/*
* GnuTLS PKCS#11 support
* Copyright (C) 2010-2014 Free Software Foundation, Inc.
* Copyright (C) 2012-2015 Nikos Mavrogiannopoulos
* Copyright (C) 2016-2017 Red Hat, Inc.
*
* Author: Nikos Mavrogiannopoulos
*
* The GnuTLS is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see
*/
#include "gnutls_int.h"
#include
#include
#include
#include "errors.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "urls.h"
#include "tpm2.h"
#include "pkcs11_int.h"
#include
static int
privkey_sign_prehashed(gnutls_privkey_t signer,
const gnutls_sign_entry_st *se,
const gnutls_datum_t * hash_data,
gnutls_datum_t * signature,
gnutls_x509_spki_st * params);
/**
* gnutls_privkey_get_type:
* @key: should contain a #gnutls_privkey_t type
*
* This function will return the type of the private key. This is
* actually the type of the subsystem used to set this private key.
*
* Returns: a member of the #gnutls_privkey_type_t enumeration on
* success, or a negative error code on error.
*
* Since: 2.12.0
**/
gnutls_privkey_type_t gnutls_privkey_get_type(gnutls_privkey_t key)
{
return key->type;
}
/**
* gnutls_privkey_get_seed:
* @key: should contain a #gnutls_privkey_t type
* @digest: if non-NULL it will contain the digest algorithm used for key generation (if applicable)
* @seed: where seed will be copied to
* @seed_size: originally holds the size of @seed, will be updated with actual size
*
* This function will return the seed that was used to generate the
* given private key. That function will succeed only if the key was generated
* as a provable key.
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
*
* Since: 3.5.0
**/
int gnutls_privkey_get_seed(gnutls_privkey_t key, gnutls_digest_algorithm_t *digest, void *seed, size_t *seed_size)
{
if (key->type != GNUTLS_PRIVKEY_X509)
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
return gnutls_x509_privkey_get_seed(key->key.x509, digest, seed, seed_size);
}
/**
* gnutls_privkey_verify_seed:
* @key: should contain a #gnutls_privkey_t type
* @digest: it contains the digest algorithm used for key generation (if applicable)
* @seed: the seed of the key to be checked with
* @seed_size: holds the size of @seed
*
* This function will verify that the given private key was generated from
* the provided seed.
*
* Returns: In case of a verification failure %GNUTLS_E_PRIVKEY_VERIFICATION_ERROR
* is returned, and zero or positive code on success.
*
* Since: 3.5.0
**/
int gnutls_privkey_verify_seed(gnutls_privkey_t key, gnutls_digest_algorithm_t digest, const void *seed, size_t seed_size)
{
if (key->type != GNUTLS_PRIVKEY_X509)
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
return gnutls_x509_privkey_verify_seed(key->key.x509, digest, seed, seed_size);
}
/**
* gnutls_privkey_get_pk_algorithm:
* @key: should contain a #gnutls_privkey_t type
* @bits: If set will return the number of bits of the parameters (may be NULL)
*
* This function will return the public key algorithm of a private
* key and if possible will return a number of bits that indicates
* the security parameter of the key.
*
* Returns: a member of the #gnutls_pk_algorithm_t enumeration on
* success, or a negative error code on error.
*
* Since: 2.12.0
**/
int gnutls_privkey_get_pk_algorithm(gnutls_privkey_t key, unsigned int *bits)
{
switch (key->type) {
#ifdef ENABLE_PKCS11
case GNUTLS_PRIVKEY_PKCS11:
return gnutls_pkcs11_privkey_get_pk_algorithm(key->key.pkcs11,
bits);
#endif
case GNUTLS_PRIVKEY_X509:
if (bits) {
*bits = pubkey_to_bits(&key->key.x509->params);
}
return gnutls_x509_privkey_get_pk_algorithm(key->key.x509);
case GNUTLS_PRIVKEY_EXT:
if (bits)
*bits = key->key.ext.bits;
return key->pk_algorithm;
default:
gnutls_assert();
return GNUTLS_E_INVALID_REQUEST;
}
}
static int
privkey_to_pubkey(gnutls_pk_algorithm_t pk,
const gnutls_pk_params_st * priv, gnutls_pk_params_st * pub)
{
int ret;
pub->algo = priv->algo;
pub->pkflags = priv->pkflags;
pub->curve = priv->curve;
pub->gost_params = priv->gost_params;
pub->qbits = priv->qbits;
memcpy(&pub->spki, &priv->spki, sizeof(gnutls_x509_spki_st));
switch (pk) {
case GNUTLS_PK_RSA_PSS:
case GNUTLS_PK_RSA:
pub->params[0] = _gnutls_mpi_copy(priv->params[0]);
pub->params[1] = _gnutls_mpi_copy(priv->params[1]);
pub->params_nr = RSA_PUBLIC_PARAMS;
if (pub->params[0] == NULL || pub->params[1] == NULL) {
gnutls_assert();
ret = GNUTLS_E_MEMORY_ERROR;
goto cleanup;
}
break;
case GNUTLS_PK_DSA:
pub->params[0] = _gnutls_mpi_copy(priv->params[0]);
pub->params[1] = _gnutls_mpi_copy(priv->params[1]);
pub->params[2] = _gnutls_mpi_copy(priv->params[2]);
pub->params[3] = _gnutls_mpi_copy(priv->params[3]);
pub->params_nr = DSA_PUBLIC_PARAMS;
if (pub->params[0] == NULL || pub->params[1] == NULL ||
pub->params[2] == NULL || pub->params[3] == NULL) {
gnutls_assert();
ret = GNUTLS_E_MEMORY_ERROR;
goto cleanup;
}
break;
case GNUTLS_PK_ECDSA:
pub->params[ECC_X] = _gnutls_mpi_copy(priv->params[ECC_X]);
pub->params[ECC_Y] = _gnutls_mpi_copy(priv->params[ECC_Y]);
pub->params_nr = ECC_PUBLIC_PARAMS;
if (pub->params[ECC_X] == NULL || pub->params[ECC_Y] == NULL) {
gnutls_assert();
ret = GNUTLS_E_MEMORY_ERROR;
goto cleanup;
}
break;
case GNUTLS_PK_EDDSA_ED25519:
case GNUTLS_PK_EDDSA_ED448:
case GNUTLS_PK_ECDH_X25519:
case GNUTLS_PK_ECDH_X448:
ret = _gnutls_set_datum(&pub->raw_pub, priv->raw_pub.data, priv->raw_pub.size);
if (ret < 0)
return gnutls_assert_val(ret);
break;
case GNUTLS_PK_GOST_01:
case GNUTLS_PK_GOST_12_256:
case GNUTLS_PK_GOST_12_512:
pub->params[GOST_X] = _gnutls_mpi_copy(priv->params[GOST_X]);
pub->params[GOST_Y] = _gnutls_mpi_copy(priv->params[GOST_Y]);
pub->params_nr = GOST_PUBLIC_PARAMS;
if (pub->params[GOST_X] == NULL || pub->params[GOST_Y] == NULL) {
gnutls_assert();
ret = GNUTLS_E_MEMORY_ERROR;
goto cleanup;
}
break;
default:
gnutls_assert();
return GNUTLS_E_INVALID_REQUEST;
}
return 0;
cleanup:
gnutls_pk_params_release(pub);
return ret;
}
/* Returns the public key of the private key (if possible)
*/
int
_gnutls_privkey_get_mpis(gnutls_privkey_t key, gnutls_pk_params_st * params)
{
int ret;
switch (key->type) {
case GNUTLS_PRIVKEY_X509:
ret = _gnutls_pk_params_copy(params, &key->key.x509->params);
break;
#ifdef ENABLE_PKCS11
case GNUTLS_PRIVKEY_PKCS11: {
gnutls_pubkey_t pubkey;
ret = _pkcs11_privkey_get_pubkey(key->key.pkcs11, &pubkey, 0);
if (ret < 0)
return gnutls_assert_val(ret);
ret = _gnutls_pubkey_get_mpis(pubkey, params);
gnutls_pubkey_deinit(pubkey);
break;
}
#endif
default:
if (key->key.ext.pk_params_func) {
ret = key->key.ext.pk_params_func(key,
key->key.ext.userdata,
params);
if (ret < 0)
return gnutls_assert_val(ret);
return ret;
}
gnutls_assert();
return GNUTLS_E_INVALID_REQUEST;
}
return ret;
}
int
_gnutls_privkey_get_public_mpis(gnutls_privkey_t key,
gnutls_pk_params_st * params)
{
int ret;
gnutls_pk_params_st tmp1;
gnutls_pk_params_init(&tmp1);
ret = _gnutls_privkey_get_mpis(key, &tmp1);
if (ret < 0)
return gnutls_assert_val(ret);
ret = privkey_to_pubkey(key->pk_algorithm, &tmp1, params);
gnutls_pk_params_release(&tmp1);
if (ret < 0)
gnutls_assert();
return ret;
}
/* This function retrieves default sign parameters from KEY. */
int
_gnutls_privkey_get_spki_params(gnutls_privkey_t key,
gnutls_x509_spki_st * params)
{
switch (key->type) {
#ifdef ENABLE_PKCS11
case GNUTLS_PRIVKEY_PKCS11:
break;
#endif
case GNUTLS_PRIVKEY_EXT:
break;
case GNUTLS_PRIVKEY_X509:
_gnutls_x509_privkey_get_spki_params(key->key.x509, params);
return 0;
default:
gnutls_assert();
return GNUTLS_E_INVALID_REQUEST;
}
memset(params, 0, sizeof(gnutls_x509_spki_st));
return 0;
}
/* This function fills in PARAMS with the necessary parameters to sign
* with PK and DIG. PARAMS must be initialized with
* _gnutls_privkey_get_spki_params in advance.
*
* After calling this function the params structure will
* be initialized even if the original SubjectPublicKeyInfo was empty.
*/
int
_gnutls_privkey_update_spki_params(gnutls_privkey_t key,
gnutls_pk_algorithm_t pk,
gnutls_digest_algorithm_t dig,
unsigned flags,
gnutls_x509_spki_st *params)
{
unsigned salt_size = 0;
unsigned bits = 0;
gnutls_pk_algorithm_t key_pk;
if (flags & GNUTLS_PRIVKEY_SIGN_FLAG_RSA_PSS) {
if (!GNUTLS_PK_IS_RSA(pk))
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
pk = GNUTLS_PK_RSA_PSS;
}
key_pk = gnutls_privkey_get_pk_algorithm(key, &bits);
if ((key_pk != pk) &&
!(key_pk == GNUTLS_PK_RSA && pk == GNUTLS_PK_RSA_PSS)) {
gnutls_assert();
return GNUTLS_E_CONSTRAINT_ERROR;
}
if (pk == GNUTLS_PK_RSA_PSS) {
const mac_entry_st *me;
int ret;
me = hash_to_entry(dig);
if (unlikely(me == NULL))
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
if (params->pk == GNUTLS_PK_RSA)
salt_size = 0;
else if (params->pk == GNUTLS_PK_RSA_PSS) {
if (params->rsa_pss_dig != GNUTLS_DIG_UNKNOWN && dig != params->rsa_pss_dig) {
return gnutls_assert_val(GNUTLS_E_CONSTRAINT_ERROR);
}
salt_size = params->salt_size;
}
if (flags & GNUTLS_PRIVKEY_FLAG_REPRODUCIBLE)
params->salt_size = 0;
else {
ret = _gnutls_find_rsa_pss_salt_size(bits, me, salt_size);
if (ret < 0)
return gnutls_assert_val(ret);
if (flags & GNUTLS_PRIVKEY_FLAG_RSA_PSS_FIXED_SALT_LENGTH &&
(size_t)ret != _gnutls_hash_get_algo_len(me)) {
return gnutls_assert_val(GNUTLS_E_CONSTRAINT_ERROR);
}
params->salt_size = ret;
}
params->rsa_pss_dig = dig;
}
params->pk = pk;
return 0;
}
/**
* gnutls_privkey_init:
* @key: A pointer to the type to be initialized
*
* This function will initialize a private key object. The object can
* be used to generate, import, and perform cryptographic operations
* on the associated private key.
*
* Note that when the underlying private key is a PKCS#11 key (i.e.,
* when imported with a PKCS#11 URI), the limitations of gnutls_pkcs11_privkey_init()
* apply to this object as well. In versions of GnuTLS later than 3.5.11 the object
* is protected using locks and a single %gnutls_privkey_t can be re-used
* by many threads. However, for performance it is recommended to utilize
* one object per key per thread.
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
*
* Since: 2.12.0
**/
int gnutls_privkey_init(gnutls_privkey_t * key)
{
FAIL_IF_LIB_ERROR;
*key = gnutls_calloc(1, sizeof(struct gnutls_privkey_st));
if (*key == NULL) {
gnutls_assert();
return GNUTLS_E_MEMORY_ERROR;
}
return 0;
}
/**
* gnutls_privkey_deinit:
* @key: The key to be deinitialized
*
* This function will deinitialize a private key structure.
*
* Since: 2.12.0
**/
void gnutls_privkey_deinit(gnutls_privkey_t key)
{
if (key == NULL)
return;
if (key->flags & GNUTLS_PRIVKEY_IMPORT_AUTO_RELEASE
|| key->flags & GNUTLS_PRIVKEY_IMPORT_COPY)
switch (key->type) {
#ifdef ENABLE_PKCS11
case GNUTLS_PRIVKEY_PKCS11:
gnutls_pkcs11_privkey_deinit(key->key.pkcs11);
break;
#endif
case GNUTLS_PRIVKEY_X509:
gnutls_x509_privkey_deinit(key->key.x509);
break;
case GNUTLS_PRIVKEY_EXT:
if (key->key.ext.deinit_func != NULL)
key->key.ext.deinit_func(key,
key->key.ext.userdata);
break;
default:
break;
}
gnutls_free(key);
}
/* Will erase all private key information, except PIN */
void _gnutls_privkey_cleanup(gnutls_privkey_t key)
{
memset(&key->key, 0, sizeof(key->key));
key->type = 0;
key->pk_algorithm = 0;
key->flags = 0;
}
/* will fail if the private key contains an actual key.
*/
static int check_if_clean(gnutls_privkey_t key)
{
if (key->type != 0)
return GNUTLS_E_INVALID_REQUEST;
return 0;
}
#ifdef ENABLE_PKCS11
/**
* gnutls_privkey_import_pkcs11:
* @pkey: The private key
* @key: The private key to be imported
* @flags: Flags for the import
*
* This function will import the given private key to the abstract
* #gnutls_privkey_t type.
*
* The #gnutls_pkcs11_privkey_t object must not be deallocated
* during the lifetime of this structure.
*
* @flags might be zero or one of %GNUTLS_PRIVKEY_IMPORT_AUTO_RELEASE
* and %GNUTLS_PRIVKEY_IMPORT_COPY.
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
*
* Since: 2.12.0
**/
int
gnutls_privkey_import_pkcs11(gnutls_privkey_t pkey,
gnutls_pkcs11_privkey_t key, unsigned int flags)
{
int ret;
ret = check_if_clean(pkey);
if (ret < 0) {
gnutls_assert();
return ret;
}
if (flags & GNUTLS_PRIVKEY_IMPORT_COPY)
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
pkey->key.pkcs11 = key;
pkey->type = GNUTLS_PRIVKEY_PKCS11;
pkey->pk_algorithm = gnutls_pkcs11_privkey_get_pk_algorithm(key, NULL);
pkey->flags = flags;
if (pkey->pin.data)
gnutls_pkcs11_privkey_set_pin_function(key, pkey->pin.cb,
pkey->pin.data);
return 0;
}
#if 0
/**
* gnutls_privkey_import_pkcs11_url:
* @key: A key of type #gnutls_pubkey_t
* @url: A PKCS 11 url
*
* This function will import a PKCS 11 private key to a #gnutls_private_key_t
* type.
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
*
* Since: 3.1.0
**/
int gnutls_privkey_import_pkcs11_url(gnutls_privkey_t key, const char *url)
{
int x;
}
#endif
static
int _gnutls_privkey_import_pkcs11_url(gnutls_privkey_t key, const char *url, unsigned flags)
{
gnutls_pkcs11_privkey_t pkey;
int ret;
ret = gnutls_pkcs11_privkey_init(&pkey);
if (ret < 0) {
gnutls_assert();
return ret;
}
if (key->pin.cb)
gnutls_pkcs11_privkey_set_pin_function(pkey, key->pin.cb,
key->pin.data);
ret = gnutls_pkcs11_privkey_import_url(pkey, url, flags);
if (ret < 0) {
gnutls_assert();
goto cleanup;
}
ret =
gnutls_privkey_import_pkcs11(key, pkey,
GNUTLS_PRIVKEY_IMPORT_AUTO_RELEASE);
if (ret < 0) {
gnutls_assert();
goto cleanup;
}
return 0;
cleanup:
gnutls_pkcs11_privkey_deinit(pkey);
return ret;
}
/**
* gnutls_privkey_export_pkcs11:
* @pkey: The private key
* @key: Location for the key to be exported.
*
* Converts the given abstract private key to a #gnutls_pkcs11_privkey_t
* type. The key must be of type %GNUTLS_PRIVKEY_PKCS11. The key
* returned in @key must be deinitialized with
* gnutls_pkcs11_privkey_deinit().
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
*
* Since: 3.4.0
*/
int
gnutls_privkey_export_pkcs11(gnutls_privkey_t pkey,
gnutls_pkcs11_privkey_t *key)
{
int ret;
if (pkey->type != GNUTLS_PRIVKEY_PKCS11) {
gnutls_assert();
return GNUTLS_E_INVALID_REQUEST;
}
ret = gnutls_pkcs11_privkey_init(key);
if (ret < 0)
return gnutls_assert_val(ret);
ret = gnutls_pkcs11_privkey_cpy(*key, pkey->key.pkcs11);
if (ret < 0) {
gnutls_pkcs11_privkey_deinit(*key);
*key = NULL;
return gnutls_assert_val(ret);
}
return 0;
}
#endif /* ENABLE_PKCS11 */
/**
* gnutls_privkey_import_ext:
* @pkey: The private key
* @pk: The public key algorithm
* @userdata: private data to be provided to the callbacks
* @sign_func: callback for signature operations
* @decrypt_func: callback for decryption operations
* @flags: Flags for the import
*
* This function will associate the given callbacks with the
* #gnutls_privkey_t type. At least one of the two callbacks
* must be non-null.
*
* Note that the signing function is supposed to "raw" sign data, i.e.,
* without any hashing or preprocessing. In case of RSA the DigestInfo
* will be provided, and the signing function is expected to do the PKCS #1
* 1.5 padding and the exponentiation.
*
* See also gnutls_privkey_import_ext3().
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
*
* Since: 3.0
**/
int
gnutls_privkey_import_ext(gnutls_privkey_t pkey,
gnutls_pk_algorithm_t pk,
void *userdata,
gnutls_privkey_sign_func sign_func,
gnutls_privkey_decrypt_func decrypt_func,
unsigned int flags)
{
return gnutls_privkey_import_ext2(pkey, pk, userdata, sign_func,
decrypt_func, NULL, flags);
}
#define PK_IS_OK_FOR_EXT2(pk) \
((pk == GNUTLS_PK_RSA) || (pk == GNUTLS_PK_ECDSA) || (pk == GNUTLS_PK_DSA))
/**
* gnutls_privkey_import_ext2:
* @pkey: The private key
* @pk: The public key algorithm
* @userdata: private data to be provided to the callbacks
* @sign_fn: callback for signature operations
* @decrypt_fn: callback for decryption operations
* @deinit_fn: a deinitialization function
* @flags: Flags for the import
*
* This function will associate the given callbacks with the
* #gnutls_privkey_t type. At least one of the two callbacks
* must be non-null. If a deinitialization function is provided
* then flags is assumed to contain %GNUTLS_PRIVKEY_IMPORT_AUTO_RELEASE.
*
* Note that the signing function is supposed to "raw" sign data, i.e.,
* without any hashing or preprocessing. In case of RSA the DigestInfo
* will be provided, and the signing function is expected to do the PKCS #1
* 1.5 padding and the exponentiation.
*
* See also gnutls_privkey_import_ext3().
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
*
* Since: 3.1
**/
int
gnutls_privkey_import_ext2(gnutls_privkey_t pkey,
gnutls_pk_algorithm_t pk,
void *userdata,
gnutls_privkey_sign_func sign_fn,
gnutls_privkey_decrypt_func decrypt_fn,
gnutls_privkey_deinit_func deinit_fn,
unsigned int flags)
{
int ret;
ret = check_if_clean(pkey);
if (ret < 0) {
gnutls_assert();
return ret;
}
if (!PK_IS_OK_FOR_EXT2(pk))
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
if (sign_fn == NULL && decrypt_fn == NULL)
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
pkey->key.ext.sign_func = sign_fn;
pkey->key.ext.decrypt_func = decrypt_fn;
pkey->key.ext.deinit_func = deinit_fn;
pkey->key.ext.userdata = userdata;
pkey->type = GNUTLS_PRIVKEY_EXT;
pkey->pk_algorithm = pk;
pkey->flags = flags;
/* Ensure gnutls_privkey_deinit() calls the deinit_func */
if (deinit_fn)
pkey->flags |= GNUTLS_PRIVKEY_IMPORT_AUTO_RELEASE;
return 0;
}
/**
* gnutls_privkey_import_ext3:
* @pkey: The private key
* @userdata: private data to be provided to the callbacks
* @sign_fn: callback for signature operations
* @decrypt_fn: callback for decryption operations
* @deinit_fn: a deinitialization function
* @info_fn: returns info about the public key algorithm (should not be %NULL)
* @flags: Flags for the import
*
* This function will associate the given callbacks with the
* #gnutls_privkey_t type. At least one of the two callbacks
* must be non-null. If a deinitialization function is provided
* then flags is assumed to contain %GNUTLS_PRIVKEY_IMPORT_AUTO_RELEASE.
*
* Note that the signing function is supposed to "raw" sign data, i.e.,
* without any hashing or preprocessing. In case of RSA the DigestInfo
* will be provided, and the signing function is expected to do the PKCS #1
* 1.5 padding and the exponentiation.
*
* The @info_fn must provide information on the algorithms supported by
* this private key, and should support the flags %GNUTLS_PRIVKEY_INFO_PK_ALGO and
* %GNUTLS_PRIVKEY_INFO_SIGN_ALGO. It must return -1 on unknown flags.
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
*
* Since: 3.4.0
**/
int
gnutls_privkey_import_ext3(gnutls_privkey_t pkey,
void *userdata,
gnutls_privkey_sign_func sign_fn,
gnutls_privkey_decrypt_func decrypt_fn,
gnutls_privkey_deinit_func deinit_fn,
gnutls_privkey_info_func info_fn,
unsigned int flags)
{
int ret;
ret = check_if_clean(pkey);
if (ret < 0) {
gnutls_assert();
return ret;
}
if (sign_fn == NULL && decrypt_fn == NULL)
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
if (info_fn == NULL)
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
pkey->key.ext.sign_func = sign_fn;
pkey->key.ext.decrypt_func = decrypt_fn;
pkey->key.ext.deinit_func = deinit_fn;
pkey->key.ext.info_func = info_fn;
pkey->key.ext.userdata = userdata;
pkey->type = GNUTLS_PRIVKEY_EXT;
pkey->flags = flags;
pkey->pk_algorithm = pkey->key.ext.info_func(pkey, GNUTLS_PRIVKEY_INFO_PK_ALGO, pkey->key.ext.userdata);
if (!PK_IS_OK_FOR_EXT2(pkey->pk_algorithm))
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
/* Ensure gnutls_privkey_deinit() calls the deinit_func */
if (deinit_fn)
pkey->flags |= GNUTLS_PRIVKEY_IMPORT_AUTO_RELEASE;
return 0;
}
/**
* gnutls_privkey_import_ext4:
* @pkey: The private key
* @userdata: private data to be provided to the callbacks
* @sign_data_fn: callback for signature operations (may be %NULL)
* @sign_hash_fn: callback for signature operations (may be %NULL)
* @decrypt_fn: callback for decryption operations (may be %NULL)
* @deinit_fn: a deinitialization function
* @info_fn: returns info about the public key algorithm (should not be %NULL)
* @flags: Flags for the import
*
* This function will associate the given callbacks with the
* #gnutls_privkey_t type. At least one of the callbacks
* must be non-null. If a deinitialization function is provided
* then flags is assumed to contain %GNUTLS_PRIVKEY_IMPORT_AUTO_RELEASE.
*
* Note that in contrast with the signing function of
* gnutls_privkey_import_ext3(), the signing functions provided to this
* function take explicitly the signature algorithm as parameter and
* different functions are provided to sign the data and hashes.
*
* The @sign_hash_fn is to be called to sign pre-hashed data. The input
* to the callback is the output of the hash (such as SHA256) corresponding
* to the signature algorithm. For RSA PKCS#1 signatures, the signature
* algorithm can be set to %GNUTLS_SIGN_RSA_RAW, and in that case the data
* should be handled as if they were an RSA PKCS#1 DigestInfo structure.
*
* The @sign_data_fn is to be called to sign data. The input data will be
* he data to be signed (and hashed), with the provided signature
* algorithm. This function is to be used for signature algorithms like
* Ed25519 which cannot take pre-hashed data as input.
*
* When both @sign_data_fn and @sign_hash_fn functions are provided they
* must be able to operate on all the supported signature algorithms,
* unless prohibited by the type of the algorithm (e.g., as with Ed25519).
*
* The @info_fn must provide information on the signature algorithms supported by
* this private key, and should support the flags %GNUTLS_PRIVKEY_INFO_PK_ALGO,
* %GNUTLS_PRIVKEY_INFO_HAVE_SIGN_ALGO and %GNUTLS_PRIVKEY_INFO_PK_ALGO_BITS.
* It must return -1 on unknown flags.
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
*
* Since: 3.6.0
**/
int
gnutls_privkey_import_ext4(gnutls_privkey_t pkey,
void *userdata,
gnutls_privkey_sign_data_func sign_data_fn,
gnutls_privkey_sign_hash_func sign_hash_fn,
gnutls_privkey_decrypt_func decrypt_fn,
gnutls_privkey_deinit_func deinit_fn,
gnutls_privkey_info_func info_fn,
unsigned int flags)
{
int ret;
ret = check_if_clean(pkey);
if (ret < 0) {
gnutls_assert();
return ret;
}
if (sign_data_fn == NULL && sign_hash_fn == NULL && decrypt_fn == NULL)
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
if (info_fn == NULL)
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
pkey->key.ext.sign_data_func = sign_data_fn;
pkey->key.ext.sign_hash_func = sign_hash_fn;
pkey->key.ext.decrypt_func = decrypt_fn;
pkey->key.ext.deinit_func = deinit_fn;
pkey->key.ext.info_func = info_fn;
pkey->key.ext.userdata = userdata;
pkey->type = GNUTLS_PRIVKEY_EXT;
pkey->flags = flags;
pkey->pk_algorithm = pkey->key.ext.info_func(pkey, GNUTLS_PRIVKEY_INFO_PK_ALGO, pkey->key.ext.userdata);
ret = pkey->key.ext.info_func(pkey, GNUTLS_PRIVKEY_INFO_PK_ALGO_BITS, pkey->key.ext.userdata);
if (ret >= 0)
pkey->key.ext.bits = ret;
/* Ensure gnutls_privkey_deinit() calls the deinit_func */
if (deinit_fn)
pkey->flags |= GNUTLS_PRIVKEY_IMPORT_AUTO_RELEASE;
return 0;
}
/**
* gnutls_privkey_import_x509:
* @pkey: The private key
* @key: The private key to be imported
* @flags: Flags for the import
*
* This function will import the given private key to the abstract
* #gnutls_privkey_t type.
*
* The #gnutls_x509_privkey_t object must not be deallocated
* during the lifetime of this structure.
*
* @flags might be zero or one of %GNUTLS_PRIVKEY_IMPORT_AUTO_RELEASE
* and %GNUTLS_PRIVKEY_IMPORT_COPY.
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
*
* Since: 2.12.0
**/
int
gnutls_privkey_import_x509(gnutls_privkey_t pkey,
gnutls_x509_privkey_t key, unsigned int flags)
{
int ret;
ret = check_if_clean(pkey);
if (ret < 0) {
gnutls_assert();
return ret;
}
if (flags & GNUTLS_PRIVKEY_IMPORT_COPY) {
ret = gnutls_x509_privkey_init(&pkey->key.x509);
if (ret < 0)
return gnutls_assert_val(ret);
ret = gnutls_x509_privkey_cpy(pkey->key.x509, key);
if (ret < 0) {
gnutls_x509_privkey_deinit(pkey->key.x509);
return gnutls_assert_val(ret);
}
} else
pkey->key.x509 = key;
pkey->type = GNUTLS_PRIVKEY_X509;
pkey->pk_algorithm = gnutls_x509_privkey_get_pk_algorithm(key);
pkey->flags = flags;
return 0;
}
/**
* gnutls_privkey_export_x509:
* @pkey: The private key
* @key: Location for the key to be exported.
*
* Converts the given abstract private key to a #gnutls_x509_privkey_t
* type. The abstract key must be of type %GNUTLS_PRIVKEY_X509. The input
* @key must not be initialized. The key returned in @key should be deinitialized
* using gnutls_x509_privkey_deinit().
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
*
* Since: 3.4.0
*/
int
gnutls_privkey_export_x509(gnutls_privkey_t pkey,
gnutls_x509_privkey_t *key)
{
int ret;
if (pkey->type != GNUTLS_PRIVKEY_X509) {
gnutls_assert();
return GNUTLS_E_INVALID_REQUEST;
}
ret = gnutls_x509_privkey_init(key);
if (ret < 0)
return gnutls_assert_val(ret);
ret = gnutls_x509_privkey_cpy(*key, pkey->key.x509);
if (ret < 0) {
gnutls_x509_privkey_deinit(*key);
*key = NULL;
return gnutls_assert_val(ret);
}
return 0;
}
/**
* gnutls_privkey_generate:
* @pkey: An initialized private key
* @algo: is one of the algorithms in #gnutls_pk_algorithm_t.
* @bits: the size of the parameters to generate
* @flags: Must be zero or flags from #gnutls_privkey_flags_t.
*
* This function will generate a random private key. Note that this
* function must be called on an initialized private key.
*
* The flag %GNUTLS_PRIVKEY_FLAG_PROVABLE
* instructs the key generation process to use algorithms like Shawe-Taylor
* (from FIPS PUB186-4) which generate provable parameters out of a seed
* for RSA and DSA keys. See gnutls_privkey_generate2() for more
* information.
*
* Note that when generating an elliptic curve key, the curve
* can be substituted in the place of the bits parameter using the
* GNUTLS_CURVE_TO_BITS() macro. The input to the macro is any curve from
* %gnutls_ecc_curve_t.
*
* For DSA keys, if the subgroup size needs to be specified check
* the GNUTLS_SUBGROUP_TO_BITS() macro.
*
* It is recommended to do not set the number of @bits directly, use gnutls_sec_param_to_pk_bits() instead .
*
* See also gnutls_privkey_generate2().
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
*
* Since: 3.3.0
**/
int
gnutls_privkey_generate(gnutls_privkey_t pkey,
gnutls_pk_algorithm_t algo, unsigned int bits,
unsigned int flags)
{
return gnutls_privkey_generate2(pkey, algo, bits, flags, NULL, 0);
}
/**
* gnutls_privkey_generate2:
* @pkey: The private key
* @algo: is one of the algorithms in #gnutls_pk_algorithm_t.
* @bits: the size of the modulus
* @flags: Must be zero or flags from #gnutls_privkey_flags_t.
* @data: Allow specifying %gnutls_keygen_data_st types such as the seed to be used.
* @data_size: The number of @data available.
*
* This function will generate a random private key. Note that this
* function must be called on an initialized private key.
*
* The flag %GNUTLS_PRIVKEY_FLAG_PROVABLE
* instructs the key generation process to use algorithms like Shawe-Taylor
* (from FIPS PUB186-4) which generate provable parameters out of a seed
* for RSA and DSA keys. On DSA keys the PQG parameters are generated using the
* seed, while on RSA the two primes. To specify an explicit seed
* (by default a random seed is used), use the @data with a %GNUTLS_KEYGEN_SEED
* type.
*
* Note that when generating an elliptic curve key, the curve
* can be substituted in the place of the bits parameter using the
* GNUTLS_CURVE_TO_BITS() macro.
*
* To export the generated keys in memory or in files it is recommended to use the
* PKCS#8 form as it can handle all key types, and can store additional parameters
* such as the seed, in case of provable RSA or DSA keys.
* Generated keys can be exported in memory using gnutls_privkey_export_x509(),
* and then with gnutls_x509_privkey_export2_pkcs8().
*
* If key generation is part of your application, avoid setting the number
* of bits directly, and instead use gnutls_sec_param_to_pk_bits().
* That way the generated keys will adapt to the security levels
* of the underlying GnuTLS library.
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
*
* Since: 3.5.0
**/
int
gnutls_privkey_generate2(gnutls_privkey_t pkey,
gnutls_pk_algorithm_t algo, unsigned int bits,
unsigned int flags, const gnutls_keygen_data_st *data, unsigned data_size)
{
int ret;
ret = gnutls_x509_privkey_init(&pkey->key.x509);
if (ret < 0)
return gnutls_assert_val(ret);
ret = gnutls_x509_privkey_generate2(pkey->key.x509, algo, bits, flags, data, data_size);
if (ret < 0) {
gnutls_x509_privkey_deinit(pkey->key.x509);
pkey->key.x509 = NULL;
return gnutls_assert_val(ret);
}
pkey->type = GNUTLS_PRIVKEY_X509;
pkey->pk_algorithm = algo;
pkey->flags = flags | GNUTLS_PRIVKEY_IMPORT_AUTO_RELEASE;
return 0;
}
/**
* gnutls_privkey_sign_data:
* @signer: Holds the key
* @hash: should be a digest algorithm
* @flags: Zero or one of %gnutls_privkey_flags_t
* @data: holds the data to be signed
* @signature: will contain the signature allocated with gnutls_malloc()
*
* This function will sign the given data using a signature algorithm
* supported by the private key. Signature algorithms are always used
* together with a hash functions. Different hash functions may be
* used for the RSA algorithm, but only the SHA family for the DSA keys.
*
* You may use gnutls_pubkey_get_preferred_hash_algorithm() to determine
* the hash algorithm.
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
*
* Since: 2.12.0
**/
int
gnutls_privkey_sign_data(gnutls_privkey_t signer,
gnutls_digest_algorithm_t hash,
unsigned int flags,
const gnutls_datum_t * data,
gnutls_datum_t * signature)
{
int ret;
gnutls_x509_spki_st params;
if (flags & GNUTLS_PRIVKEY_SIGN_FLAG_TLS1_RSA)
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
ret = _gnutls_privkey_get_spki_params(signer, ¶ms);
if (ret < 0) {
gnutls_assert();
return ret;
}
ret = _gnutls_privkey_update_spki_params(signer, signer->pk_algorithm,
hash, flags, ¶ms);
if (ret < 0) {
gnutls_assert();
return ret;
}
FIX_SIGN_PARAMS(params, flags, hash);
return privkey_sign_and_hash_data(signer, _gnutls_pk_to_sign_entry(params.pk, hash), data, signature, ¶ms);
}
/**
* gnutls_privkey_sign_data2:
* @signer: Holds the key
* @algo: The signature algorithm used
* @flags: Zero or one of %gnutls_privkey_flags_t
* @data: holds the data to be signed
* @signature: will contain the signature allocated with gnutls_malloc()
*
* This function will sign the given data using the specified signature
* algorithm. This function is an enhancement of gnutls_privkey_sign_data(),
* as it allows utilizing a alternative signature algorithm where possible
* (e.g, use an RSA key with RSA-PSS).
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
*
* Since: 3.6.0
**/
int
gnutls_privkey_sign_data2(gnutls_privkey_t signer,
gnutls_sign_algorithm_t algo,
unsigned int flags,
const gnutls_datum_t * data,
gnutls_datum_t * signature)
{
int ret;
gnutls_x509_spki_st params;
const gnutls_sign_entry_st *se;
if (flags & GNUTLS_PRIVKEY_SIGN_FLAG_TLS1_RSA)
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
se = _gnutls_sign_to_entry(algo);
if (se == NULL)
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
ret = _gnutls_privkey_get_spki_params(signer, ¶ms);
if (ret < 0) {
gnutls_assert();
return ret;
}
ret = _gnutls_privkey_update_spki_params(signer, se->pk, se->hash,
flags, ¶ms);
if (ret < 0) {
gnutls_assert();
return ret;
}
FIX_SIGN_PARAMS(params, flags, se->hash);
return privkey_sign_and_hash_data(signer, se, data, signature, ¶ms);
}
/**
* gnutls_privkey_sign_hash2:
* @signer: Holds the signer's key
* @algo: The signature algorithm used
* @flags: Zero or one of %gnutls_privkey_flags_t
* @hash_data: holds the data to be signed
* @signature: will contain newly allocated signature
*
* This function will sign the given hashed data using the specified signature
* algorithm. This function is an enhancement of gnutls_privkey_sign_hash(),
* as it allows utilizing a alternative signature algorithm where possible
* (e.g, use an RSA key with RSA-PSS).
*
* The flags may be %GNUTLS_PRIVKEY_SIGN_FLAG_TLS1_RSA.
* In that case this function will ignore @hash_algo and perform a raw PKCS1 signature.
* Note that this flag is supported since 3.6.9.
*
* Note also that, not all algorithm support signing already hashed data. When
* signing with Ed25519, gnutls_privkey_sign_data2() should be used instead.
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
*
* Since: 3.6.0
**/
int
gnutls_privkey_sign_hash2(gnutls_privkey_t signer,
gnutls_sign_algorithm_t algo,
unsigned int flags,
const gnutls_datum_t * hash_data,
gnutls_datum_t * signature)
{
int ret;
gnutls_x509_spki_st params;
const gnutls_sign_entry_st *se;
if (flags & GNUTLS_PRIVKEY_SIGN_FLAG_TLS1_RSA) {
/* the corresponding signature algorithm is SIGN_RSA_RAW,
* irrespective of hash algorithm. */
se = _gnutls_sign_to_entry(GNUTLS_SIGN_RSA_RAW);
} else {
se = _gnutls_sign_to_entry(algo);
if (unlikely(se == NULL))
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
}
ret = _gnutls_privkey_get_spki_params(signer, ¶ms);
if (ret < 0) {
gnutls_assert();
return ret;
}
ret = _gnutls_privkey_update_spki_params(signer, se->pk, se->hash,
flags, ¶ms);
if (ret < 0) {
gnutls_assert();
return ret;
}
FIX_SIGN_PARAMS(params, flags, se->hash);
return privkey_sign_prehashed(signer, se, hash_data, signature, ¶ms);
}
int
privkey_sign_and_hash_data(gnutls_privkey_t signer,
const gnutls_sign_entry_st *se,
const gnutls_datum_t * data,
gnutls_datum_t * signature,
gnutls_x509_spki_st * params)
{
int ret;
gnutls_datum_t digest;
const mac_entry_st *me;
if (unlikely(se == NULL))
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
if (_gnutls_pk_is_not_prehashed(se->pk)) {
return privkey_sign_raw_data(signer, se, data, signature, params);
}
me = hash_to_entry(se->hash);
if (me == NULL)
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
ret = pk_hash_data(se->pk, me, NULL, data, &digest);
if (ret < 0) {
gnutls_assert();
return ret;
}
ret = pk_prepare_hash(se->pk, me, &digest);
if (ret < 0) {
gnutls_assert();
goto cleanup;
}
ret = privkey_sign_raw_data(signer, se, &digest, signature, params);
_gnutls_free_datum(&digest);
if (ret < 0) {
gnutls_assert();
return ret;
}
return 0;
cleanup:
_gnutls_free_datum(&digest);
return ret;
}
/**
* gnutls_privkey_sign_hash:
* @signer: Holds the signer's key
* @hash_algo: The hash algorithm used
* @flags: Zero or one of %gnutls_privkey_flags_t
* @hash_data: holds the data to be signed
* @signature: will contain newly allocated signature
*
* This function will sign the given hashed data using a signature algorithm
* supported by the private key. Signature algorithms are always used
* together with a hash functions. Different hash functions may be
* used for the RSA algorithm, but only SHA-XXX for the DSA keys.
*
* You may use gnutls_pubkey_get_preferred_hash_algorithm() to determine
* the hash algorithm.
*
* The flags may be %GNUTLS_PRIVKEY_SIGN_FLAG_TLS1_RSA or %GNUTLS_PRIVKEY_SIGN_FLAG_RSA_PSS.
* In the former case this function will ignore @hash_algo and perform a raw PKCS1 signature,
* and in the latter an RSA-PSS signature will be generated.
*
* Note that, not all algorithm support signing already hashed data. When
* signing with Ed25519, gnutls_privkey_sign_data() should be used.
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
*
* Since: 2.12.0
**/
int
gnutls_privkey_sign_hash(gnutls_privkey_t signer,
gnutls_digest_algorithm_t hash_algo,
unsigned int flags,
const gnutls_datum_t * hash_data,
gnutls_datum_t * signature)
{
int ret;
gnutls_x509_spki_st params;
const gnutls_sign_entry_st *se;
ret = _gnutls_privkey_get_spki_params(signer, ¶ms);
if (ret < 0) {
gnutls_assert();
return ret;
}
ret = _gnutls_privkey_update_spki_params(signer, signer->pk_algorithm,
hash_algo, flags, ¶ms);
if (ret < 0) {
gnutls_assert();
return ret;
}
/* legacy callers of this API could use a hash algorithm of 0 (unknown)
* to indicate raw hashing. As we now always want to know the signing
* algorithm involved, we try discovering the hash algorithm. */
if (hash_algo == 0 && (params.pk == GNUTLS_PK_DSA || params.pk == GNUTLS_PK_ECDSA)) {
hash_algo = _gnutls_hash_size_to_sha_hash(hash_data->size);
}
if (params.pk == GNUTLS_PK_RSA && (flags & GNUTLS_PRIVKEY_SIGN_FLAG_TLS1_RSA)) {
/* the corresponding signature algorithm is SIGN_RSA_RAW,
* irrespective of hash algorithm. */
se = _gnutls_sign_to_entry(GNUTLS_SIGN_RSA_RAW);
} else {
se = _gnutls_pk_to_sign_entry(params.pk, hash_algo);
}
if (unlikely(se == NULL))
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
FIX_SIGN_PARAMS(params, flags, hash_algo);
return privkey_sign_prehashed(signer, se,
hash_data, signature, ¶ms);
}
static int
privkey_sign_prehashed(gnutls_privkey_t signer,
const gnutls_sign_entry_st *se,
const gnutls_datum_t * hash_data,
gnutls_datum_t * signature,
gnutls_x509_spki_st * params)
{
int ret;
gnutls_datum_t digest;
if (unlikely(se == NULL))
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
if (se->id == GNUTLS_SIGN_RSA_RAW) {
return privkey_sign_raw_data(signer,
se,
hash_data, signature,
params);
}
if (_gnutls_pk_is_not_prehashed(signer->pk_algorithm)) {
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
}
digest.data = gnutls_malloc(hash_data->size);
if (digest.data == NULL) {
gnutls_assert();
return GNUTLS_E_MEMORY_ERROR;
}
digest.size = hash_data->size;
memcpy(digest.data, hash_data->data, digest.size);
ret = pk_prepare_hash(se->pk, hash_to_entry(se->hash), &digest);
if (ret < 0) {
gnutls_assert();
goto cleanup;
}
ret = privkey_sign_raw_data(signer,
se,
&digest, signature,
params);
if (ret < 0) {
gnutls_assert();
goto cleanup;
}
ret = 0;
cleanup:
_gnutls_free_datum(&digest);
return ret;
}
/*-
* privkey_sign_raw_data:
* @key: Holds the key
* @data: holds the data to be signed
* @signature: will contain the signature allocated with gnutls_malloc()
* @params: holds the signing parameters
*
* This function will sign the given data using a signature algorithm
* supported by the private key. Note that this is a low-level function
* and does not apply any preprocessing or hash on the signed data.
* For example on an RSA key the input @data should be of the DigestInfo
* PKCS #1 1.5 format, on RSA-PSS, DSA or ECDSA the input should be a hash output
* and on Ed25519 the raw data to be signed.
*
* Note this function is equivalent to using the %GNUTLS_PRIVKEY_SIGN_FLAG_TLS1_RSA
* flag with gnutls_privkey_sign_hash().
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
*
* Since: 3.1.10
-*/
int
privkey_sign_raw_data(gnutls_privkey_t key,
const gnutls_sign_entry_st *se,
const gnutls_datum_t * data,
gnutls_datum_t * signature,
gnutls_x509_spki_st * params)
{
if (unlikely(se == NULL))
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
switch (key->type) {
#ifdef ENABLE_PKCS11
case GNUTLS_PRIVKEY_PKCS11:
return _gnutls_pkcs11_privkey_sign(key->key.pkcs11, se,
data, signature,
params);
#endif
case GNUTLS_PRIVKEY_X509:
return _gnutls_pk_sign(se->pk, signature, data,
&key->key.x509->params, params);
case GNUTLS_PRIVKEY_EXT:
if (unlikely(key->key.ext.sign_data_func == NULL &&
key->key.ext.sign_hash_func == NULL &&
key->key.ext.sign_func == NULL))
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
if (_gnutls_pk_is_not_prehashed(se->pk)) {
if (!key->key.ext.sign_data_func)
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
return key->key.ext.sign_data_func(key, se->id,
key->key.ext.userdata,
0,
data, signature);
} else if (key->key.ext.sign_hash_func) {
if (se->pk == GNUTLS_PK_RSA) {
se = _gnutls_sign_to_entry(GNUTLS_SIGN_RSA_RAW);
assert(se != NULL);
}
/* se may not be set here if we are doing legacy RSA */
return key->key.ext.sign_hash_func(key, se->id,
key->key.ext.userdata,
0,
data, signature);
} else {
if (!PK_IS_OK_FOR_EXT2(se->pk))
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
return key->key.ext.sign_func(key, key->key.ext.userdata,
data, signature);
}
default:
gnutls_assert();
return GNUTLS_E_INVALID_REQUEST;
}
}
/**
* gnutls_privkey_decrypt_data:
* @key: Holds the key
* @flags: zero for now
* @ciphertext: holds the data to be decrypted
* @plaintext: will contain the decrypted data, allocated with gnutls_malloc()
*
* This function will decrypt the given data using the algorithm
* supported by the private key.
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
*
* Since: 2.12.0
**/
int
gnutls_privkey_decrypt_data(gnutls_privkey_t key,
unsigned int flags,
const gnutls_datum_t * ciphertext,
gnutls_datum_t * plaintext)
{
switch (key->type) {
case GNUTLS_PRIVKEY_X509:
return _gnutls_pk_decrypt(key->pk_algorithm, plaintext,
ciphertext, &key->key.x509->params);
#ifdef ENABLE_PKCS11
case GNUTLS_PRIVKEY_PKCS11:
return _gnutls_pkcs11_privkey_decrypt_data(key->key.pkcs11,
flags,
ciphertext,
plaintext);
#endif
case GNUTLS_PRIVKEY_EXT:
if (key->key.ext.decrypt_func == NULL)
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
return key->key.ext.decrypt_func(key,
key->key.ext.userdata,
ciphertext, plaintext);
default:
gnutls_assert();
return GNUTLS_E_INVALID_REQUEST;
}
}
/**
* gnutls_privkey_decrypt_data2:
* @key: Holds the key
* @flags: zero for now
* @ciphertext: holds the data to be decrypted
* @plaintext: a preallocated buffer that will be filled with the plaintext
* @plaintext_size: in/out size of the plaintext
*
* This function will decrypt the given data using the algorithm
* supported by the private key. Unlike with gnutls_privkey_decrypt_data()
* this function operates in constant time and constant memory access.
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
*
* Since: 3.6.5
**/
int
gnutls_privkey_decrypt_data2(gnutls_privkey_t key,
unsigned int flags,
const gnutls_datum_t * ciphertext,
unsigned char * plaintext,
size_t plaintext_size)
{
/* Note: except for the backwards compatibility function, no
* conditional code should be called after the decryption
* function call, to avoid creating oracle attacks based
* on cache/timing side channels */
/* backwards compatibility */
if (key->type == GNUTLS_PRIVKEY_EXT &&
key->key.ext.decrypt_func2 == NULL &&
key->key.ext.decrypt_func != NULL) {
gnutls_datum_t plain;
int ret;
ret = key->key.ext.decrypt_func(key,
key->key.ext.userdata,
ciphertext,
&plain);
if (plain.size != plaintext_size) {
ret = gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
} else {
memcpy(plaintext, plain.data, plain.size);
}
gnutls_free(plain.data);
return ret;
}
switch (key->type) {
case GNUTLS_PRIVKEY_X509:
return _gnutls_pk_decrypt2(key->pk_algorithm, ciphertext,
plaintext, plaintext_size,
&key->key.x509->params);
#ifdef ENABLE_PKCS11
case GNUTLS_PRIVKEY_PKCS11:
return _gnutls_pkcs11_privkey_decrypt_data2(key->key.pkcs11,
flags,
ciphertext,
plaintext,
plaintext_size);
#endif
case GNUTLS_PRIVKEY_EXT:
if (key->key.ext.decrypt_func2 == NULL)
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
return key->key.ext.decrypt_func2(key,
key->key.ext.userdata,
ciphertext, plaintext,
plaintext_size);
default:
gnutls_assert();
return GNUTLS_E_INVALID_REQUEST;
}
}
/**
* gnutls_privkey_import_x509_raw:
* @pkey: The private key
* @data: The private key data to be imported
* @format: The format of the private key
* @password: A password (optional)
* @flags: an ORed sequence of gnutls_pkcs_encrypt_flags_t
*
* This function will import the given private key to the abstract
* #gnutls_privkey_t type.
*
* The supported formats are basic unencrypted key, PKCS8, PKCS12,
* TSS2, and the openssl format.
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
*
* Since: 3.1.0
**/
int gnutls_privkey_import_x509_raw(gnutls_privkey_t pkey,
const gnutls_datum_t * data,
gnutls_x509_crt_fmt_t format,
const char *password, unsigned int flags)
{
gnutls_x509_privkey_t xpriv;
int ret;
#ifdef HAVE_TSS2
if (format == GNUTLS_X509_FMT_PEM &&
memmem(data->data, data->size, "--BEGIN TSS2", 12) != NULL) {
ret = _gnutls_load_tpm2_key(pkey, data);
if (ret < 0)
return gnutls_assert_val(ret);
return 0;
}
#endif
ret = gnutls_x509_privkey_init(&xpriv);
if (ret < 0)
return gnutls_assert_val(ret);
if (pkey->pin.cb) {
gnutls_x509_privkey_set_pin_function(xpriv, pkey->pin.cb,
pkey->pin.data);
}
ret = gnutls_x509_privkey_import2(xpriv, data, format, password, flags);
if (ret < 0) {
gnutls_assert();
goto cleanup;
}
ret =
gnutls_privkey_import_x509(pkey, xpriv,
GNUTLS_PRIVKEY_IMPORT_AUTO_RELEASE);
if (ret < 0) {
gnutls_assert();
goto cleanup;
}
return 0;
cleanup:
gnutls_x509_privkey_deinit(xpriv);
return ret;
}
/**
* gnutls_privkey_import_url:
* @key: A key of type #gnutls_privkey_t
* @url: A PKCS 11 url
* @flags: should be zero
*
* This function will import a PKCS11 or TPM URL as a
* private key. The supported URL types can be checked
* using gnutls_url_is_supported().
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
*
* Since: 3.1.0
**/
int
gnutls_privkey_import_url(gnutls_privkey_t key, const char *url,
unsigned int flags)
{
unsigned i;
int ret;
for (i=0;i<_gnutls_custom_urls_size;i++) {
if (strncmp(url, _gnutls_custom_urls[i].name, _gnutls_custom_urls[i].name_size) == 0) {
if (_gnutls_custom_urls[i].import_key) {
ret = _gnutls_custom_urls[i].import_key(key, url, flags);
goto cleanup;
}
break;
}
}
if (strncmp(url, PKCS11_URL, PKCS11_URL_SIZE) == 0) {
#ifdef ENABLE_PKCS11
ret = _gnutls_privkey_import_pkcs11_url(key, url, flags);
#else
ret = gnutls_assert_val(GNUTLS_E_UNIMPLEMENTED_FEATURE);
#endif
goto cleanup;
}
if (strncmp(url, TPMKEY_URL, TPMKEY_URL_SIZE) == 0) {
#ifdef HAVE_TROUSERS
ret = gnutls_privkey_import_tpm_url(key, url, NULL, NULL, 0);
#else
ret = gnutls_assert_val(GNUTLS_E_UNIMPLEMENTED_FEATURE);
#endif
goto cleanup;
}
if (strncmp(url, SYSTEM_URL, SYSTEM_URL_SIZE) == 0) {
ret = _gnutls_privkey_import_system_url(key, url);
goto cleanup;
}
ret = gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
cleanup:
return ret;
}
/**
* gnutls_privkey_set_pin_function:
* @key: A key of type #gnutls_privkey_t
* @fn: the callback
* @userdata: data associated with the callback
*
* This function will set a callback function to be used when
* required to access the object. This function overrides any other
* global PIN functions.
*
* Note that this function must be called right after initialization
* to have effect.
*
* Since: 3.1.0
*
**/
void gnutls_privkey_set_pin_function(gnutls_privkey_t key,
gnutls_pin_callback_t fn, void *userdata)
{
key->pin.cb = fn;
key->pin.data = userdata;
}
/**
* gnutls_privkey_set_flags:
* @key: A key of type #gnutls_privkey_t
* @flags: flags from the %gnutls_privkey_flags
*
* This function will set flags for the specified private key, after
* it is generated. Currently this is useful for the %GNUTLS_PRIVKEY_FLAG_EXPORT_COMPAT
* to allow exporting a "provable" private key in backwards compatible way.
*
* Since: 3.5.0
*
**/
void gnutls_privkey_set_flags(gnutls_privkey_t key,
unsigned int flags)
{
key->flags |= flags;
if (key->type == GNUTLS_PRIVKEY_X509)
gnutls_x509_privkey_set_flags(key->key.x509, flags);
}
/**
* gnutls_privkey_status:
* @key: Holds the key
*
* Checks the status of the private key token. This function
* is an actual wrapper over gnutls_pkcs11_privkey_status(), and
* if the private key is a PKCS #11 token it will check whether
* it is inserted or not.
*
* Returns: this function will return non-zero if the token
* holding the private key is still available (inserted), and zero otherwise.
*
* Since: 3.1.10
*
**/
int gnutls_privkey_status(gnutls_privkey_t key)
{
switch (key->type) {
#ifdef ENABLE_PKCS11
case GNUTLS_PRIVKEY_PKCS11:
return gnutls_pkcs11_privkey_status(key->key.pkcs11);
#endif
default:
return 1;
}
}
/**
* gnutls_privkey_verify_params:
* @key: should contain a #gnutls_privkey_t type
*
* This function will verify the private key parameters.
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
*
* Since: 3.3.0
**/
int gnutls_privkey_verify_params(gnutls_privkey_t key)
{
gnutls_pk_params_st params;
int ret;
gnutls_pk_params_init(¶ms);
ret = _gnutls_privkey_get_mpis(key, ¶ms);
if (ret < 0)
return gnutls_assert_val(ret);
ret = _gnutls_pk_verify_priv_params(key->pk_algorithm, ¶ms);
gnutls_pk_params_release(¶ms);
if (ret < 0) {
gnutls_assert();
return ret;
}
return 0;
}
/**
* gnutls_privkey_get_spki:
* @privkey: a public key of type #gnutls_privkey_t
* @spki: a SubjectPublicKeyInfo structure of type #gnutls_privkey_spki_t
* @flags: must be zero
*
* This function will return the public key information if available.
* The provided @spki must be initialized.
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
*
* Since: 3.6.0
**/
int
gnutls_privkey_get_spki(gnutls_privkey_t privkey, gnutls_x509_spki_t spki, unsigned int flags)
{
gnutls_x509_spki_t p = &privkey->key.x509->params.spki;
if (privkey == NULL || privkey->type != GNUTLS_PRIVKEY_X509) {
gnutls_assert();
return GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE;
}
if (p->pk == GNUTLS_PK_UNKNOWN)
return gnutls_assert_val(GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE);
memcpy(spki, p, sizeof(gnutls_x509_spki_st));
return 0;
}
/**
* gnutls_privkey_set_spki:
* @privkey: a public key of type #gnutls_privkey_t
* @spki: a SubjectPublicKeyInfo structure of type #gnutls_privkey_spki_t
* @flags: must be zero
*
* This function will set the public key information.
* The provided @spki must be initialized.
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
*
* Since: 3.6.0
**/
int
gnutls_privkey_set_spki(gnutls_privkey_t privkey, const gnutls_x509_spki_t spki, unsigned int flags)
{
if (privkey == NULL || privkey->type != GNUTLS_PRIVKEY_X509) {
gnutls_assert();
return GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE;
}
return gnutls_x509_privkey_set_spki(privkey->key.x509, spki, flags);
}
/* Checks whether the public key given is compatible with the
* signature algorithm used. The session is only used for audit logging, and
* it may be null.
*/
unsigned _gnutls_privkey_compatible_with_sig(gnutls_privkey_t privkey,
gnutls_sign_algorithm_t sign)
{
const gnutls_sign_entry_st *se;
se = _gnutls_sign_to_entry(sign);
if (unlikely(se == NULL))
return gnutls_assert_val(0);
/* Prevent RSA-PSS private keys from negotiating an RSA signature,
* and RSA keys which cannot do RSA-PSS (e.g., smart card) from
* negotiating RSA-PSS sig.
*/
if (se->pk != privkey->pk_algorithm) { /* if the PK algorithm of the signature differs to the one on the pubkey */
if (!sign_supports_priv_pk_algorithm(se, privkey->pk_algorithm)) {
_gnutls_handshake_log("cannot use privkey of %s with %s\n",
gnutls_pk_get_name(privkey->pk_algorithm), se->name);
return 0;
}
}
if (privkey->type == GNUTLS_PRIVKEY_EXT) {
if (privkey->key.ext.info_func) {
int ret;
ret = privkey->key.ext.info_func(privkey,
GNUTLS_SIGN_ALGO_TO_FLAGS(sign)|GNUTLS_PRIVKEY_INFO_HAVE_SIGN_ALGO,
privkey->key.ext.userdata);
if (ret != -1)
return ret;
/* use the old flag */
ret = privkey->key.ext.info_func(privkey, GNUTLS_PRIVKEY_INFO_SIGN_ALGO,
privkey->key.ext.userdata);
if (ret == (int)sign)
return 1;
}
/* This key type is very limited on what it can handle */
if (!PK_IS_OK_FOR_EXT2(se->pk))
return gnutls_assert_val(0);
}
#ifdef ENABLE_PKCS11
else if (privkey->type == GNUTLS_PRIVKEY_PKCS11) {
if (privkey->pk_algorithm == GNUTLS_PK_RSA && se->pk == GNUTLS_PK_RSA_PSS) {
if (!privkey->key.pkcs11->rsa_pss_ok)
return 0;
}
}
#endif
return 1;
}