iov, int iovcnt,
void *ctext, size_t *ctext_len)
{
int ret;
uint8_t *dst;
size_t dst_size, total = 0;
uint8_t *p;
size_t len;
size_t blocksize = handle->ctx_enc.e->blocksize;
struct iov_iter_st iter;
if (tag_size == 0)
tag_size = _gnutls_cipher_get_tag_size(handle->ctx_enc.e);
else if (tag_size > (unsigned)_gnutls_cipher_get_tag_size(handle->ctx_enc.e)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
}
ret = _gnutls_cipher_setiv(&handle->ctx_enc, nonce, nonce_len);
if (unlikely(ret < 0)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(ret);
}
ret = _gnutls_iov_iter_init(&iter, auth_iov, auth_iovcnt, blocksize);
if (unlikely(ret < 0)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(ret);
}
while (1) {
ret = _gnutls_iov_iter_next(&iter, &p);
if (unlikely(ret < 0)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(ret);
}
if (ret == 0)
break;
ret = _gnutls_cipher_auth(&handle->ctx_enc, p, ret);
if (unlikely(ret < 0)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(ret);
}
}
dst = ctext;
dst_size = *ctext_len;
ret = _gnutls_iov_iter_init(&iter, iov, iovcnt, blocksize);
if (unlikely(ret < 0)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(ret);
}
while (1) {
ret = _gnutls_iov_iter_next(&iter, &p);
if (unlikely(ret < 0)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(ret);
}
if (ret == 0)
break;
len = ret;
ret = _gnutls_cipher_encrypt2(&handle->ctx_enc,
p, len,
dst, dst_size);
if (unlikely(ret < 0)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(ret);
}
DECR_LEN(dst_size, len);
dst += len;
total += len;
}
if (dst_size < tag_size) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(GNUTLS_E_SHORT_MEMORY_BUFFER);
}
_gnutls_cipher_tag(&handle->ctx_enc, dst, tag_size);
total += tag_size;
*ctext_len = total;
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_APPROVED);
return 0;
}
/**
* gnutls_aead_cipher_encryptv:
* @handle: is a #gnutls_aead_cipher_hd_t type.
* @nonce: the nonce to set
* @nonce_len: The length of the nonce
* @auth_iov: additional data to be authenticated
* @auth_iovcnt: The number of buffers in @auth_iov
* @tag_size: The size of the tag to use (use zero for the default)
* @iov: the data to be encrypted
* @iovcnt: The number of buffers in @iov
* @ctext: the encrypted data including authentication tag
* @ctext_len: the length of encrypted data (initially must hold the maximum available size, including space for tag)
*
* This function will encrypt the provided data buffers using the algorithm
* specified by the context. The output data will contain the
* authentication tag.
*
* Returns: Zero or a negative error code on error.
*
* Since: 3.6.3
**/
int
gnutls_aead_cipher_encryptv(gnutls_aead_cipher_hd_t handle,
const void *nonce, size_t nonce_len,
const giovec_t *auth_iov, int auth_iovcnt,
size_t tag_size,
const giovec_t *iov, int iovcnt,
void *ctext, size_t *ctext_len)
{
/* Limitation: this function provides an optimization under the internally registered
* AEAD ciphers. When an AEAD cipher is used registered with gnutls_crypto_register_aead_cipher(),
* then this becomes a convenience function as it missed the lower-level primitives
* necessary for piecemeal encryption. */
if ((handle->ctx_enc.e->flags & GNUTLS_CIPHER_FLAG_ONLY_AEAD) ||
handle->ctx_enc.encrypt == NULL) {
return aead_cipher_encryptv_fallback(handle,
nonce, nonce_len,
auth_iov, auth_iovcnt,
tag_size,
iov, iovcnt,
ctext, ctext_len);
} else {
return aead_cipher_encryptv(handle,
nonce, nonce_len,
auth_iov, auth_iovcnt,
tag_size,
iov, iovcnt,
ctext, ctext_len);
}
}
static int
aead_cipher_encryptv2_fallback(gnutls_aead_cipher_hd_t handle,
const void *nonce, size_t nonce_len,
const giovec_t *auth_iov, int auth_iovcnt,
const giovec_t *iov, int iovcnt,
void *tag, size_t *tag_size)
{
struct iov_store_st auth = IOV_STORE_INIT;
struct iov_store_st ptext = IOV_STORE_INIT;
uint8_t *ptext_data;
size_t ptext_size;
uint8_t *ctext_data;
size_t ctext_size;
uint8_t *_tag;
size_t _tag_size;
int ret;
if (tag_size == NULL || *tag_size == 0)
_tag_size = _gnutls_cipher_get_tag_size(handle->ctx_enc.e);
else
_tag_size = *tag_size;
if (_tag_size > (unsigned)_gnutls_cipher_get_tag_size(handle->ctx_enc.e)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
}
ret = append_from_iov(&auth, auth_iov, auth_iovcnt);
if (ret < 0) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(ret);
}
if (handle->ctx_enc.e->flags & GNUTLS_CIPHER_FLAG_TAG_PREFIXED) {
/* prepend space for tag */
ret = iov_store_grow(&ptext, _tag_size);
if (ret < 0) {
gnutls_assert();
goto error;
}
ptext.length = _tag_size;
ret = append_from_iov(&ptext, iov, iovcnt);
if (ret < 0) {
gnutls_assert();
goto error;
}
/* We must set ptext_data after the above
* grow/append opereations, otherwise it will point to an invalid pointer after realloc.
*/
ptext_data = (uint8_t *) ptext.data + _tag_size;
ptext_size = ptext.length - _tag_size;
} else {
ret = append_from_iov(&ptext, iov, iovcnt);
if (ret < 0) {
gnutls_assert();
goto error;
}
/* append space for tag */
ret = iov_store_grow(&ptext, _tag_size);
if (ret < 0) {
gnutls_assert();
goto error;
}
/* We must set ptext_data after the above
* grow/append opereations, otherwise it will point to an invalid pointer after realloc.
*/
ptext_data = ptext.data;
ptext_size = ptext.length;
}
ctext_size = ptext.capacity;
ret = gnutls_aead_cipher_encrypt(handle, nonce, nonce_len,
auth.data, auth.length,
_tag_size,
ptext_data, ptext_size,
ptext.data, &ctext_size);
if (ret < 0) {
gnutls_assert();
goto error;
}
if (handle->ctx_enc.e->flags & GNUTLS_CIPHER_FLAG_TAG_PREFIXED) {
ctext_data = (uint8_t *)ptext.data + _tag_size;
_tag = ptext.data;
} else {
ctext_data = ptext.data;
_tag = (uint8_t *)ptext.data + ptext_size;
}
ret = copy_to_iov(ctext_data, ptext_size, iov, iovcnt);
if (ret < 0) {
gnutls_assert();
goto error;
}
if (tag != NULL) {
memcpy(tag, _tag, _tag_size);
}
if (tag_size != NULL) {
*tag_size = _tag_size;
}
error:
iov_store_free(&auth);
iov_store_free(&ptext);
if (ret < 0) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
}
/* FIPS operation state is set by gnutls_aead_cipher_encrypt */
return ret;
}
static int
aead_cipher_encryptv2(gnutls_aead_cipher_hd_t handle,
const void *nonce, size_t nonce_len,
const giovec_t *auth_iov, int auth_iovcnt,
const giovec_t *iov, int iovcnt,
void *tag, size_t *tag_size)
{
api_aead_cipher_hd_st *h = handle;
int ret;
uint8_t *p;
size_t len;
size_t blocksize = handle->ctx_enc.e->blocksize;
struct iov_iter_st iter;
size_t _tag_size;
if (tag_size == NULL || *tag_size == 0)
_tag_size = _gnutls_cipher_get_tag_size(h->ctx_enc.e);
else
_tag_size = *tag_size;
if (_tag_size > (unsigned)_gnutls_cipher_get_tag_size(h->ctx_enc.e)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
}
ret = _gnutls_cipher_setiv(&handle->ctx_enc, nonce, nonce_len);
if (unlikely(ret < 0)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(ret);
}
ret = _gnutls_iov_iter_init(&iter, auth_iov, auth_iovcnt, blocksize);
if (unlikely(ret < 0)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(ret);
}
while (1) {
ret = _gnutls_iov_iter_next(&iter, &p);
if (unlikely(ret < 0)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(ret);
}
if (ret == 0)
break;
ret = _gnutls_cipher_auth(&handle->ctx_enc, p, ret);
if (unlikely(ret < 0)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(ret);
}
}
ret = _gnutls_iov_iter_init(&iter, iov, iovcnt, blocksize);
if (unlikely(ret < 0))
return gnutls_assert_val(ret);
while (1) {
ret = _gnutls_iov_iter_next(&iter, &p);
if (unlikely(ret < 0)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(ret);
}
if (ret == 0)
break;
len = ret;
ret = _gnutls_cipher_encrypt2(&handle->ctx_enc, p, len, p, len);
if (unlikely(ret < 0)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(ret);
}
ret = _gnutls_iov_iter_sync(&iter, p, len);
if (unlikely(ret < 0)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(ret);
}
}
if (tag != NULL)
_gnutls_cipher_tag(&handle->ctx_enc, tag, _tag_size);
if (tag_size != NULL)
*tag_size = _tag_size;
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_APPROVED);
return 0;
}
/**
* gnutls_aead_cipher_encryptv2:
* @handle: is a #gnutls_aead_cipher_hd_t type.
* @nonce: the nonce to set
* @nonce_len: The length of the nonce
* @auth_iov: additional data to be authenticated
* @auth_iovcnt: The number of buffers in @auth_iov
* @iov: the data to be encrypted
* @iovcnt: The number of buffers in @iov
* @tag: The authentication tag
* @tag_size: The size of the tag to use (use zero for the default)
*
* This is similar to gnutls_aead_cipher_encrypt(), but it performs
* in-place encryption on the provided data buffers.
*
* Returns: Zero or a negative error code on error.
*
* Since: 3.6.10
**/
int
gnutls_aead_cipher_encryptv2(gnutls_aead_cipher_hd_t handle,
const void *nonce, size_t nonce_len,
const giovec_t *auth_iov, int auth_iovcnt,
const giovec_t *iov, int iovcnt,
void *tag, size_t *tag_size)
{
/* Limitation: this function provides an optimization under the internally registered
* AEAD ciphers. When an AEAD cipher is used registered with gnutls_crypto_register_aead_cipher(),
* then this becomes a convenience function as it missed the lower-level primitives
* necessary for piecemeal encryption. */
if ((handle->ctx_enc.e->flags & GNUTLS_CIPHER_FLAG_ONLY_AEAD) ||
handle->ctx_enc.encrypt == NULL) {
return aead_cipher_encryptv2_fallback(handle,
nonce, nonce_len,
auth_iov, auth_iovcnt,
iov, iovcnt,
tag, tag_size);
} else {
return aead_cipher_encryptv2(handle,
nonce, nonce_len,
auth_iov, auth_iovcnt,
iov, iovcnt,
tag, tag_size);
}
}
static int
aead_cipher_decryptv2_fallback(gnutls_aead_cipher_hd_t handle,
const void *nonce, size_t nonce_len,
const giovec_t *auth_iov, int auth_iovcnt,
const giovec_t *iov, int iovcnt,
void *tag, size_t tag_size)
{
struct iov_store_st auth = IOV_STORE_INIT;
struct iov_store_st ctext = IOV_STORE_INIT;
uint8_t *ctext_data;
size_t ptext_size;
int ret;
if (tag_size == 0)
tag_size = _gnutls_cipher_get_tag_size(handle->ctx_enc.e);
else if (tag_size > (unsigned)_gnutls_cipher_get_tag_size(handle->ctx_enc.e)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
}
ret = append_from_iov(&auth, auth_iov, auth_iovcnt);
if (ret < 0) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(ret);
}
if (handle->ctx_enc.e->flags & GNUTLS_CIPHER_FLAG_TAG_PREFIXED) {
/* prepend tag */
ret = iov_store_grow(&ctext, tag_size);
if (ret < 0) {
gnutls_assert();
goto error;
}
memcpy(ctext.data, tag, tag_size);
ctext.length += tag_size;
ret = append_from_iov(&ctext, iov, iovcnt);
if (ret < 0) {
gnutls_assert();
goto error;
}
/* We must set ctext_data after the above
* grow/append opereations, otherwise it will point to an invalid pointer after realloc.
*/
ctext_data = (uint8_t *) ctext.data + tag_size;
} else {
ret = append_from_iov(&ctext, iov, iovcnt);
if (ret < 0) {
gnutls_assert();
goto error;
}
/* append tag */
ret = iov_store_grow(&ctext, tag_size);
if (ret < 0) {
gnutls_assert();
goto error;
}
memcpy((uint8_t *) ctext.data + ctext.length, tag, tag_size);
ctext.length += tag_size;
/* We must set ctext_data after the above
* grow/append opereations, otherwise it will point to an invalid pointer after realloc.
*/
ctext_data = ctext.data;
}
ptext_size = ctext.capacity;
ret = gnutls_aead_cipher_decrypt(handle, nonce, nonce_len,
auth.data, auth.length,
tag_size,
ctext.data, ctext.length,
ctext_data, &ptext_size);
if (ret < 0) {
gnutls_assert();
goto error;
}
ret = copy_to_iov(ctext.data, ptext_size, iov, iovcnt);
if (ret < 0) {
gnutls_assert();
goto error;
}
error:
iov_store_free(&auth);
iov_store_free(&ctext);
if (ret < 0) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
}
/* FIPS operation state is set by gnutls_aead_cipher_decrypt */
return ret;
}
static int
aead_cipher_decryptv2(gnutls_aead_cipher_hd_t handle,
const void *nonce, size_t nonce_len,
const giovec_t *auth_iov, int auth_iovcnt,
const giovec_t *iov, int iovcnt,
void *tag, size_t tag_size)
{
int ret;
uint8_t *p;
size_t len;
ssize_t blocksize = handle->ctx_enc.e->blocksize;
struct iov_iter_st iter;
uint8_t _tag[MAX_HASH_SIZE];
if (tag_size == 0)
tag_size = _gnutls_cipher_get_tag_size(handle->ctx_enc.e);
else if (tag_size > (unsigned)_gnutls_cipher_get_tag_size(handle->ctx_enc.e)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
}
ret = _gnutls_cipher_setiv(&handle->ctx_enc, nonce, nonce_len);
if (unlikely(ret < 0)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(ret);
}
ret = _gnutls_iov_iter_init(&iter, auth_iov, auth_iovcnt, blocksize);
if (unlikely(ret < 0)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(ret);
}
while (1) {
ret = _gnutls_iov_iter_next(&iter, &p);
if (unlikely(ret < 0)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(ret);
}
if (ret == 0)
break;
ret = _gnutls_cipher_auth(&handle->ctx_enc, p, ret);
if (unlikely(ret < 0)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(ret);
}
}
ret = _gnutls_iov_iter_init(&iter, iov, iovcnt, blocksize);
if (unlikely(ret < 0)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(ret);
}
while (1) {
ret = _gnutls_iov_iter_next(&iter, &p);
if (unlikely(ret < 0)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(ret);
}
if (ret == 0)
break;
len = ret;
ret = _gnutls_cipher_decrypt2(&handle->ctx_enc, p, len, p, len);
if (unlikely(ret < 0)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(ret);
}
ret = _gnutls_iov_iter_sync(&iter, p, len);
if (unlikely(ret < 0)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(ret);
}
}
if (tag != NULL) {
_gnutls_cipher_tag(&handle->ctx_enc, _tag, tag_size);
if (gnutls_memcmp(_tag, tag, tag_size) != 0) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(GNUTLS_E_DECRYPTION_FAILED);
}
}
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_APPROVED);
return 0;
}
/**
* gnutls_aead_cipher_decryptv2:
* @handle: is a #gnutls_aead_cipher_hd_t type.
* @nonce: the nonce to set
* @nonce_len: The length of the nonce
* @auth_iov: additional data to be authenticated
* @auth_iovcnt: The number of buffers in @auth_iov
* @iov: the data to decrypt
* @iovcnt: The number of buffers in @iov
* @tag: The authentication tag
* @tag_size: The size of the tag to use (use zero for the default)
*
* This is similar to gnutls_aead_cipher_decrypt(), but it performs
* in-place encryption on the provided data buffers.
*
* Returns: Zero or a negative error code on error.
*
* Since: 3.6.10
**/
int
gnutls_aead_cipher_decryptv2(gnutls_aead_cipher_hd_t handle,
const void *nonce, size_t nonce_len,
const giovec_t *auth_iov, int auth_iovcnt,
const giovec_t *iov, int iovcnt,
void *tag, size_t tag_size)
{
/* Limitation: this function provides an optimization under the internally registered
* AEAD ciphers. When an AEAD cipher is used registered with gnutls_crypto_register_aead_cipher(),
* then this becomes a convenience function as it missed the lower-level primitives
* necessary for piecemeal encryption. */
if ((handle->ctx_enc.e->flags & GNUTLS_CIPHER_FLAG_ONLY_AEAD) ||
handle->ctx_enc.encrypt == NULL) {
return aead_cipher_decryptv2_fallback(handle,
nonce, nonce_len,
auth_iov, auth_iovcnt,
iov, iovcnt,
tag, tag_size);
} else {
return aead_cipher_decryptv2(handle,
nonce, nonce_len,
auth_iov, auth_iovcnt,
iov, iovcnt,
tag, tag_size);
}
}
/**
* gnutls_aead_cipher_deinit:
* @handle: is a #gnutls_aead_cipher_hd_t type.
*
* This function will deinitialize all resources occupied by the given
* authenticated-encryption context.
*
* Since: 3.4.0
**/
void gnutls_aead_cipher_deinit(gnutls_aead_cipher_hd_t handle)
{
_gnutls_aead_cipher_deinit(handle);
gnutls_free(handle);
}
extern gnutls_crypto_kdf_st _gnutls_kdf_ops;
/* Same as @gnutls_hkdf_extract but without changing FIPS context */
int
_gnutls_hkdf_extract(gnutls_mac_algorithm_t mac,
const gnutls_datum_t *key,
const gnutls_datum_t *salt,
void *output)
{
/* MD5 is only allowed internally for TLS */
if (!is_mac_algo_allowed(mac)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(GNUTLS_E_UNWANTED_ALGORITHM);
}
/* We don't check whether MAC is approved, because HKDF is
* only approved in TLS, which is handled separately. */
return _gnutls_kdf_ops.hkdf_extract(mac, key->data, key->size,
salt ? salt->data : NULL,
salt ? salt->size : 0,
output);
}
/**
* gnutls_hkdf_extract:
* @mac: the mac algorithm used internally
* @key: the initial keying material
* @salt: the optional salt
* @output: the output value of the extract operation
*
* This function will derive a fixed-size key using the HKDF-Extract
* function as defined in RFC 5869.
*
* Returns: Zero or a negative error code on error.
*
* Since: 3.6.13
*/
int
gnutls_hkdf_extract(gnutls_mac_algorithm_t mac,
const gnutls_datum_t *key,
const gnutls_datum_t *salt,
void *output)
{
int ret;
ret = _gnutls_hkdf_extract(mac, key, salt, output);
if (ret < 0)
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
else
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_NOT_APPROVED);
return ret;
}
/* Same as @gnutls_hkdf_expand but without changing FIPS context */
int
_gnutls_hkdf_expand(gnutls_mac_algorithm_t mac,
const gnutls_datum_t *key,
const gnutls_datum_t *info,
void *output, size_t length)
{
/* MD5 is only allowed internally for TLS */
if (!is_mac_algo_allowed(mac)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(GNUTLS_E_UNWANTED_ALGORITHM);
}
/* We don't check whether MAC is approved, because HKDF is
* only approved in TLS, which is handled separately. */
return _gnutls_kdf_ops.hkdf_expand(mac, key->data, key->size,
info->data, info->size,
output, length);
}
/**
* gnutls_hkdf_expand:
* @mac: the mac algorithm used internally
* @key: the pseudorandom key created with HKDF-Extract
* @info: the optional informational data
* @output: the output value of the expand operation
* @length: the desired length of the output key
*
* This function will derive a variable length keying material from
* the pseudorandom key using the HKDF-Expand function as defined in
* RFC 5869.
*
* Returns: Zero or a negative error code on error.
*
* Since: 3.6.13
*/
int
gnutls_hkdf_expand(gnutls_mac_algorithm_t mac,
const gnutls_datum_t *key,
const gnutls_datum_t *info,
void *output, size_t length)
{
int ret;
ret = _gnutls_hkdf_expand(mac, key, info, output, length);
if (ret < 0)
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
else
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_NOT_APPROVED);
return ret;
}
/**
* gnutls_pbkdf2:
* @mac: the mac algorithm used internally
* @key: the initial keying material
* @salt: the salt
* @iter_count: the iteration count
* @output: the output value
* @length: the desired length of the output key
*
* This function will derive a variable length keying material from
* a password according to PKCS #5 PBKDF2.
*
* Returns: Zero or a negative error code on error.
*
* Since: 3.6.13
*/
int
gnutls_pbkdf2(gnutls_mac_algorithm_t mac,
const gnutls_datum_t *key,
const gnutls_datum_t *salt,
unsigned iter_count,
void *output, size_t length)
{
int ret;
bool not_approved = false;
/* MD5 is only allowed internally for TLS */
if (!is_mac_algo_allowed(mac)) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
return gnutls_assert_val(GNUTLS_E_UNWANTED_ALGORITHM);
} else if (!is_mac_algo_approved_in_fips(mac)) {
not_approved = true;
}
ret = _gnutls_kdf_ops.pbkdf2(mac, key->data, key->size,
salt->data, salt->size, iter_count,
output, length);
if (ret < 0) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_ERROR);
} else if (not_approved) {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_NOT_APPROVED);
} else {
_gnutls_switch_fips_state(GNUTLS_FIPS140_OP_APPROVED);
}
return ret;
}