1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
|
/*
* Copyright (C) 2011-2016 Free Software Foundation, Inc.
* Copyright (C) 2016-2018 Red Hat, Inc.
*
* Author: Nikos Mavrogiannopoulos
*
* This file is part of GnuTLS.
*
* The GnuTLS is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>
*
*/
/*
* The following code is an implementation of the AES-GCM cipher
* using the AES and neon instruction sets.
*/
#include "errors.h"
#include "gnutls_int.h"
#include <gnutls/crypto.h>
#include "errors.h"
#include <aes-aarch64.h>
#include <aarch64-common.h>
#include <nettle/memxor.h>
#include <nettle/macros.h>
#include <byteswap.h>
#define GCM_BLOCK_SIZE 16
#define INC32(block) INCREMENT(4, block + GCM_BLOCK_SIZE - 4)
/* GCM mode */
typedef struct {
uint64_t hi, lo;
} u128;
/* This is the gcm128 structure used in openssl. It
* is compatible with the included assembly code.
*/
struct gcm128_context {
union {
uint64_t u[2];
uint32_t d[4];
uint8_t c[16];
} Yi, EKi, EK0, len, Xi, H;
u128 Htable[16];
};
struct aes_gcm_ctx {
AES_KEY expanded_key;
struct gcm128_context gcm;
unsigned finished;
unsigned auth_finished;
size_t rekey_counter;
};
void gcm_init_v8(u128 Htable[16], const uint64_t Xi[2]);
void gcm_ghash_v8(uint64_t Xi[2], const u128 Htable[16],
const uint8_t * inp, size_t len);
void gcm_gmult_v8(uint64_t Xi[2], const u128 Htable[16]);
static void aes_gcm_deinit(void *_ctx)
{
struct aes_gcm_ctx *ctx = _ctx;
zeroize_temp_key(ctx, sizeof(*ctx));
gnutls_free(ctx);
}
static int
aes_gcm_cipher_init(gnutls_cipher_algorithm_t algorithm, void **_ctx,
int enc)
{
/* we use key size to distinguish */
if (algorithm != GNUTLS_CIPHER_AES_128_GCM &&
algorithm != GNUTLS_CIPHER_AES_192_GCM &&
algorithm != GNUTLS_CIPHER_AES_256_GCM)
return GNUTLS_E_INVALID_REQUEST;
*_ctx = gnutls_calloc(1, sizeof(struct aes_gcm_ctx));
if (*_ctx == NULL) {
gnutls_assert();
return GNUTLS_E_MEMORY_ERROR;
}
return 0;
}
static int
aes_gcm_cipher_setkey(void *_ctx, const void *userkey, size_t keysize)
{
struct aes_gcm_ctx *ctx = _ctx;
int ret;
CHECK_AES_KEYSIZE(keysize);
ret =
aes_v8_set_encrypt_key(userkey, keysize * 8,
ALIGN16(&ctx->expanded_key));
if (ret != 0)
return gnutls_assert_val(GNUTLS_E_ENCRYPTION_FAILED);
aes_v8_encrypt(ctx->gcm.H.c, ctx->gcm.H.c, ALIGN16(&ctx->expanded_key));
ctx->gcm.H.u[0] = bswap_64(ctx->gcm.H.u[0]);
ctx->gcm.H.u[1] = bswap_64(ctx->gcm.H.u[1]);
gcm_init_v8(ctx->gcm.Htable, ctx->gcm.H.u);
ctx->rekey_counter = 0;
return 0;
}
static int aes_gcm_setiv(void *_ctx, const void *iv, size_t iv_size)
{
struct aes_gcm_ctx *ctx = _ctx;
if (iv_size != GCM_BLOCK_SIZE - 4)
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
memset(ctx->gcm.Xi.c, 0, sizeof(ctx->gcm.Xi.c));
memset(ctx->gcm.len.c, 0, sizeof(ctx->gcm.len.c));
memcpy(ctx->gcm.Yi.c, iv, GCM_BLOCK_SIZE - 4);
ctx->gcm.Yi.c[GCM_BLOCK_SIZE - 4] = 0;
ctx->gcm.Yi.c[GCM_BLOCK_SIZE - 3] = 0;
ctx->gcm.Yi.c[GCM_BLOCK_SIZE - 2] = 0;
ctx->gcm.Yi.c[GCM_BLOCK_SIZE - 1] = 1;
aes_v8_encrypt(ctx->gcm.Yi.c, ctx->gcm.EK0.c,
ALIGN16(&ctx->expanded_key));
ctx->gcm.Yi.c[GCM_BLOCK_SIZE - 1] = 2;
ctx->finished = 0;
ctx->auth_finished = 0;
ctx->rekey_counter = 0;
return 0;
}
static void
gcm_ghash(struct aes_gcm_ctx *ctx, const uint8_t * src, size_t src_size)
{
size_t rest = src_size % GCM_BLOCK_SIZE;
size_t aligned_size = src_size - rest;
if (aligned_size > 0)
gcm_ghash_v8(ctx->gcm.Xi.u, ctx->gcm.Htable, src,
aligned_size);
if (rest > 0) {
memxor(ctx->gcm.Xi.c, src + aligned_size, rest);
gcm_gmult_v8(ctx->gcm.Xi.u, ctx->gcm.Htable);
}
}
static void
ctr32_encrypt_blocks_inplace(const unsigned char *in, unsigned char *out,
size_t blocks, const AES_KEY *key,
const unsigned char ivec[16])
{
unsigned i;
uint8_t ctr[16];
uint8_t tmp[16];
memcpy(ctr, ivec, 16);
for (i=0;i<blocks;i++) {
aes_v8_encrypt(ctr, tmp, key);
memxor3(out, tmp, in, 16);
out += 16;
in += 16;
INC32(ctr);
}
}
static void
ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out,
size_t blocks, const AES_KEY *key,
const unsigned char ivec[16])
{
unsigned i;
uint8_t ctr[16];
if (in == out)
return ctr32_encrypt_blocks_inplace(in, out, blocks, key, ivec);
memcpy(ctr, ivec, 16);
for (i=0;i<blocks;i++) {
aes_v8_encrypt(ctr, out, key);
memxor(out, in, 16);
out += 16;
in += 16;
INC32(ctr);
}
}
static inline void
ctr_encrypt_last(struct aes_gcm_ctx *ctx, const uint8_t * src,
uint8_t * dst, size_t pos, size_t length)
{
uint8_t tmp[GCM_BLOCK_SIZE];
uint8_t out[GCM_BLOCK_SIZE];
memcpy(tmp, &src[pos], length);
ctr32_encrypt_blocks(tmp, out, 1,
ALIGN16(&ctx->expanded_key),
ctx->gcm.Yi.c);
memcpy(&dst[pos], out, length);
}
static int
aes_gcm_encrypt(void *_ctx, const void *src, size_t src_size,
void *dst, size_t length)
{
struct aes_gcm_ctx *ctx = _ctx;
int blocks = src_size / GCM_BLOCK_SIZE;
int exp_blocks = blocks * GCM_BLOCK_SIZE;
int rest = src_size - (exp_blocks);
uint32_t counter;
int ret;
if (unlikely(ctx->finished))
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
if (unlikely(length < src_size))
return gnutls_assert_val(GNUTLS_E_SHORT_MEMORY_BUFFER);
ret = record_aes_gcm_encrypt_size(&ctx->rekey_counter, src_size);
if (ret < 0) {
return gnutls_assert_val(ret);
}
if (blocks > 0) {
ctr32_encrypt_blocks(src, dst,
blocks,
ALIGN16(&ctx->expanded_key),
ctx->gcm.Yi.c);
counter = _gnutls_read_uint32(ctx->gcm.Yi.c + 12);
counter += blocks;
_gnutls_write_uint32(counter, ctx->gcm.Yi.c + 12);
}
if (rest > 0) { /* last incomplete block */
ctr_encrypt_last(ctx, src, dst, exp_blocks, rest);
ctx->finished = 1;
}
gcm_ghash(ctx, dst, src_size);
ctx->gcm.len.u[1] += src_size;
return 0;
}
static int
aes_gcm_decrypt(void *_ctx, const void *src, size_t src_size,
void *dst, size_t dst_size)
{
struct aes_gcm_ctx *ctx = _ctx;
int blocks = src_size / GCM_BLOCK_SIZE;
int exp_blocks = blocks * GCM_BLOCK_SIZE;
int rest = src_size - (exp_blocks);
uint32_t counter;
if (unlikely(ctx->finished))
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
if (unlikely(dst_size < src_size))
return gnutls_assert_val(GNUTLS_E_SHORT_MEMORY_BUFFER);
gcm_ghash(ctx, src, src_size);
ctx->gcm.len.u[1] += src_size;
if (blocks > 0) {
ctr32_encrypt_blocks(src, dst,
blocks,
ALIGN16(&ctx->expanded_key),
ctx->gcm.Yi.c);
counter = _gnutls_read_uint32(ctx->gcm.Yi.c + 12);
counter += blocks;
_gnutls_write_uint32(counter, ctx->gcm.Yi.c + 12);
}
if (rest > 0) { /* last incomplete block */
ctr_encrypt_last(ctx, src, dst, exp_blocks, rest);
ctx->finished = 1;
}
return 0;
}
static int aes_gcm_auth(void *_ctx, const void *src, size_t src_size)
{
struct aes_gcm_ctx *ctx = _ctx;
if (unlikely(ctx->auth_finished))
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
gcm_ghash(ctx, src, src_size);
ctx->gcm.len.u[0] += src_size;
if (src_size % GCM_BLOCK_SIZE != 0)
ctx->auth_finished = 1;
return 0;
}
static void aes_gcm_tag(void *_ctx, void *tag, size_t tagsize)
{
struct aes_gcm_ctx *ctx = _ctx;
uint8_t buffer[GCM_BLOCK_SIZE];
uint64_t alen, clen;
alen = ctx->gcm.len.u[0] * 8;
clen = ctx->gcm.len.u[1] * 8;
_gnutls_write_uint64(alen, buffer);
_gnutls_write_uint64(clen, &buffer[8]);
gcm_ghash_v8(ctx->gcm.Xi.u, ctx->gcm.Htable, buffer,
GCM_BLOCK_SIZE);
ctx->gcm.Xi.u[0] ^= ctx->gcm.EK0.u[0];
ctx->gcm.Xi.u[1] ^= ctx->gcm.EK0.u[1];
memcpy(tag, ctx->gcm.Xi.c, MIN(GCM_BLOCK_SIZE, tagsize));
}
#include "../x86/aes-gcm-aead.h"
const gnutls_crypto_cipher_st _gnutls_aes_gcm_aarch64 = {
.init = aes_gcm_cipher_init,
.setkey = aes_gcm_cipher_setkey,
.setiv = aes_gcm_setiv,
.aead_encrypt = aes_gcm_aead_encrypt,
.aead_decrypt = aes_gcm_aead_decrypt,
.encrypt = aes_gcm_encrypt,
.decrypt = aes_gcm_decrypt,
.deinit = aes_gcm_deinit,
.tag = aes_gcm_tag,
.auth = aes_gcm_auth,
};
|