summaryrefslogtreecommitdiffstats
path: root/src/image/gif
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:14:23 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:14:23 +0000
commit73df946d56c74384511a194dd01dbe099584fd1a (patch)
treefd0bcea490dd81327ddfbb31e215439672c9a068 /src/image/gif
parentInitial commit. (diff)
downloadgolang-1.16-73df946d56c74384511a194dd01dbe099584fd1a.tar.xz
golang-1.16-73df946d56c74384511a194dd01dbe099584fd1a.zip
Adding upstream version 1.16.10.upstream/1.16.10upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/image/gif')
-rw-r--r--src/image/gif/reader.go637
-rw-r--r--src/image/gif/reader_test.go441
-rw-r--r--src/image/gif/writer.go477
-rw-r--r--src/image/gif/writer_test.go734
4 files changed, 2289 insertions, 0 deletions
diff --git a/src/image/gif/reader.go b/src/image/gif/reader.go
new file mode 100644
index 0000000..e580ab0
--- /dev/null
+++ b/src/image/gif/reader.go
@@ -0,0 +1,637 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package gif implements a GIF image decoder and encoder.
+//
+// The GIF specification is at https://www.w3.org/Graphics/GIF/spec-gif89a.txt.
+package gif
+
+import (
+ "bufio"
+ "compress/lzw"
+ "errors"
+ "fmt"
+ "image"
+ "image/color"
+ "io"
+)
+
+var (
+ errNotEnough = errors.New("gif: not enough image data")
+ errTooMuch = errors.New("gif: too much image data")
+ errBadPixel = errors.New("gif: invalid pixel value")
+)
+
+// If the io.Reader does not also have ReadByte, then decode will introduce its own buffering.
+type reader interface {
+ io.Reader
+ io.ByteReader
+}
+
+// Masks etc.
+const (
+ // Fields.
+ fColorTable = 1 << 7
+ fInterlace = 1 << 6
+ fColorTableBitsMask = 7
+
+ // Graphic control flags.
+ gcTransparentColorSet = 1 << 0
+ gcDisposalMethodMask = 7 << 2
+)
+
+// Disposal Methods.
+const (
+ DisposalNone = 0x01
+ DisposalBackground = 0x02
+ DisposalPrevious = 0x03
+)
+
+// Section indicators.
+const (
+ sExtension = 0x21
+ sImageDescriptor = 0x2C
+ sTrailer = 0x3B
+)
+
+// Extensions.
+const (
+ eText = 0x01 // Plain Text
+ eGraphicControl = 0xF9 // Graphic Control
+ eComment = 0xFE // Comment
+ eApplication = 0xFF // Application
+)
+
+func readFull(r io.Reader, b []byte) error {
+ _, err := io.ReadFull(r, b)
+ if err == io.EOF {
+ err = io.ErrUnexpectedEOF
+ }
+ return err
+}
+
+func readByte(r io.ByteReader) (byte, error) {
+ b, err := r.ReadByte()
+ if err == io.EOF {
+ err = io.ErrUnexpectedEOF
+ }
+ return b, err
+}
+
+// decoder is the type used to decode a GIF file.
+type decoder struct {
+ r reader
+
+ // From header.
+ vers string
+ width int
+ height int
+ loopCount int
+ delayTime int
+ backgroundIndex byte
+ disposalMethod byte
+
+ // From image descriptor.
+ imageFields byte
+
+ // From graphics control.
+ transparentIndex byte
+ hasTransparentIndex bool
+
+ // Computed.
+ globalColorTable color.Palette
+
+ // Used when decoding.
+ delay []int
+ disposal []byte
+ image []*image.Paletted
+ tmp [1024]byte // must be at least 768 so we can read color table
+}
+
+// blockReader parses the block structure of GIF image data, which comprises
+// (n, (n bytes)) blocks, with 1 <= n <= 255. It is the reader given to the
+// LZW decoder, which is thus immune to the blocking. After the LZW decoder
+// completes, there will be a 0-byte block remaining (0, ()), which is
+// consumed when checking that the blockReader is exhausted.
+//
+// To avoid the allocation of a bufio.Reader for the lzw Reader, blockReader
+// implements io.ReadByte and buffers blocks into the decoder's "tmp" buffer.
+type blockReader struct {
+ d *decoder
+ i, j uint8 // d.tmp[i:j] contains the buffered bytes
+ err error
+}
+
+func (b *blockReader) fill() {
+ if b.err != nil {
+ return
+ }
+ b.j, b.err = readByte(b.d.r)
+ if b.j == 0 && b.err == nil {
+ b.err = io.EOF
+ }
+ if b.err != nil {
+ return
+ }
+
+ b.i = 0
+ b.err = readFull(b.d.r, b.d.tmp[:b.j])
+ if b.err != nil {
+ b.j = 0
+ }
+}
+
+func (b *blockReader) ReadByte() (byte, error) {
+ if b.i == b.j {
+ b.fill()
+ if b.err != nil {
+ return 0, b.err
+ }
+ }
+
+ c := b.d.tmp[b.i]
+ b.i++
+ return c, nil
+}
+
+// blockReader must implement io.Reader, but its Read shouldn't ever actually
+// be called in practice. The compress/lzw package will only call ReadByte.
+func (b *blockReader) Read(p []byte) (int, error) {
+ if len(p) == 0 || b.err != nil {
+ return 0, b.err
+ }
+ if b.i == b.j {
+ b.fill()
+ if b.err != nil {
+ return 0, b.err
+ }
+ }
+
+ n := copy(p, b.d.tmp[b.i:b.j])
+ b.i += uint8(n)
+ return n, nil
+}
+
+// close primarily detects whether or not a block terminator was encountered
+// after reading a sequence of data sub-blocks. It allows at most one trailing
+// sub-block worth of data. I.e., if some number of bytes exist in one sub-block
+// following the end of LZW data, the very next sub-block must be the block
+// terminator. If the very end of LZW data happened to fill one sub-block, at
+// most one more sub-block of length 1 may exist before the block-terminator.
+// These accommodations allow us to support GIFs created by less strict encoders.
+// See https://golang.org/issue/16146.
+func (b *blockReader) close() error {
+ if b.err == io.EOF {
+ // A clean block-sequence terminator was encountered while reading.
+ return nil
+ } else if b.err != nil {
+ // Some other error was encountered while reading.
+ return b.err
+ }
+
+ if b.i == b.j {
+ // We reached the end of a sub block reading LZW data. We'll allow at
+ // most one more sub block of data with a length of 1 byte.
+ b.fill()
+ if b.err == io.EOF {
+ return nil
+ } else if b.err != nil {
+ return b.err
+ } else if b.j > 1 {
+ return errTooMuch
+ }
+ }
+
+ // Part of a sub-block remains buffered. We expect that the next attempt to
+ // buffer a sub-block will reach the block terminator.
+ b.fill()
+ if b.err == io.EOF {
+ return nil
+ } else if b.err != nil {
+ return b.err
+ }
+
+ return errTooMuch
+}
+
+// decode reads a GIF image from r and stores the result in d.
+func (d *decoder) decode(r io.Reader, configOnly, keepAllFrames bool) error {
+ // Add buffering if r does not provide ReadByte.
+ if rr, ok := r.(reader); ok {
+ d.r = rr
+ } else {
+ d.r = bufio.NewReader(r)
+ }
+
+ d.loopCount = -1
+
+ err := d.readHeaderAndScreenDescriptor()
+ if err != nil {
+ return err
+ }
+ if configOnly {
+ return nil
+ }
+
+ for {
+ c, err := readByte(d.r)
+ if err != nil {
+ return fmt.Errorf("gif: reading frames: %v", err)
+ }
+ switch c {
+ case sExtension:
+ if err = d.readExtension(); err != nil {
+ return err
+ }
+
+ case sImageDescriptor:
+ if err = d.readImageDescriptor(keepAllFrames); err != nil {
+ return err
+ }
+
+ case sTrailer:
+ if len(d.image) == 0 {
+ return fmt.Errorf("gif: missing image data")
+ }
+ return nil
+
+ default:
+ return fmt.Errorf("gif: unknown block type: 0x%.2x", c)
+ }
+ }
+}
+
+func (d *decoder) readHeaderAndScreenDescriptor() error {
+ err := readFull(d.r, d.tmp[:13])
+ if err != nil {
+ return fmt.Errorf("gif: reading header: %v", err)
+ }
+ d.vers = string(d.tmp[:6])
+ if d.vers != "GIF87a" && d.vers != "GIF89a" {
+ return fmt.Errorf("gif: can't recognize format %q", d.vers)
+ }
+ d.width = int(d.tmp[6]) + int(d.tmp[7])<<8
+ d.height = int(d.tmp[8]) + int(d.tmp[9])<<8
+ if fields := d.tmp[10]; fields&fColorTable != 0 {
+ d.backgroundIndex = d.tmp[11]
+ // readColorTable overwrites the contents of d.tmp, but that's OK.
+ if d.globalColorTable, err = d.readColorTable(fields); err != nil {
+ return err
+ }
+ }
+ // d.tmp[12] is the Pixel Aspect Ratio, which is ignored.
+ return nil
+}
+
+func (d *decoder) readColorTable(fields byte) (color.Palette, error) {
+ n := 1 << (1 + uint(fields&fColorTableBitsMask))
+ err := readFull(d.r, d.tmp[:3*n])
+ if err != nil {
+ return nil, fmt.Errorf("gif: reading color table: %s", err)
+ }
+ j, p := 0, make(color.Palette, n)
+ for i := range p {
+ p[i] = color.RGBA{d.tmp[j+0], d.tmp[j+1], d.tmp[j+2], 0xFF}
+ j += 3
+ }
+ return p, nil
+}
+
+func (d *decoder) readExtension() error {
+ extension, err := readByte(d.r)
+ if err != nil {
+ return fmt.Errorf("gif: reading extension: %v", err)
+ }
+ size := 0
+ switch extension {
+ case eText:
+ size = 13
+ case eGraphicControl:
+ return d.readGraphicControl()
+ case eComment:
+ // nothing to do but read the data.
+ case eApplication:
+ b, err := readByte(d.r)
+ if err != nil {
+ return fmt.Errorf("gif: reading extension: %v", err)
+ }
+ // The spec requires size be 11, but Adobe sometimes uses 10.
+ size = int(b)
+ default:
+ return fmt.Errorf("gif: unknown extension 0x%.2x", extension)
+ }
+ if size > 0 {
+ if err := readFull(d.r, d.tmp[:size]); err != nil {
+ return fmt.Errorf("gif: reading extension: %v", err)
+ }
+ }
+
+ // Application Extension with "NETSCAPE2.0" as string and 1 in data means
+ // this extension defines a loop count.
+ if extension == eApplication && string(d.tmp[:size]) == "NETSCAPE2.0" {
+ n, err := d.readBlock()
+ if err != nil {
+ return fmt.Errorf("gif: reading extension: %v", err)
+ }
+ if n == 0 {
+ return nil
+ }
+ if n == 3 && d.tmp[0] == 1 {
+ d.loopCount = int(d.tmp[1]) | int(d.tmp[2])<<8
+ }
+ }
+ for {
+ n, err := d.readBlock()
+ if err != nil {
+ return fmt.Errorf("gif: reading extension: %v", err)
+ }
+ if n == 0 {
+ return nil
+ }
+ }
+}
+
+func (d *decoder) readGraphicControl() error {
+ if err := readFull(d.r, d.tmp[:6]); err != nil {
+ return fmt.Errorf("gif: can't read graphic control: %s", err)
+ }
+ if d.tmp[0] != 4 {
+ return fmt.Errorf("gif: invalid graphic control extension block size: %d", d.tmp[0])
+ }
+ flags := d.tmp[1]
+ d.disposalMethod = (flags & gcDisposalMethodMask) >> 2
+ d.delayTime = int(d.tmp[2]) | int(d.tmp[3])<<8
+ if flags&gcTransparentColorSet != 0 {
+ d.transparentIndex = d.tmp[4]
+ d.hasTransparentIndex = true
+ }
+ if d.tmp[5] != 0 {
+ return fmt.Errorf("gif: invalid graphic control extension block terminator: %d", d.tmp[5])
+ }
+ return nil
+}
+
+func (d *decoder) readImageDescriptor(keepAllFrames bool) error {
+ m, err := d.newImageFromDescriptor()
+ if err != nil {
+ return err
+ }
+ useLocalColorTable := d.imageFields&fColorTable != 0
+ if useLocalColorTable {
+ m.Palette, err = d.readColorTable(d.imageFields)
+ if err != nil {
+ return err
+ }
+ } else {
+ if d.globalColorTable == nil {
+ return errors.New("gif: no color table")
+ }
+ m.Palette = d.globalColorTable
+ }
+ if d.hasTransparentIndex {
+ if !useLocalColorTable {
+ // Clone the global color table.
+ m.Palette = append(color.Palette(nil), d.globalColorTable...)
+ }
+ if ti := int(d.transparentIndex); ti < len(m.Palette) {
+ m.Palette[ti] = color.RGBA{}
+ } else {
+ // The transparentIndex is out of range, which is an error
+ // according to the spec, but Firefox and Google Chrome
+ // seem OK with this, so we enlarge the palette with
+ // transparent colors. See golang.org/issue/15059.
+ p := make(color.Palette, ti+1)
+ copy(p, m.Palette)
+ for i := len(m.Palette); i < len(p); i++ {
+ p[i] = color.RGBA{}
+ }
+ m.Palette = p
+ }
+ }
+ litWidth, err := readByte(d.r)
+ if err != nil {
+ return fmt.Errorf("gif: reading image data: %v", err)
+ }
+ if litWidth < 2 || litWidth > 8 {
+ return fmt.Errorf("gif: pixel size in decode out of range: %d", litWidth)
+ }
+ // A wonderfully Go-like piece of magic.
+ br := &blockReader{d: d}
+ lzwr := lzw.NewReader(br, lzw.LSB, int(litWidth))
+ defer lzwr.Close()
+ if err = readFull(lzwr, m.Pix); err != nil {
+ if err != io.ErrUnexpectedEOF {
+ return fmt.Errorf("gif: reading image data: %v", err)
+ }
+ return errNotEnough
+ }
+ // In theory, both lzwr and br should be exhausted. Reading from them
+ // should yield (0, io.EOF).
+ //
+ // The spec (Appendix F - Compression), says that "An End of
+ // Information code... must be the last code output by the encoder
+ // for an image". In practice, though, giflib (a widely used C
+ // library) does not enforce this, so we also accept lzwr returning
+ // io.ErrUnexpectedEOF (meaning that the encoded stream hit io.EOF
+ // before the LZW decoder saw an explicit end code), provided that
+ // the io.ReadFull call above successfully read len(m.Pix) bytes.
+ // See https://golang.org/issue/9856 for an example GIF.
+ if n, err := lzwr.Read(d.tmp[256:257]); n != 0 || (err != io.EOF && err != io.ErrUnexpectedEOF) {
+ if err != nil {
+ return fmt.Errorf("gif: reading image data: %v", err)
+ }
+ return errTooMuch
+ }
+
+ // In practice, some GIFs have an extra byte in the data sub-block
+ // stream, which we ignore. See https://golang.org/issue/16146.
+ if err := br.close(); err == errTooMuch {
+ return errTooMuch
+ } else if err != nil {
+ return fmt.Errorf("gif: reading image data: %v", err)
+ }
+
+ // Check that the color indexes are inside the palette.
+ if len(m.Palette) < 256 {
+ for _, pixel := range m.Pix {
+ if int(pixel) >= len(m.Palette) {
+ return errBadPixel
+ }
+ }
+ }
+
+ // Undo the interlacing if necessary.
+ if d.imageFields&fInterlace != 0 {
+ uninterlace(m)
+ }
+
+ if keepAllFrames || len(d.image) == 0 {
+ d.image = append(d.image, m)
+ d.delay = append(d.delay, d.delayTime)
+ d.disposal = append(d.disposal, d.disposalMethod)
+ }
+ // The GIF89a spec, Section 23 (Graphic Control Extension) says:
+ // "The scope of this extension is the first graphic rendering block
+ // to follow." We therefore reset the GCE fields to zero.
+ d.delayTime = 0
+ d.hasTransparentIndex = false
+ return nil
+}
+
+func (d *decoder) newImageFromDescriptor() (*image.Paletted, error) {
+ if err := readFull(d.r, d.tmp[:9]); err != nil {
+ return nil, fmt.Errorf("gif: can't read image descriptor: %s", err)
+ }
+ left := int(d.tmp[0]) + int(d.tmp[1])<<8
+ top := int(d.tmp[2]) + int(d.tmp[3])<<8
+ width := int(d.tmp[4]) + int(d.tmp[5])<<8
+ height := int(d.tmp[6]) + int(d.tmp[7])<<8
+ d.imageFields = d.tmp[8]
+
+ // The GIF89a spec, Section 20 (Image Descriptor) says: "Each image must
+ // fit within the boundaries of the Logical Screen, as defined in the
+ // Logical Screen Descriptor."
+ //
+ // This is conceptually similar to testing
+ // frameBounds := image.Rect(left, top, left+width, top+height)
+ // imageBounds := image.Rect(0, 0, d.width, d.height)
+ // if !frameBounds.In(imageBounds) { etc }
+ // but the semantics of the Go image.Rectangle type is that r.In(s) is true
+ // whenever r is an empty rectangle, even if r.Min.X > s.Max.X. Here, we
+ // want something stricter.
+ //
+ // Note that, by construction, left >= 0 && top >= 0, so we only have to
+ // explicitly compare frameBounds.Max (left+width, top+height) against
+ // imageBounds.Max (d.width, d.height) and not frameBounds.Min (left, top)
+ // against imageBounds.Min (0, 0).
+ if left+width > d.width || top+height > d.height {
+ return nil, errors.New("gif: frame bounds larger than image bounds")
+ }
+ return image.NewPaletted(image.Rectangle{
+ Min: image.Point{left, top},
+ Max: image.Point{left + width, top + height},
+ }, nil), nil
+}
+
+func (d *decoder) readBlock() (int, error) {
+ n, err := readByte(d.r)
+ if n == 0 || err != nil {
+ return 0, err
+ }
+ if err := readFull(d.r, d.tmp[:n]); err != nil {
+ return 0, err
+ }
+ return int(n), nil
+}
+
+// interlaceScan defines the ordering for a pass of the interlace algorithm.
+type interlaceScan struct {
+ skip, start int
+}
+
+// interlacing represents the set of scans in an interlaced GIF image.
+var interlacing = []interlaceScan{
+ {8, 0}, // Group 1 : Every 8th. row, starting with row 0.
+ {8, 4}, // Group 2 : Every 8th. row, starting with row 4.
+ {4, 2}, // Group 3 : Every 4th. row, starting with row 2.
+ {2, 1}, // Group 4 : Every 2nd. row, starting with row 1.
+}
+
+// uninterlace rearranges the pixels in m to account for interlaced input.
+func uninterlace(m *image.Paletted) {
+ var nPix []uint8
+ dx := m.Bounds().Dx()
+ dy := m.Bounds().Dy()
+ nPix = make([]uint8, dx*dy)
+ offset := 0 // steps through the input by sequential scan lines.
+ for _, pass := range interlacing {
+ nOffset := pass.start * dx // steps through the output as defined by pass.
+ for y := pass.start; y < dy; y += pass.skip {
+ copy(nPix[nOffset:nOffset+dx], m.Pix[offset:offset+dx])
+ offset += dx
+ nOffset += dx * pass.skip
+ }
+ }
+ m.Pix = nPix
+}
+
+// Decode reads a GIF image from r and returns the first embedded
+// image as an image.Image.
+func Decode(r io.Reader) (image.Image, error) {
+ var d decoder
+ if err := d.decode(r, false, false); err != nil {
+ return nil, err
+ }
+ return d.image[0], nil
+}
+
+// GIF represents the possibly multiple images stored in a GIF file.
+type GIF struct {
+ Image []*image.Paletted // The successive images.
+ Delay []int // The successive delay times, one per frame, in 100ths of a second.
+ // LoopCount controls the number of times an animation will be
+ // restarted during display.
+ // A LoopCount of 0 means to loop forever.
+ // A LoopCount of -1 means to show each frame only once.
+ // Otherwise, the animation is looped LoopCount+1 times.
+ LoopCount int
+ // Disposal is the successive disposal methods, one per frame. For
+ // backwards compatibility, a nil Disposal is valid to pass to EncodeAll,
+ // and implies that each frame's disposal method is 0 (no disposal
+ // specified).
+ Disposal []byte
+ // Config is the global color table (palette), width and height. A nil or
+ // empty-color.Palette Config.ColorModel means that each frame has its own
+ // color table and there is no global color table. Each frame's bounds must
+ // be within the rectangle defined by the two points (0, 0) and
+ // (Config.Width, Config.Height).
+ //
+ // For backwards compatibility, a zero-valued Config is valid to pass to
+ // EncodeAll, and implies that the overall GIF's width and height equals
+ // the first frame's bounds' Rectangle.Max point.
+ Config image.Config
+ // BackgroundIndex is the background index in the global color table, for
+ // use with the DisposalBackground disposal method.
+ BackgroundIndex byte
+}
+
+// DecodeAll reads a GIF image from r and returns the sequential frames
+// and timing information.
+func DecodeAll(r io.Reader) (*GIF, error) {
+ var d decoder
+ if err := d.decode(r, false, true); err != nil {
+ return nil, err
+ }
+ gif := &GIF{
+ Image: d.image,
+ LoopCount: d.loopCount,
+ Delay: d.delay,
+ Disposal: d.disposal,
+ Config: image.Config{
+ ColorModel: d.globalColorTable,
+ Width: d.width,
+ Height: d.height,
+ },
+ BackgroundIndex: d.backgroundIndex,
+ }
+ return gif, nil
+}
+
+// DecodeConfig returns the global color model and dimensions of a GIF image
+// without decoding the entire image.
+func DecodeConfig(r io.Reader) (image.Config, error) {
+ var d decoder
+ if err := d.decode(r, true, false); err != nil {
+ return image.Config{}, err
+ }
+ return image.Config{
+ ColorModel: d.globalColorTable,
+ Width: d.width,
+ Height: d.height,
+ }, nil
+}
+
+func init() {
+ image.RegisterFormat("gif", "GIF8?a", Decode, DecodeConfig)
+}
diff --git a/src/image/gif/reader_test.go b/src/image/gif/reader_test.go
new file mode 100644
index 0000000..5eec5ec
--- /dev/null
+++ b/src/image/gif/reader_test.go
@@ -0,0 +1,441 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package gif
+
+import (
+ "bytes"
+ "compress/lzw"
+ "image"
+ "image/color"
+ "image/color/palette"
+ "io"
+ "os"
+ "reflect"
+ "runtime"
+ "runtime/debug"
+ "strings"
+ "testing"
+)
+
+// header, palette and trailer are parts of a valid 2x1 GIF image.
+const (
+ headerStr = "GIF89a" +
+ "\x02\x00\x01\x00" + // width=2, height=1
+ "\x80\x00\x00" // headerFields=(a color table of 2 pixels), backgroundIndex, aspect
+ paletteStr = "\x10\x20\x30\x40\x50\x60" // the color table, also known as a palette
+ trailerStr = "\x3b"
+)
+
+// lzw.NewReader wants a io.ByteReader, this ensures we're compatible.
+var _ io.ByteReader = (*blockReader)(nil)
+
+// lzwEncode returns an LZW encoding (with 2-bit literals) of in.
+func lzwEncode(in []byte) []byte {
+ b := &bytes.Buffer{}
+ w := lzw.NewWriter(b, lzw.LSB, 2)
+ if _, err := w.Write(in); err != nil {
+ panic(err)
+ }
+ if err := w.Close(); err != nil {
+ panic(err)
+ }
+ return b.Bytes()
+}
+
+func TestDecode(t *testing.T) {
+ // extra contains superfluous bytes to inject into the GIF, either at the end
+ // of an existing data sub-block (past the LZW End of Information code) or in
+ // a separate data sub-block. The 0x02 values are arbitrary.
+ const extra = "\x02\x02\x02\x02"
+
+ testCases := []struct {
+ nPix int // The number of pixels in the image data.
+ // If non-zero, write this many extra bytes inside the data sub-block
+ // containing the LZW end code.
+ extraExisting int
+ // If non-zero, write an extra block of this many bytes.
+ extraSeparate int
+ wantErr error
+ }{
+ {0, 0, 0, errNotEnough},
+ {1, 0, 0, errNotEnough},
+ {2, 0, 0, nil},
+ // An extra data sub-block after the compressed section with 1 byte which we
+ // silently skip.
+ {2, 0, 1, nil},
+ // An extra data sub-block after the compressed section with 2 bytes. In
+ // this case we complain that there is too much data.
+ {2, 0, 2, errTooMuch},
+ // Too much pixel data.
+ {3, 0, 0, errTooMuch},
+ // An extra byte after LZW data, but inside the same data sub-block.
+ {2, 1, 0, nil},
+ // Two extra bytes after LZW data, but inside the same data sub-block.
+ {2, 2, 0, nil},
+ // Extra data exists in the final sub-block with LZW data, AND there is
+ // a bogus sub-block following.
+ {2, 1, 1, errTooMuch},
+ }
+ for _, tc := range testCases {
+ b := &bytes.Buffer{}
+ b.WriteString(headerStr)
+ b.WriteString(paletteStr)
+ // Write an image with bounds 2x1 but tc.nPix pixels. If tc.nPix != 2
+ // then this should result in an invalid GIF image. First, write a
+ // magic 0x2c (image descriptor) byte, bounds=(0,0)-(2,1), a flags
+ // byte, and 2-bit LZW literals.
+ b.WriteString("\x2c\x00\x00\x00\x00\x02\x00\x01\x00\x00\x02")
+ if tc.nPix > 0 {
+ enc := lzwEncode(make([]byte, tc.nPix))
+ if len(enc)+tc.extraExisting > 0xff {
+ t.Errorf("nPix=%d, extraExisting=%d, extraSeparate=%d: compressed length %d is too large",
+ tc.nPix, tc.extraExisting, tc.extraSeparate, len(enc))
+ continue
+ }
+
+ // Write the size of the data sub-block containing the LZW data.
+ b.WriteByte(byte(len(enc) + tc.extraExisting))
+
+ // Write the LZW data.
+ b.Write(enc)
+
+ // Write extra bytes inside the same data sub-block where LZW data
+ // ended. Each arbitrarily 0x02.
+ b.WriteString(extra[:tc.extraExisting])
+ }
+
+ if tc.extraSeparate > 0 {
+ // Data sub-block size. This indicates how many extra bytes follow.
+ b.WriteByte(byte(tc.extraSeparate))
+ b.WriteString(extra[:tc.extraSeparate])
+ }
+ b.WriteByte(0x00) // An empty block signifies the end of the image data.
+ b.WriteString(trailerStr)
+
+ got, err := Decode(b)
+ if err != tc.wantErr {
+ t.Errorf("nPix=%d, extraExisting=%d, extraSeparate=%d\ngot %v\nwant %v",
+ tc.nPix, tc.extraExisting, tc.extraSeparate, err, tc.wantErr)
+ }
+
+ if tc.wantErr != nil {
+ continue
+ }
+ want := &image.Paletted{
+ Pix: []uint8{0, 0},
+ Stride: 2,
+ Rect: image.Rect(0, 0, 2, 1),
+ Palette: color.Palette{
+ color.RGBA{0x10, 0x20, 0x30, 0xff},
+ color.RGBA{0x40, 0x50, 0x60, 0xff},
+ },
+ }
+ if !reflect.DeepEqual(got, want) {
+ t.Errorf("nPix=%d, extraExisting=%d, extraSeparate=%d\ngot %v\nwant %v",
+ tc.nPix, tc.extraExisting, tc.extraSeparate, got, want)
+ }
+ }
+}
+
+func TestTransparentIndex(t *testing.T) {
+ b := &bytes.Buffer{}
+ b.WriteString(headerStr)
+ b.WriteString(paletteStr)
+ for transparentIndex := 0; transparentIndex < 3; transparentIndex++ {
+ if transparentIndex < 2 {
+ // Write the graphic control for the transparent index.
+ b.WriteString("\x21\xf9\x04\x01\x00\x00")
+ b.WriteByte(byte(transparentIndex))
+ b.WriteByte(0)
+ }
+ // Write an image with bounds 2x1, as per TestDecode.
+ b.WriteString("\x2c\x00\x00\x00\x00\x02\x00\x01\x00\x00\x02")
+ enc := lzwEncode([]byte{0x00, 0x00})
+ if len(enc) > 0xff {
+ t.Fatalf("compressed length %d is too large", len(enc))
+ }
+ b.WriteByte(byte(len(enc)))
+ b.Write(enc)
+ b.WriteByte(0x00)
+ }
+ b.WriteString(trailerStr)
+
+ g, err := DecodeAll(b)
+ if err != nil {
+ t.Fatalf("DecodeAll: %v", err)
+ }
+ c0 := color.RGBA{paletteStr[0], paletteStr[1], paletteStr[2], 0xff}
+ c1 := color.RGBA{paletteStr[3], paletteStr[4], paletteStr[5], 0xff}
+ cz := color.RGBA{}
+ wants := []color.Palette{
+ {cz, c1},
+ {c0, cz},
+ {c0, c1},
+ }
+ if len(g.Image) != len(wants) {
+ t.Fatalf("got %d images, want %d", len(g.Image), len(wants))
+ }
+ for i, want := range wants {
+ got := g.Image[i].Palette
+ if !reflect.DeepEqual(got, want) {
+ t.Errorf("palette #%d:\ngot %v\nwant %v", i, got, want)
+ }
+ }
+}
+
+// testGIF is a simple GIF that we can modify to test different scenarios.
+var testGIF = []byte{
+ 'G', 'I', 'F', '8', '9', 'a',
+ 1, 0, 1, 0, // w=1, h=1 (6)
+ 128, 0, 0, // headerFields, bg, aspect (10)
+ 0, 0, 0, 1, 1, 1, // color table and graphics control (13)
+ 0x21, 0xf9, 0x04, 0x00, 0x00, 0x00, 0xff, 0x00, // (19)
+ // frame 1 (0,0 - 1,1)
+ 0x2c,
+ 0x00, 0x00, 0x00, 0x00,
+ 0x01, 0x00, 0x01, 0x00, // (32)
+ 0x00,
+ 0x02, 0x02, 0x4c, 0x01, 0x00, // lzw pixels
+ // trailer
+ 0x3b,
+}
+
+func try(t *testing.T, b []byte, want string) {
+ _, err := DecodeAll(bytes.NewReader(b))
+ var got string
+ if err != nil {
+ got = err.Error()
+ }
+ if got != want {
+ t.Fatalf("got %v, want %v", got, want)
+ }
+}
+
+func TestBounds(t *testing.T) {
+ // Make a local copy of testGIF.
+ gif := make([]byte, len(testGIF))
+ copy(gif, testGIF)
+ // Make the bounds too big, just by one.
+ gif[32] = 2
+ want := "gif: frame bounds larger than image bounds"
+ try(t, gif, want)
+
+ // Make the bounds too small; does not trigger bounds
+ // check, but now there's too much data.
+ gif[32] = 0
+ want = "gif: too much image data"
+ try(t, gif, want)
+ gif[32] = 1
+
+ // Make the bounds really big, expect an error.
+ want = "gif: frame bounds larger than image bounds"
+ for i := 0; i < 4; i++ {
+ gif[32+i] = 0xff
+ }
+ try(t, gif, want)
+}
+
+func TestNoPalette(t *testing.T) {
+ b := &bytes.Buffer{}
+
+ // Manufacture a GIF with no palette, so any pixel at all
+ // will be invalid.
+ b.WriteString(headerStr[:len(headerStr)-3])
+ b.WriteString("\x00\x00\x00") // No global palette.
+
+ // Image descriptor: 2x1, no local palette, and 2-bit LZW literals.
+ b.WriteString("\x2c\x00\x00\x00\x00\x02\x00\x01\x00\x00\x02")
+
+ // Encode the pixels: neither is in range, because there is no palette.
+ enc := lzwEncode([]byte{0x00, 0x03})
+ b.WriteByte(byte(len(enc)))
+ b.Write(enc)
+ b.WriteByte(0x00) // An empty block signifies the end of the image data.
+
+ b.WriteString(trailerStr)
+
+ try(t, b.Bytes(), "gif: no color table")
+}
+
+func TestPixelOutsidePaletteRange(t *testing.T) {
+ for _, pval := range []byte{0, 1, 2, 3} {
+ b := &bytes.Buffer{}
+
+ // Manufacture a GIF with a 2 color palette.
+ b.WriteString(headerStr)
+ b.WriteString(paletteStr)
+
+ // Image descriptor: 2x1, no local palette, and 2-bit LZW literals.
+ b.WriteString("\x2c\x00\x00\x00\x00\x02\x00\x01\x00\x00\x02")
+
+ // Encode the pixels; some pvals trigger the expected error.
+ enc := lzwEncode([]byte{pval, pval})
+ b.WriteByte(byte(len(enc)))
+ b.Write(enc)
+ b.WriteByte(0x00) // An empty block signifies the end of the image data.
+
+ b.WriteString(trailerStr)
+
+ // No error expected, unless the pixels are beyond the 2 color palette.
+ want := ""
+ if pval >= 2 {
+ want = "gif: invalid pixel value"
+ }
+ try(t, b.Bytes(), want)
+ }
+}
+
+func TestTransparentPixelOutsidePaletteRange(t *testing.T) {
+ b := &bytes.Buffer{}
+
+ // Manufacture a GIF with a 2 color palette.
+ b.WriteString(headerStr)
+ b.WriteString(paletteStr)
+
+ // Graphic Control Extension: transparency, transparent color index = 3.
+ //
+ // This index, 3, is out of range of the global palette and there is no
+ // local palette in the subsequent image descriptor. This is an error
+ // according to the spec, but Firefox and Google Chrome seem OK with this.
+ //
+ // See golang.org/issue/15059.
+ b.WriteString("\x21\xf9\x04\x01\x00\x00\x03\x00")
+
+ // Image descriptor: 2x1, no local palette, and 2-bit LZW literals.
+ b.WriteString("\x2c\x00\x00\x00\x00\x02\x00\x01\x00\x00\x02")
+
+ // Encode the pixels.
+ enc := lzwEncode([]byte{0x03, 0x03})
+ b.WriteByte(byte(len(enc)))
+ b.Write(enc)
+ b.WriteByte(0x00) // An empty block signifies the end of the image data.
+
+ b.WriteString(trailerStr)
+
+ try(t, b.Bytes(), "")
+}
+
+func TestLoopCount(t *testing.T) {
+ testCases := []struct {
+ name string
+ data []byte
+ loopCount int
+ }{
+ {
+ "loopcount-missing",
+ []byte("GIF89a000\x00000" +
+ ",0\x00\x00\x00\n\x00\n\x00\x80000000" + // image 0 descriptor & color table
+ "\x02\b\xf01u\xb9\xfdal\x05\x00;"), // image 0 image data & trailer
+ -1,
+ },
+ {
+ "loopcount-0",
+ []byte("GIF89a000\x00000" +
+ "!\xff\vNETSCAPE2.0\x03\x01\x00\x00\x00" + // loop count = 0
+ ",0\x00\x00\x00\n\x00\n\x00\x80000000" + // image 0 descriptor & color table
+ "\x02\b\xf01u\xb9\xfdal\x05\x00" + // image 0 image data
+ ",0\x00\x00\x00\n\x00\n\x00\x80000000" + // image 1 descriptor & color table
+ "\x02\b\xf01u\xb9\xfdal\x05\x00;"), // image 1 image data & trailer
+ 0,
+ },
+ {
+ "loopcount-1",
+ []byte("GIF89a000\x00000" +
+ "!\xff\vNETSCAPE2.0\x03\x01\x01\x00\x00" + // loop count = 1
+ ",0\x00\x00\x00\n\x00\n\x00\x80000000" + // image 0 descriptor & color table
+ "\x02\b\xf01u\xb9\xfdal\x05\x00" + // image 0 image data
+ ",0\x00\x00\x00\n\x00\n\x00\x80000000" + // image 1 descriptor & color table
+ "\x02\b\xf01u\xb9\xfdal\x05\x00;"), // image 1 image data & trailer
+ 1,
+ },
+ }
+
+ for _, tc := range testCases {
+ t.Run(tc.name, func(t *testing.T) {
+ img, err := DecodeAll(bytes.NewReader(tc.data))
+ if err != nil {
+ t.Fatal("DecodeAll:", err)
+ }
+ w := new(bytes.Buffer)
+ err = EncodeAll(w, img)
+ if err != nil {
+ t.Fatal("EncodeAll:", err)
+ }
+ img1, err := DecodeAll(w)
+ if err != nil {
+ t.Fatal("DecodeAll:", err)
+ }
+ if img.LoopCount != tc.loopCount {
+ t.Errorf("loop count mismatch: %d vs %d", img.LoopCount, tc.loopCount)
+ }
+ if img.LoopCount != img1.LoopCount {
+ t.Errorf("loop count failed round-trip: %d vs %d", img.LoopCount, img1.LoopCount)
+ }
+ })
+ }
+}
+
+func TestUnexpectedEOF(t *testing.T) {
+ for i := len(testGIF) - 1; i >= 0; i-- {
+ _, err := Decode(bytes.NewReader(testGIF[:i]))
+ if err == errNotEnough {
+ continue
+ }
+ text := ""
+ if err != nil {
+ text = err.Error()
+ }
+ if !strings.HasPrefix(text, "gif:") || !strings.HasSuffix(text, ": unexpected EOF") {
+ t.Errorf("Decode(testGIF[:%d]) = %v, want gif: ...: unexpected EOF", i, err)
+ }
+ }
+}
+
+// See golang.org/issue/22237
+func TestDecodeMemoryConsumption(t *testing.T) {
+ const frames = 3000
+ img := image.NewPaletted(image.Rectangle{Max: image.Point{1, 1}}, palette.WebSafe)
+ hugeGIF := &GIF{
+ Image: make([]*image.Paletted, frames),
+ Delay: make([]int, frames),
+ Disposal: make([]byte, frames),
+ }
+ for i := 0; i < frames; i++ {
+ hugeGIF.Image[i] = img
+ hugeGIF.Delay[i] = 60
+ }
+ buf := new(bytes.Buffer)
+ if err := EncodeAll(buf, hugeGIF); err != nil {
+ t.Fatal("EncodeAll:", err)
+ }
+ s0, s1 := new(runtime.MemStats), new(runtime.MemStats)
+ runtime.GC()
+ defer debug.SetGCPercent(debug.SetGCPercent(5))
+ runtime.ReadMemStats(s0)
+ if _, err := Decode(buf); err != nil {
+ t.Fatal("Decode:", err)
+ }
+ runtime.ReadMemStats(s1)
+ if heapDiff := int64(s1.HeapAlloc - s0.HeapAlloc); heapDiff > 30<<20 {
+ t.Fatalf("Decode of %d frames increased heap by %dMB", frames, heapDiff>>20)
+ }
+}
+
+func BenchmarkDecode(b *testing.B) {
+ data, err := os.ReadFile("../testdata/video-001.gif")
+ if err != nil {
+ b.Fatal(err)
+ }
+ cfg, err := DecodeConfig(bytes.NewReader(data))
+ if err != nil {
+ b.Fatal(err)
+ }
+ b.SetBytes(int64(cfg.Width * cfg.Height))
+ b.ReportAllocs()
+ b.ResetTimer()
+ for i := 0; i < b.N; i++ {
+ Decode(bytes.NewReader(data))
+ }
+}
diff --git a/src/image/gif/writer.go b/src/image/gif/writer.go
new file mode 100644
index 0000000..7220446
--- /dev/null
+++ b/src/image/gif/writer.go
@@ -0,0 +1,477 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package gif
+
+import (
+ "bufio"
+ "bytes"
+ "compress/lzw"
+ "errors"
+ "image"
+ "image/color"
+ "image/color/palette"
+ "image/draw"
+ "io"
+)
+
+// Graphic control extension fields.
+const (
+ gcLabel = 0xF9
+ gcBlockSize = 0x04
+)
+
+var log2Lookup = [8]int{2, 4, 8, 16, 32, 64, 128, 256}
+
+func log2(x int) int {
+ for i, v := range log2Lookup {
+ if x <= v {
+ return i
+ }
+ }
+ return -1
+}
+
+// Little-endian.
+func writeUint16(b []uint8, u uint16) {
+ b[0] = uint8(u)
+ b[1] = uint8(u >> 8)
+}
+
+// writer is a buffered writer.
+type writer interface {
+ Flush() error
+ io.Writer
+ io.ByteWriter
+}
+
+// encoder encodes an image to the GIF format.
+type encoder struct {
+ // w is the writer to write to. err is the first error encountered during
+ // writing. All attempted writes after the first error become no-ops.
+ w writer
+ err error
+ // g is a reference to the data that is being encoded.
+ g GIF
+ // globalCT is the size in bytes of the global color table.
+ globalCT int
+ // buf is a scratch buffer. It must be at least 256 for the blockWriter.
+ buf [256]byte
+ globalColorTable [3 * 256]byte
+ localColorTable [3 * 256]byte
+}
+
+// blockWriter writes the block structure of GIF image data, which
+// comprises (n, (n bytes)) blocks, with 1 <= n <= 255. It is the
+// writer given to the LZW encoder, which is thus immune to the
+// blocking.
+type blockWriter struct {
+ e *encoder
+}
+
+func (b blockWriter) setup() {
+ b.e.buf[0] = 0
+}
+
+func (b blockWriter) Flush() error {
+ return b.e.err
+}
+
+func (b blockWriter) WriteByte(c byte) error {
+ if b.e.err != nil {
+ return b.e.err
+ }
+
+ // Append c to buffered sub-block.
+ b.e.buf[0]++
+ b.e.buf[b.e.buf[0]] = c
+ if b.e.buf[0] < 255 {
+ return nil
+ }
+
+ // Flush block
+ b.e.write(b.e.buf[:256])
+ b.e.buf[0] = 0
+ return b.e.err
+}
+
+// blockWriter must be an io.Writer for lzw.NewWriter, but this is never
+// actually called.
+func (b blockWriter) Write(data []byte) (int, error) {
+ for i, c := range data {
+ if err := b.WriteByte(c); err != nil {
+ return i, err
+ }
+ }
+ return len(data), nil
+}
+
+func (b blockWriter) close() {
+ // Write the block terminator (0x00), either by itself, or along with a
+ // pending sub-block.
+ if b.e.buf[0] == 0 {
+ b.e.writeByte(0)
+ } else {
+ n := uint(b.e.buf[0])
+ b.e.buf[n+1] = 0
+ b.e.write(b.e.buf[:n+2])
+ }
+ b.e.flush()
+}
+
+func (e *encoder) flush() {
+ if e.err != nil {
+ return
+ }
+ e.err = e.w.Flush()
+}
+
+func (e *encoder) write(p []byte) {
+ if e.err != nil {
+ return
+ }
+ _, e.err = e.w.Write(p)
+}
+
+func (e *encoder) writeByte(b byte) {
+ if e.err != nil {
+ return
+ }
+ e.err = e.w.WriteByte(b)
+}
+
+func (e *encoder) writeHeader() {
+ if e.err != nil {
+ return
+ }
+ _, e.err = io.WriteString(e.w, "GIF89a")
+ if e.err != nil {
+ return
+ }
+
+ // Logical screen width and height.
+ writeUint16(e.buf[0:2], uint16(e.g.Config.Width))
+ writeUint16(e.buf[2:4], uint16(e.g.Config.Height))
+ e.write(e.buf[:4])
+
+ if p, ok := e.g.Config.ColorModel.(color.Palette); ok && len(p) > 0 {
+ paddedSize := log2(len(p)) // Size of Global Color Table: 2^(1+n).
+ e.buf[0] = fColorTable | uint8(paddedSize)
+ e.buf[1] = e.g.BackgroundIndex
+ e.buf[2] = 0x00 // Pixel Aspect Ratio.
+ e.write(e.buf[:3])
+ var err error
+ e.globalCT, err = encodeColorTable(e.globalColorTable[:], p, paddedSize)
+ if err != nil && e.err == nil {
+ e.err = err
+ return
+ }
+ e.write(e.globalColorTable[:e.globalCT])
+ } else {
+ // All frames have a local color table, so a global color table
+ // is not needed.
+ e.buf[0] = 0x00
+ e.buf[1] = 0x00 // Background Color Index.
+ e.buf[2] = 0x00 // Pixel Aspect Ratio.
+ e.write(e.buf[:3])
+ }
+
+ // Add animation info if necessary.
+ if len(e.g.Image) > 1 && e.g.LoopCount >= 0 {
+ e.buf[0] = 0x21 // Extension Introducer.
+ e.buf[1] = 0xff // Application Label.
+ e.buf[2] = 0x0b // Block Size.
+ e.write(e.buf[:3])
+ _, err := io.WriteString(e.w, "NETSCAPE2.0") // Application Identifier.
+ if err != nil && e.err == nil {
+ e.err = err
+ return
+ }
+ e.buf[0] = 0x03 // Block Size.
+ e.buf[1] = 0x01 // Sub-block Index.
+ writeUint16(e.buf[2:4], uint16(e.g.LoopCount))
+ e.buf[4] = 0x00 // Block Terminator.
+ e.write(e.buf[:5])
+ }
+}
+
+func encodeColorTable(dst []byte, p color.Palette, size int) (int, error) {
+ if uint(size) >= uint(len(log2Lookup)) {
+ return 0, errors.New("gif: cannot encode color table with more than 256 entries")
+ }
+ for i, c := range p {
+ if c == nil {
+ return 0, errors.New("gif: cannot encode color table with nil entries")
+ }
+ var r, g, b uint8
+ // It is most likely that the palette is full of color.RGBAs, so they
+ // get a fast path.
+ if rgba, ok := c.(color.RGBA); ok {
+ r, g, b = rgba.R, rgba.G, rgba.B
+ } else {
+ rr, gg, bb, _ := c.RGBA()
+ r, g, b = uint8(rr>>8), uint8(gg>>8), uint8(bb>>8)
+ }
+ dst[3*i+0] = r
+ dst[3*i+1] = g
+ dst[3*i+2] = b
+ }
+ n := log2Lookup[size]
+ if n > len(p) {
+ // Pad with black.
+ fill := dst[3*len(p) : 3*n]
+ for i := range fill {
+ fill[i] = 0
+ }
+ }
+ return 3 * n, nil
+}
+
+func (e *encoder) colorTablesMatch(localLen, transparentIndex int) bool {
+ localSize := 3 * localLen
+ if transparentIndex >= 0 {
+ trOff := 3 * transparentIndex
+ return bytes.Equal(e.globalColorTable[:trOff], e.localColorTable[:trOff]) &&
+ bytes.Equal(e.globalColorTable[trOff+3:localSize], e.localColorTable[trOff+3:localSize])
+ }
+ return bytes.Equal(e.globalColorTable[:localSize], e.localColorTable[:localSize])
+}
+
+func (e *encoder) writeImageBlock(pm *image.Paletted, delay int, disposal byte) {
+ if e.err != nil {
+ return
+ }
+
+ if len(pm.Palette) == 0 {
+ e.err = errors.New("gif: cannot encode image block with empty palette")
+ return
+ }
+
+ b := pm.Bounds()
+ if b.Min.X < 0 || b.Max.X >= 1<<16 || b.Min.Y < 0 || b.Max.Y >= 1<<16 {
+ e.err = errors.New("gif: image block is too large to encode")
+ return
+ }
+ if !b.In(image.Rectangle{Max: image.Point{e.g.Config.Width, e.g.Config.Height}}) {
+ e.err = errors.New("gif: image block is out of bounds")
+ return
+ }
+
+ transparentIndex := -1
+ for i, c := range pm.Palette {
+ if c == nil {
+ e.err = errors.New("gif: cannot encode color table with nil entries")
+ return
+ }
+ if _, _, _, a := c.RGBA(); a == 0 {
+ transparentIndex = i
+ break
+ }
+ }
+
+ if delay > 0 || disposal != 0 || transparentIndex != -1 {
+ e.buf[0] = sExtension // Extension Introducer.
+ e.buf[1] = gcLabel // Graphic Control Label.
+ e.buf[2] = gcBlockSize // Block Size.
+ if transparentIndex != -1 {
+ e.buf[3] = 0x01 | disposal<<2
+ } else {
+ e.buf[3] = 0x00 | disposal<<2
+ }
+ writeUint16(e.buf[4:6], uint16(delay)) // Delay Time (1/100ths of a second)
+
+ // Transparent color index.
+ if transparentIndex != -1 {
+ e.buf[6] = uint8(transparentIndex)
+ } else {
+ e.buf[6] = 0x00
+ }
+ e.buf[7] = 0x00 // Block Terminator.
+ e.write(e.buf[:8])
+ }
+ e.buf[0] = sImageDescriptor
+ writeUint16(e.buf[1:3], uint16(b.Min.X))
+ writeUint16(e.buf[3:5], uint16(b.Min.Y))
+ writeUint16(e.buf[5:7], uint16(b.Dx()))
+ writeUint16(e.buf[7:9], uint16(b.Dy()))
+ e.write(e.buf[:9])
+
+ // To determine whether or not this frame's palette is the same as the
+ // global palette, we can check a couple things. First, do they actually
+ // point to the same []color.Color? If so, they are equal so long as the
+ // frame's palette is not longer than the global palette...
+ paddedSize := log2(len(pm.Palette)) // Size of Local Color Table: 2^(1+n).
+ if gp, ok := e.g.Config.ColorModel.(color.Palette); ok && len(pm.Palette) <= len(gp) && &gp[0] == &pm.Palette[0] {
+ e.writeByte(0) // Use the global color table.
+ } else {
+ ct, err := encodeColorTable(e.localColorTable[:], pm.Palette, paddedSize)
+ if err != nil {
+ if e.err == nil {
+ e.err = err
+ }
+ return
+ }
+ // This frame's palette is not the very same slice as the global
+ // palette, but it might be a copy, possibly with one value turned into
+ // transparency by DecodeAll.
+ if ct <= e.globalCT && e.colorTablesMatch(len(pm.Palette), transparentIndex) {
+ e.writeByte(0) // Use the global color table.
+ } else {
+ // Use a local color table.
+ e.writeByte(fColorTable | uint8(paddedSize))
+ e.write(e.localColorTable[:ct])
+ }
+ }
+
+ litWidth := paddedSize + 1
+ if litWidth < 2 {
+ litWidth = 2
+ }
+ e.writeByte(uint8(litWidth)) // LZW Minimum Code Size.
+
+ bw := blockWriter{e: e}
+ bw.setup()
+ lzww := lzw.NewWriter(bw, lzw.LSB, litWidth)
+ if dx := b.Dx(); dx == pm.Stride {
+ _, e.err = lzww.Write(pm.Pix[:dx*b.Dy()])
+ if e.err != nil {
+ lzww.Close()
+ return
+ }
+ } else {
+ for i, y := 0, b.Min.Y; y < b.Max.Y; i, y = i+pm.Stride, y+1 {
+ _, e.err = lzww.Write(pm.Pix[i : i+dx])
+ if e.err != nil {
+ lzww.Close()
+ return
+ }
+ }
+ }
+ lzww.Close() // flush to bw
+ bw.close() // flush to e.w
+}
+
+// Options are the encoding parameters.
+type Options struct {
+ // NumColors is the maximum number of colors used in the image.
+ // It ranges from 1 to 256.
+ NumColors int
+
+ // Quantizer is used to produce a palette with size NumColors.
+ // palette.Plan9 is used in place of a nil Quantizer.
+ Quantizer draw.Quantizer
+
+ // Drawer is used to convert the source image to the desired palette.
+ // draw.FloydSteinberg is used in place of a nil Drawer.
+ Drawer draw.Drawer
+}
+
+// EncodeAll writes the images in g to w in GIF format with the
+// given loop count and delay between frames.
+func EncodeAll(w io.Writer, g *GIF) error {
+ if len(g.Image) == 0 {
+ return errors.New("gif: must provide at least one image")
+ }
+
+ if len(g.Image) != len(g.Delay) {
+ return errors.New("gif: mismatched image and delay lengths")
+ }
+
+ e := encoder{g: *g}
+ // The GIF.Disposal, GIF.Config and GIF.BackgroundIndex fields were added
+ // in Go 1.5. Valid Go 1.4 code, such as when the Disposal field is omitted
+ // in a GIF struct literal, should still produce valid GIFs.
+ if e.g.Disposal != nil && len(e.g.Image) != len(e.g.Disposal) {
+ return errors.New("gif: mismatched image and disposal lengths")
+ }
+ if e.g.Config == (image.Config{}) {
+ p := g.Image[0].Bounds().Max
+ e.g.Config.Width = p.X
+ e.g.Config.Height = p.Y
+ } else if e.g.Config.ColorModel != nil {
+ if _, ok := e.g.Config.ColorModel.(color.Palette); !ok {
+ return errors.New("gif: GIF color model must be a color.Palette")
+ }
+ }
+
+ if ww, ok := w.(writer); ok {
+ e.w = ww
+ } else {
+ e.w = bufio.NewWriter(w)
+ }
+
+ e.writeHeader()
+ for i, pm := range g.Image {
+ disposal := uint8(0)
+ if g.Disposal != nil {
+ disposal = g.Disposal[i]
+ }
+ e.writeImageBlock(pm, g.Delay[i], disposal)
+ }
+ e.writeByte(sTrailer)
+ e.flush()
+ return e.err
+}
+
+// Encode writes the Image m to w in GIF format.
+func Encode(w io.Writer, m image.Image, o *Options) error {
+ // Check for bounds and size restrictions.
+ b := m.Bounds()
+ if b.Dx() >= 1<<16 || b.Dy() >= 1<<16 {
+ return errors.New("gif: image is too large to encode")
+ }
+
+ opts := Options{}
+ if o != nil {
+ opts = *o
+ }
+ if opts.NumColors < 1 || 256 < opts.NumColors {
+ opts.NumColors = 256
+ }
+ if opts.Drawer == nil {
+ opts.Drawer = draw.FloydSteinberg
+ }
+
+ pm, _ := m.(*image.Paletted)
+ if pm == nil {
+ if cp, ok := m.ColorModel().(color.Palette); ok {
+ pm = image.NewPaletted(b, cp)
+ for y := b.Min.Y; y < b.Max.Y; y++ {
+ for x := b.Min.X; x < b.Max.X; x++ {
+ pm.Set(x, y, cp.Convert(m.At(x, y)))
+ }
+ }
+ }
+ }
+ if pm == nil || len(pm.Palette) > opts.NumColors {
+ // Set pm to be a palettedized copy of m, including its bounds, which
+ // might not start at (0, 0).
+ //
+ // TODO: Pick a better sub-sample of the Plan 9 palette.
+ pm = image.NewPaletted(b, palette.Plan9[:opts.NumColors])
+ if opts.Quantizer != nil {
+ pm.Palette = opts.Quantizer.Quantize(make(color.Palette, 0, opts.NumColors), m)
+ }
+ opts.Drawer.Draw(pm, b, m, b.Min)
+ }
+
+ // When calling Encode instead of EncodeAll, the single-frame image is
+ // translated such that its top-left corner is (0, 0), so that the single
+ // frame completely fills the overall GIF's bounds.
+ if pm.Rect.Min != (image.Point{}) {
+ dup := *pm
+ dup.Rect = dup.Rect.Sub(dup.Rect.Min)
+ pm = &dup
+ }
+
+ return EncodeAll(w, &GIF{
+ Image: []*image.Paletted{pm},
+ Delay: []int{0},
+ Config: image.Config{
+ ColorModel: pm.Palette,
+ Width: b.Dx(),
+ Height: b.Dy(),
+ },
+ })
+}
diff --git a/src/image/gif/writer_test.go b/src/image/gif/writer_test.go
new file mode 100644
index 0000000..af0105c
--- /dev/null
+++ b/src/image/gif/writer_test.go
@@ -0,0 +1,734 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package gif
+
+import (
+ "bytes"
+ "image"
+ "image/color"
+ "image/color/palette"
+ "image/draw"
+ _ "image/png"
+ "io"
+ "math/rand"
+ "os"
+ "reflect"
+ "testing"
+)
+
+func readImg(filename string) (image.Image, error) {
+ f, err := os.Open(filename)
+ if err != nil {
+ return nil, err
+ }
+ defer f.Close()
+ m, _, err := image.Decode(f)
+ return m, err
+}
+
+func readGIF(filename string) (*GIF, error) {
+ f, err := os.Open(filename)
+ if err != nil {
+ return nil, err
+ }
+ defer f.Close()
+ return DecodeAll(f)
+}
+
+func delta(u0, u1 uint32) int64 {
+ d := int64(u0) - int64(u1)
+ if d < 0 {
+ return -d
+ }
+ return d
+}
+
+// averageDelta returns the average delta in RGB space. The two images must
+// have the same bounds.
+func averageDelta(m0, m1 image.Image) int64 {
+ b := m0.Bounds()
+ return averageDeltaBound(m0, m1, b, b)
+}
+
+// averageDeltaBounds returns the average delta in RGB space. The average delta is
+// calculated in the specified bounds.
+func averageDeltaBound(m0, m1 image.Image, b0, b1 image.Rectangle) int64 {
+ var sum, n int64
+ for y := b0.Min.Y; y < b0.Max.Y; y++ {
+ for x := b0.Min.X; x < b0.Max.X; x++ {
+ c0 := m0.At(x, y)
+ c1 := m1.At(x-b0.Min.X+b1.Min.X, y-b0.Min.Y+b1.Min.Y)
+ r0, g0, b0, _ := c0.RGBA()
+ r1, g1, b1, _ := c1.RGBA()
+ sum += delta(r0, r1)
+ sum += delta(g0, g1)
+ sum += delta(b0, b1)
+ n += 3
+ }
+ }
+ return sum / n
+}
+
+// lzw.NewWriter wants an interface which is basically the same thing as gif's
+// writer interface. This ensures we're compatible.
+var _ writer = blockWriter{}
+
+var testCase = []struct {
+ filename string
+ tolerance int64
+}{
+ {"../testdata/video-001.png", 1 << 12},
+ {"../testdata/video-001.gif", 0},
+ {"../testdata/video-001.interlaced.gif", 0},
+}
+
+func TestWriter(t *testing.T) {
+ for _, tc := range testCase {
+ m0, err := readImg(tc.filename)
+ if err != nil {
+ t.Error(tc.filename, err)
+ continue
+ }
+ var buf bytes.Buffer
+ err = Encode(&buf, m0, nil)
+ if err != nil {
+ t.Error(tc.filename, err)
+ continue
+ }
+ m1, err := Decode(&buf)
+ if err != nil {
+ t.Error(tc.filename, err)
+ continue
+ }
+ if m0.Bounds() != m1.Bounds() {
+ t.Errorf("%s, bounds differ: %v and %v", tc.filename, m0.Bounds(), m1.Bounds())
+ continue
+ }
+ // Compare the average delta to the tolerance level.
+ avgDelta := averageDelta(m0, m1)
+ if avgDelta > tc.tolerance {
+ t.Errorf("%s: average delta is too high. expected: %d, got %d", tc.filename, tc.tolerance, avgDelta)
+ continue
+ }
+ }
+}
+
+func TestSubImage(t *testing.T) {
+ m0, err := readImg("../testdata/video-001.gif")
+ if err != nil {
+ t.Fatalf("readImg: %v", err)
+ }
+ m0 = m0.(*image.Paletted).SubImage(image.Rect(0, 0, 50, 30))
+ var buf bytes.Buffer
+ err = Encode(&buf, m0, nil)
+ if err != nil {
+ t.Fatalf("Encode: %v", err)
+ }
+ m1, err := Decode(&buf)
+ if err != nil {
+ t.Fatalf("Decode: %v", err)
+ }
+ if m0.Bounds() != m1.Bounds() {
+ t.Fatalf("bounds differ: %v and %v", m0.Bounds(), m1.Bounds())
+ }
+ if averageDelta(m0, m1) != 0 {
+ t.Fatalf("images differ")
+ }
+}
+
+// palettesEqual reports whether two color.Palette values are equal, ignoring
+// any trailing opaque-black palette entries.
+func palettesEqual(p, q color.Palette) bool {
+ n := len(p)
+ if n > len(q) {
+ n = len(q)
+ }
+ for i := 0; i < n; i++ {
+ if p[i] != q[i] {
+ return false
+ }
+ }
+ for i := n; i < len(p); i++ {
+ r, g, b, a := p[i].RGBA()
+ if r != 0 || g != 0 || b != 0 || a != 0xffff {
+ return false
+ }
+ }
+ for i := n; i < len(q); i++ {
+ r, g, b, a := q[i].RGBA()
+ if r != 0 || g != 0 || b != 0 || a != 0xffff {
+ return false
+ }
+ }
+ return true
+}
+
+var frames = []string{
+ "../testdata/video-001.gif",
+ "../testdata/video-005.gray.gif",
+}
+
+func testEncodeAll(t *testing.T, go1Dot5Fields bool, useGlobalColorModel bool) {
+ const width, height = 150, 103
+
+ g0 := &GIF{
+ Image: make([]*image.Paletted, len(frames)),
+ Delay: make([]int, len(frames)),
+ LoopCount: 5,
+ }
+ for i, f := range frames {
+ g, err := readGIF(f)
+ if err != nil {
+ t.Fatal(f, err)
+ }
+ m := g.Image[0]
+ if m.Bounds().Dx() != width || m.Bounds().Dy() != height {
+ t.Fatalf("frame %d had unexpected bounds: got %v, want width/height = %d/%d",
+ i, m.Bounds(), width, height)
+ }
+ g0.Image[i] = m
+ }
+ // The GIF.Disposal, GIF.Config and GIF.BackgroundIndex fields were added
+ // in Go 1.5. Valid Go 1.4 or earlier code should still produce valid GIFs.
+ //
+ // On the following line, color.Model is an interface type, and
+ // color.Palette is a concrete (slice) type.
+ globalColorModel, backgroundIndex := color.Model(color.Palette(nil)), uint8(0)
+ if useGlobalColorModel {
+ globalColorModel, backgroundIndex = color.Palette(palette.WebSafe), uint8(1)
+ }
+ if go1Dot5Fields {
+ g0.Disposal = make([]byte, len(g0.Image))
+ for i := range g0.Disposal {
+ g0.Disposal[i] = DisposalNone
+ }
+ g0.Config = image.Config{
+ ColorModel: globalColorModel,
+ Width: width,
+ Height: height,
+ }
+ g0.BackgroundIndex = backgroundIndex
+ }
+
+ var buf bytes.Buffer
+ if err := EncodeAll(&buf, g0); err != nil {
+ t.Fatal("EncodeAll:", err)
+ }
+ encoded := buf.Bytes()
+ config, err := DecodeConfig(bytes.NewReader(encoded))
+ if err != nil {
+ t.Fatal("DecodeConfig:", err)
+ }
+ g1, err := DecodeAll(bytes.NewReader(encoded))
+ if err != nil {
+ t.Fatal("DecodeAll:", err)
+ }
+
+ if !reflect.DeepEqual(config, g1.Config) {
+ t.Errorf("DecodeConfig inconsistent with DecodeAll")
+ }
+ if !palettesEqual(g1.Config.ColorModel.(color.Palette), globalColorModel.(color.Palette)) {
+ t.Errorf("unexpected global color model")
+ }
+ if w, h := g1.Config.Width, g1.Config.Height; w != width || h != height {
+ t.Errorf("got config width * height = %d * %d, want %d * %d", w, h, width, height)
+ }
+
+ if g0.LoopCount != g1.LoopCount {
+ t.Errorf("loop counts differ: %d and %d", g0.LoopCount, g1.LoopCount)
+ }
+ if backgroundIndex != g1.BackgroundIndex {
+ t.Errorf("background indexes differ: %d and %d", backgroundIndex, g1.BackgroundIndex)
+ }
+ if len(g0.Image) != len(g1.Image) {
+ t.Fatalf("image lengths differ: %d and %d", len(g0.Image), len(g1.Image))
+ }
+ if len(g1.Image) != len(g1.Delay) {
+ t.Fatalf("image and delay lengths differ: %d and %d", len(g1.Image), len(g1.Delay))
+ }
+ if len(g1.Image) != len(g1.Disposal) {
+ t.Fatalf("image and disposal lengths differ: %d and %d", len(g1.Image), len(g1.Disposal))
+ }
+
+ for i := range g0.Image {
+ m0, m1 := g0.Image[i], g1.Image[i]
+ if m0.Bounds() != m1.Bounds() {
+ t.Errorf("frame %d: bounds differ: %v and %v", i, m0.Bounds(), m1.Bounds())
+ }
+ d0, d1 := g0.Delay[i], g1.Delay[i]
+ if d0 != d1 {
+ t.Errorf("frame %d: delay values differ: %d and %d", i, d0, d1)
+ }
+ p0, p1 := uint8(0), g1.Disposal[i]
+ if go1Dot5Fields {
+ p0 = DisposalNone
+ }
+ if p0 != p1 {
+ t.Errorf("frame %d: disposal values differ: %d and %d", i, p0, p1)
+ }
+ }
+}
+
+func TestEncodeAllGo1Dot4(t *testing.T) { testEncodeAll(t, false, false) }
+func TestEncodeAllGo1Dot5(t *testing.T) { testEncodeAll(t, true, false) }
+func TestEncodeAllGo1Dot5GlobalColorModel(t *testing.T) { testEncodeAll(t, true, true) }
+
+func TestEncodeMismatchDelay(t *testing.T) {
+ images := make([]*image.Paletted, 2)
+ for i := range images {
+ images[i] = image.NewPaletted(image.Rect(0, 0, 5, 5), palette.Plan9)
+ }
+
+ g0 := &GIF{
+ Image: images,
+ Delay: make([]int, 1),
+ }
+ if err := EncodeAll(io.Discard, g0); err == nil {
+ t.Error("expected error from mismatched delay and image slice lengths")
+ }
+
+ g1 := &GIF{
+ Image: images,
+ Delay: make([]int, len(images)),
+ Disposal: make([]byte, 1),
+ }
+ for i := range g1.Disposal {
+ g1.Disposal[i] = DisposalNone
+ }
+ if err := EncodeAll(io.Discard, g1); err == nil {
+ t.Error("expected error from mismatched disposal and image slice lengths")
+ }
+}
+
+func TestEncodeZeroGIF(t *testing.T) {
+ if err := EncodeAll(io.Discard, &GIF{}); err == nil {
+ t.Error("expected error from providing empty gif")
+ }
+}
+
+func TestEncodeAllFramesOutOfBounds(t *testing.T) {
+ images := []*image.Paletted{
+ image.NewPaletted(image.Rect(0, 0, 5, 5), palette.Plan9),
+ image.NewPaletted(image.Rect(2, 2, 8, 8), palette.Plan9),
+ image.NewPaletted(image.Rect(3, 3, 4, 4), palette.Plan9),
+ }
+ for _, upperBound := range []int{6, 10} {
+ g := &GIF{
+ Image: images,
+ Delay: make([]int, len(images)),
+ Disposal: make([]byte, len(images)),
+ Config: image.Config{
+ Width: upperBound,
+ Height: upperBound,
+ },
+ }
+ err := EncodeAll(io.Discard, g)
+ if upperBound >= 8 {
+ if err != nil {
+ t.Errorf("upperBound=%d: %v", upperBound, err)
+ }
+ } else {
+ if err == nil {
+ t.Errorf("upperBound=%d: got nil error, want non-nil", upperBound)
+ }
+ }
+ }
+}
+
+func TestEncodeNonZeroMinPoint(t *testing.T) {
+ points := []image.Point{
+ {-8, -9},
+ {-4, -4},
+ {-3, +3},
+ {+0, +0},
+ {+2, +2},
+ }
+ for _, p := range points {
+ src := image.NewPaletted(image.Rectangle{
+ Min: p,
+ Max: p.Add(image.Point{6, 6}),
+ }, palette.Plan9)
+ var buf bytes.Buffer
+ if err := Encode(&buf, src, nil); err != nil {
+ t.Errorf("p=%v: Encode: %v", p, err)
+ continue
+ }
+ m, err := Decode(&buf)
+ if err != nil {
+ t.Errorf("p=%v: Decode: %v", p, err)
+ continue
+ }
+ if got, want := m.Bounds(), image.Rect(0, 0, 6, 6); got != want {
+ t.Errorf("p=%v: got %v, want %v", p, got, want)
+ }
+ }
+
+ // Also test having a source image (gray on the diagonal) that has a
+ // non-zero Bounds().Min, but isn't an image.Paletted.
+ {
+ p := image.Point{+2, +2}
+ src := image.NewRGBA(image.Rectangle{
+ Min: p,
+ Max: p.Add(image.Point{6, 6}),
+ })
+ src.SetRGBA(2, 2, color.RGBA{0x22, 0x22, 0x22, 0xFF})
+ src.SetRGBA(3, 3, color.RGBA{0x33, 0x33, 0x33, 0xFF})
+ src.SetRGBA(4, 4, color.RGBA{0x44, 0x44, 0x44, 0xFF})
+ src.SetRGBA(5, 5, color.RGBA{0x55, 0x55, 0x55, 0xFF})
+ src.SetRGBA(6, 6, color.RGBA{0x66, 0x66, 0x66, 0xFF})
+ src.SetRGBA(7, 7, color.RGBA{0x77, 0x77, 0x77, 0xFF})
+
+ var buf bytes.Buffer
+ if err := Encode(&buf, src, nil); err != nil {
+ t.Errorf("gray-diagonal: Encode: %v", err)
+ return
+ }
+ m, err := Decode(&buf)
+ if err != nil {
+ t.Errorf("gray-diagonal: Decode: %v", err)
+ return
+ }
+ if got, want := m.Bounds(), image.Rect(0, 0, 6, 6); got != want {
+ t.Errorf("gray-diagonal: got %v, want %v", got, want)
+ return
+ }
+
+ rednessAt := func(x int, y int) uint32 {
+ r, _, _, _ := m.At(x, y).RGBA()
+ // Shift by 8 to convert from 16 bit color to 8 bit color.
+ return r >> 8
+ }
+
+ // Round-tripping a still (non-animated) image.Image through
+ // Encode+Decode should shift the origin to (0, 0).
+ if got, want := rednessAt(0, 0), uint32(0x22); got != want {
+ t.Errorf("gray-diagonal: rednessAt(0, 0): got 0x%02x, want 0x%02x", got, want)
+ }
+ if got, want := rednessAt(5, 5), uint32(0x77); got != want {
+ t.Errorf("gray-diagonal: rednessAt(5, 5): got 0x%02x, want 0x%02x", got, want)
+ }
+ }
+}
+
+func TestEncodeImplicitConfigSize(t *testing.T) {
+ // For backwards compatibility for Go 1.4 and earlier code, the Config
+ // field is optional, and if zero, the width and height is implied by the
+ // first (and in this case only) frame's width and height.
+ //
+ // A Config only specifies a width and height (two integers) while an
+ // image.Image's Bounds method returns an image.Rectangle (four integers).
+ // For a gif.GIF, the overall bounds' top-left point is always implicitly
+ // (0, 0), and any frame whose bounds have a negative X or Y will be
+ // outside those overall bounds, so encoding should fail.
+ for _, lowerBound := range []int{-1, 0, 1} {
+ images := []*image.Paletted{
+ image.NewPaletted(image.Rect(lowerBound, lowerBound, 4, 4), palette.Plan9),
+ }
+ g := &GIF{
+ Image: images,
+ Delay: make([]int, len(images)),
+ }
+ err := EncodeAll(io.Discard, g)
+ if lowerBound >= 0 {
+ if err != nil {
+ t.Errorf("lowerBound=%d: %v", lowerBound, err)
+ }
+ } else {
+ if err == nil {
+ t.Errorf("lowerBound=%d: got nil error, want non-nil", lowerBound)
+ }
+ }
+ }
+}
+
+func TestEncodePalettes(t *testing.T) {
+ const w, h = 5, 5
+ pals := []color.Palette{{
+ color.RGBA{0x00, 0x00, 0x00, 0xff},
+ color.RGBA{0x01, 0x00, 0x00, 0xff},
+ color.RGBA{0x02, 0x00, 0x00, 0xff},
+ }, {
+ color.RGBA{0x00, 0x00, 0x00, 0xff},
+ color.RGBA{0x00, 0x01, 0x00, 0xff},
+ }, {
+ color.RGBA{0x00, 0x00, 0x03, 0xff},
+ color.RGBA{0x00, 0x00, 0x02, 0xff},
+ color.RGBA{0x00, 0x00, 0x01, 0xff},
+ color.RGBA{0x00, 0x00, 0x00, 0xff},
+ }, {
+ color.RGBA{0x10, 0x07, 0xf0, 0xff},
+ color.RGBA{0x20, 0x07, 0xf0, 0xff},
+ color.RGBA{0x30, 0x07, 0xf0, 0xff},
+ color.RGBA{0x40, 0x07, 0xf0, 0xff},
+ color.RGBA{0x50, 0x07, 0xf0, 0xff},
+ }}
+ g0 := &GIF{
+ Image: []*image.Paletted{
+ image.NewPaletted(image.Rect(0, 0, w, h), pals[0]),
+ image.NewPaletted(image.Rect(0, 0, w, h), pals[1]),
+ image.NewPaletted(image.Rect(0, 0, w, h), pals[2]),
+ image.NewPaletted(image.Rect(0, 0, w, h), pals[3]),
+ },
+ Delay: make([]int, len(pals)),
+ Disposal: make([]byte, len(pals)),
+ Config: image.Config{
+ ColorModel: pals[2],
+ Width: w,
+ Height: h,
+ },
+ }
+
+ var buf bytes.Buffer
+ if err := EncodeAll(&buf, g0); err != nil {
+ t.Fatalf("EncodeAll: %v", err)
+ }
+ g1, err := DecodeAll(&buf)
+ if err != nil {
+ t.Fatalf("DecodeAll: %v", err)
+ }
+ if len(g0.Image) != len(g1.Image) {
+ t.Fatalf("image lengths differ: %d and %d", len(g0.Image), len(g1.Image))
+ }
+ for i, m := range g1.Image {
+ if got, want := m.Palette, pals[i]; !palettesEqual(got, want) {
+ t.Errorf("frame %d:\ngot %v\nwant %v", i, got, want)
+ }
+ }
+}
+
+func TestEncodeBadPalettes(t *testing.T) {
+ const w, h = 5, 5
+ for _, n := range []int{256, 257} {
+ for _, nilColors := range []bool{false, true} {
+ pal := make(color.Palette, n)
+ if !nilColors {
+ for i := range pal {
+ pal[i] = color.Black
+ }
+ }
+
+ err := EncodeAll(io.Discard, &GIF{
+ Image: []*image.Paletted{
+ image.NewPaletted(image.Rect(0, 0, w, h), pal),
+ },
+ Delay: make([]int, 1),
+ Disposal: make([]byte, 1),
+ Config: image.Config{
+ ColorModel: pal,
+ Width: w,
+ Height: h,
+ },
+ })
+
+ got := err != nil
+ want := n > 256 || nilColors
+ if got != want {
+ t.Errorf("n=%d, nilColors=%t: err != nil: got %t, want %t", n, nilColors, got, want)
+ }
+ }
+ }
+}
+
+func TestColorTablesMatch(t *testing.T) {
+ const trIdx = 100
+ global := color.Palette(palette.Plan9)
+ if rgb := global[trIdx].(color.RGBA); rgb.R == 0 && rgb.G == 0 && rgb.B == 0 {
+ t.Fatalf("trIdx (%d) is already black", trIdx)
+ }
+
+ // Make a copy of the palette, substituting trIdx's slot with transparent,
+ // just like decoder.decode.
+ local := append(color.Palette(nil), global...)
+ local[trIdx] = color.RGBA{}
+
+ const testLen = 3 * 256
+ const padded = 7
+ e := new(encoder)
+ if l, err := encodeColorTable(e.globalColorTable[:], global, padded); err != nil || l != testLen {
+ t.Fatalf("Failed to encode global color table: got %d, %v; want nil, %d", l, err, testLen)
+ }
+ if l, err := encodeColorTable(e.localColorTable[:], local, padded); err != nil || l != testLen {
+ t.Fatalf("Failed to encode local color table: got %d, %v; want nil, %d", l, err, testLen)
+ }
+ if bytes.Equal(e.globalColorTable[:testLen], e.localColorTable[:testLen]) {
+ t.Fatal("Encoded color tables are equal, expected mismatch")
+ }
+ if !e.colorTablesMatch(len(local), trIdx) {
+ t.Fatal("colorTablesMatch() == false, expected true")
+ }
+}
+
+func TestEncodeCroppedSubImages(t *testing.T) {
+ // This test means to ensure that Encode honors the Bounds and Strides of
+ // images correctly when encoding.
+ whole := image.NewPaletted(image.Rect(0, 0, 100, 100), palette.Plan9)
+ subImages := []image.Rectangle{
+ image.Rect(0, 0, 50, 50),
+ image.Rect(50, 0, 100, 50),
+ image.Rect(0, 50, 50, 50),
+ image.Rect(50, 50, 100, 100),
+ image.Rect(25, 25, 75, 75),
+ image.Rect(0, 0, 100, 50),
+ image.Rect(0, 50, 100, 100),
+ image.Rect(0, 0, 50, 100),
+ image.Rect(50, 0, 100, 100),
+ }
+ for _, sr := range subImages {
+ si := whole.SubImage(sr)
+ buf := bytes.NewBuffer(nil)
+ if err := Encode(buf, si, nil); err != nil {
+ t.Errorf("Encode: sr=%v: %v", sr, err)
+ continue
+ }
+ if _, err := Decode(buf); err != nil {
+ t.Errorf("Decode: sr=%v: %v", sr, err)
+ }
+ }
+}
+
+type offsetImage struct {
+ image.Image
+ Rect image.Rectangle
+}
+
+func (i offsetImage) Bounds() image.Rectangle {
+ return i.Rect
+}
+
+func TestEncodeWrappedImage(t *testing.T) {
+ m0, err := readImg("../testdata/video-001.gif")
+ if err != nil {
+ t.Fatalf("readImg: %v", err)
+ }
+
+ // Case 1: Enocde a wrapped image.Image
+ buf := new(bytes.Buffer)
+ w0 := offsetImage{m0, m0.Bounds()}
+ err = Encode(buf, w0, nil)
+ if err != nil {
+ t.Fatalf("Encode: %v", err)
+ }
+ w1, err := Decode(buf)
+ if err != nil {
+ t.Fatalf("Dencode: %v", err)
+ }
+ avgDelta := averageDelta(m0, w1)
+ if avgDelta > 0 {
+ t.Fatalf("Wrapped: average delta is too high. expected: 0, got %d", avgDelta)
+ }
+
+ // Case 2: Enocde a wrapped image.Image with offset
+ b0 := image.Rectangle{
+ Min: image.Point{
+ X: 128,
+ Y: 64,
+ },
+ Max: image.Point{
+ X: 256,
+ Y: 128,
+ },
+ }
+ w0 = offsetImage{m0, b0}
+ buf = new(bytes.Buffer)
+ err = Encode(buf, w0, nil)
+ if err != nil {
+ t.Fatalf("Encode: %v", err)
+ }
+ w1, err = Decode(buf)
+ if err != nil {
+ t.Fatalf("Dencode: %v", err)
+ }
+
+ b1 := image.Rectangle{
+ Min: image.Point{
+ X: 0,
+ Y: 0,
+ },
+ Max: image.Point{
+ X: 128,
+ Y: 64,
+ },
+ }
+ avgDelta = averageDeltaBound(m0, w1, b0, b1)
+ if avgDelta > 0 {
+ t.Fatalf("Wrapped and offset: average delta is too high. expected: 0, got %d", avgDelta)
+ }
+}
+
+func BenchmarkEncodeRandomPaletted(b *testing.B) {
+ paletted := image.NewPaletted(image.Rect(0, 0, 640, 480), palette.Plan9)
+ rnd := rand.New(rand.NewSource(123))
+ for i := range paletted.Pix {
+ paletted.Pix[i] = uint8(rnd.Intn(256))
+ }
+
+ b.SetBytes(640 * 480 * 1)
+ b.ReportAllocs()
+ b.ResetTimer()
+ for i := 0; i < b.N; i++ {
+ Encode(io.Discard, paletted, nil)
+ }
+}
+
+func BenchmarkEncodeRandomRGBA(b *testing.B) {
+ rgba := image.NewRGBA(image.Rect(0, 0, 640, 480))
+ bo := rgba.Bounds()
+ rnd := rand.New(rand.NewSource(123))
+ for y := bo.Min.Y; y < bo.Max.Y; y++ {
+ for x := bo.Min.X; x < bo.Max.X; x++ {
+ rgba.SetRGBA(x, y, color.RGBA{
+ uint8(rnd.Intn(256)),
+ uint8(rnd.Intn(256)),
+ uint8(rnd.Intn(256)),
+ 255,
+ })
+ }
+ }
+
+ b.SetBytes(640 * 480 * 4)
+ b.ReportAllocs()
+ b.ResetTimer()
+ for i := 0; i < b.N; i++ {
+ Encode(io.Discard, rgba, nil)
+ }
+}
+
+func BenchmarkEncodeRealisticPaletted(b *testing.B) {
+ img, err := readImg("../testdata/video-001.png")
+ if err != nil {
+ b.Fatalf("readImg: %v", err)
+ }
+ bo := img.Bounds()
+ paletted := image.NewPaletted(bo, palette.Plan9)
+ draw.Draw(paletted, bo, img, bo.Min, draw.Src)
+
+ b.SetBytes(int64(bo.Dx() * bo.Dy() * 1))
+ b.ReportAllocs()
+ b.ResetTimer()
+ for i := 0; i < b.N; i++ {
+ Encode(io.Discard, paletted, nil)
+ }
+}
+
+func BenchmarkEncodeRealisticRGBA(b *testing.B) {
+ img, err := readImg("../testdata/video-001.png")
+ if err != nil {
+ b.Fatalf("readImg: %v", err)
+ }
+ bo := img.Bounds()
+ // Converting img to rgba is redundant for video-001.png, which is already
+ // in the RGBA format, but for those copy/pasting this benchmark (but
+ // changing the source image), the conversion ensures that we're still
+ // benchmarking encoding an RGBA image.
+ rgba := image.NewRGBA(bo)
+ draw.Draw(rgba, bo, img, bo.Min, draw.Src)
+
+ b.SetBytes(int64(bo.Dx() * bo.Dy() * 4))
+ b.ReportAllocs()
+ b.ResetTimer()
+ for i := 0; i < b.N; i++ {
+ Encode(io.Discard, rgba, nil)
+ }
+}