summaryrefslogtreecommitdiffstats
path: root/src/image/image.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:14:23 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:14:23 +0000
commit73df946d56c74384511a194dd01dbe099584fd1a (patch)
treefd0bcea490dd81327ddfbb31e215439672c9a068 /src/image/image.go
parentInitial commit. (diff)
downloadgolang-1.16-73df946d56c74384511a194dd01dbe099584fd1a.tar.xz
golang-1.16-73df946d56c74384511a194dd01dbe099584fd1a.zip
Adding upstream version 1.16.10.upstream/1.16.10upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/image/image.go')
-rw-r--r--src/image/image.go1074
1 files changed, 1074 insertions, 0 deletions
diff --git a/src/image/image.go b/src/image/image.go
new file mode 100644
index 0000000..8adba96
--- /dev/null
+++ b/src/image/image.go
@@ -0,0 +1,1074 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package image implements a basic 2-D image library.
+//
+// The fundamental interface is called Image. An Image contains colors, which
+// are described in the image/color package.
+//
+// Values of the Image interface are created either by calling functions such
+// as NewRGBA and NewPaletted, or by calling Decode on an io.Reader containing
+// image data in a format such as GIF, JPEG or PNG. Decoding any particular
+// image format requires the prior registration of a decoder function.
+// Registration is typically automatic as a side effect of initializing that
+// format's package so that, to decode a PNG image, it suffices to have
+// import _ "image/png"
+// in a program's main package. The _ means to import a package purely for its
+// initialization side effects.
+//
+// See "The Go image package" for more details:
+// https://golang.org/doc/articles/image_package.html
+package image
+
+import (
+ "image/color"
+)
+
+// Config holds an image's color model and dimensions.
+type Config struct {
+ ColorModel color.Model
+ Width, Height int
+}
+
+// Image is a finite rectangular grid of color.Color values taken from a color
+// model.
+type Image interface {
+ // ColorModel returns the Image's color model.
+ ColorModel() color.Model
+ // Bounds returns the domain for which At can return non-zero color.
+ // The bounds do not necessarily contain the point (0, 0).
+ Bounds() Rectangle
+ // At returns the color of the pixel at (x, y).
+ // At(Bounds().Min.X, Bounds().Min.Y) returns the upper-left pixel of the grid.
+ // At(Bounds().Max.X-1, Bounds().Max.Y-1) returns the lower-right one.
+ At(x, y int) color.Color
+}
+
+// PalettedImage is an image whose colors may come from a limited palette.
+// If m is a PalettedImage and m.ColorModel() returns a color.Palette p,
+// then m.At(x, y) should be equivalent to p[m.ColorIndexAt(x, y)]. If m's
+// color model is not a color.Palette, then ColorIndexAt's behavior is
+// undefined.
+type PalettedImage interface {
+ // ColorIndexAt returns the palette index of the pixel at (x, y).
+ ColorIndexAt(x, y int) uint8
+ Image
+}
+
+// pixelBufferLength returns the length of the []uint8 typed Pix slice field
+// for the NewXxx functions. Conceptually, this is just (bpp * width * height),
+// but this function panics if at least one of those is negative or if the
+// computation would overflow the int type.
+//
+// This panics instead of returning an error because of backwards
+// compatibility. The NewXxx functions do not return an error.
+func pixelBufferLength(bytesPerPixel int, r Rectangle, imageTypeName string) int {
+ totalLength := mul3NonNeg(bytesPerPixel, r.Dx(), r.Dy())
+ if totalLength < 0 {
+ panic("image: New" + imageTypeName + " Rectangle has huge or negative dimensions")
+ }
+ return totalLength
+}
+
+// RGBA is an in-memory image whose At method returns color.RGBA values.
+type RGBA struct {
+ // Pix holds the image's pixels, in R, G, B, A order. The pixel at
+ // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*4].
+ Pix []uint8
+ // Stride is the Pix stride (in bytes) between vertically adjacent pixels.
+ Stride int
+ // Rect is the image's bounds.
+ Rect Rectangle
+}
+
+func (p *RGBA) ColorModel() color.Model { return color.RGBAModel }
+
+func (p *RGBA) Bounds() Rectangle { return p.Rect }
+
+func (p *RGBA) At(x, y int) color.Color {
+ return p.RGBAAt(x, y)
+}
+
+func (p *RGBA) RGBAAt(x, y int) color.RGBA {
+ if !(Point{x, y}.In(p.Rect)) {
+ return color.RGBA{}
+ }
+ i := p.PixOffset(x, y)
+ s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
+ return color.RGBA{s[0], s[1], s[2], s[3]}
+}
+
+// PixOffset returns the index of the first element of Pix that corresponds to
+// the pixel at (x, y).
+func (p *RGBA) PixOffset(x, y int) int {
+ return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4
+}
+
+func (p *RGBA) Set(x, y int, c color.Color) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := p.PixOffset(x, y)
+ c1 := color.RGBAModel.Convert(c).(color.RGBA)
+ s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
+ s[0] = c1.R
+ s[1] = c1.G
+ s[2] = c1.B
+ s[3] = c1.A
+}
+
+func (p *RGBA) SetRGBA(x, y int, c color.RGBA) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := p.PixOffset(x, y)
+ s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
+ s[0] = c.R
+ s[1] = c.G
+ s[2] = c.B
+ s[3] = c.A
+}
+
+// SubImage returns an image representing the portion of the image p visible
+// through r. The returned value shares pixels with the original image.
+func (p *RGBA) SubImage(r Rectangle) Image {
+ r = r.Intersect(p.Rect)
+ // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
+ // either r1 or r2 if the intersection is empty. Without explicitly checking for
+ // this, the Pix[i:] expression below can panic.
+ if r.Empty() {
+ return &RGBA{}
+ }
+ i := p.PixOffset(r.Min.X, r.Min.Y)
+ return &RGBA{
+ Pix: p.Pix[i:],
+ Stride: p.Stride,
+ Rect: r,
+ }
+}
+
+// Opaque scans the entire image and reports whether it is fully opaque.
+func (p *RGBA) Opaque() bool {
+ if p.Rect.Empty() {
+ return true
+ }
+ i0, i1 := 3, p.Rect.Dx()*4
+ for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
+ for i := i0; i < i1; i += 4 {
+ if p.Pix[i] != 0xff {
+ return false
+ }
+ }
+ i0 += p.Stride
+ i1 += p.Stride
+ }
+ return true
+}
+
+// NewRGBA returns a new RGBA image with the given bounds.
+func NewRGBA(r Rectangle) *RGBA {
+ return &RGBA{
+ Pix: make([]uint8, pixelBufferLength(4, r, "RGBA")),
+ Stride: 4 * r.Dx(),
+ Rect: r,
+ }
+}
+
+// RGBA64 is an in-memory image whose At method returns color.RGBA64 values.
+type RGBA64 struct {
+ // Pix holds the image's pixels, in R, G, B, A order and big-endian format. The pixel at
+ // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*8].
+ Pix []uint8
+ // Stride is the Pix stride (in bytes) between vertically adjacent pixels.
+ Stride int
+ // Rect is the image's bounds.
+ Rect Rectangle
+}
+
+func (p *RGBA64) ColorModel() color.Model { return color.RGBA64Model }
+
+func (p *RGBA64) Bounds() Rectangle { return p.Rect }
+
+func (p *RGBA64) At(x, y int) color.Color {
+ return p.RGBA64At(x, y)
+}
+
+func (p *RGBA64) RGBA64At(x, y int) color.RGBA64 {
+ if !(Point{x, y}.In(p.Rect)) {
+ return color.RGBA64{}
+ }
+ i := p.PixOffset(x, y)
+ s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857
+ return color.RGBA64{
+ uint16(s[0])<<8 | uint16(s[1]),
+ uint16(s[2])<<8 | uint16(s[3]),
+ uint16(s[4])<<8 | uint16(s[5]),
+ uint16(s[6])<<8 | uint16(s[7]),
+ }
+}
+
+// PixOffset returns the index of the first element of Pix that corresponds to
+// the pixel at (x, y).
+func (p *RGBA64) PixOffset(x, y int) int {
+ return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*8
+}
+
+func (p *RGBA64) Set(x, y int, c color.Color) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := p.PixOffset(x, y)
+ c1 := color.RGBA64Model.Convert(c).(color.RGBA64)
+ s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857
+ s[0] = uint8(c1.R >> 8)
+ s[1] = uint8(c1.R)
+ s[2] = uint8(c1.G >> 8)
+ s[3] = uint8(c1.G)
+ s[4] = uint8(c1.B >> 8)
+ s[5] = uint8(c1.B)
+ s[6] = uint8(c1.A >> 8)
+ s[7] = uint8(c1.A)
+}
+
+func (p *RGBA64) SetRGBA64(x, y int, c color.RGBA64) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := p.PixOffset(x, y)
+ s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857
+ s[0] = uint8(c.R >> 8)
+ s[1] = uint8(c.R)
+ s[2] = uint8(c.G >> 8)
+ s[3] = uint8(c.G)
+ s[4] = uint8(c.B >> 8)
+ s[5] = uint8(c.B)
+ s[6] = uint8(c.A >> 8)
+ s[7] = uint8(c.A)
+}
+
+// SubImage returns an image representing the portion of the image p visible
+// through r. The returned value shares pixels with the original image.
+func (p *RGBA64) SubImage(r Rectangle) Image {
+ r = r.Intersect(p.Rect)
+ // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
+ // either r1 or r2 if the intersection is empty. Without explicitly checking for
+ // this, the Pix[i:] expression below can panic.
+ if r.Empty() {
+ return &RGBA64{}
+ }
+ i := p.PixOffset(r.Min.X, r.Min.Y)
+ return &RGBA64{
+ Pix: p.Pix[i:],
+ Stride: p.Stride,
+ Rect: r,
+ }
+}
+
+// Opaque scans the entire image and reports whether it is fully opaque.
+func (p *RGBA64) Opaque() bool {
+ if p.Rect.Empty() {
+ return true
+ }
+ i0, i1 := 6, p.Rect.Dx()*8
+ for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
+ for i := i0; i < i1; i += 8 {
+ if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff {
+ return false
+ }
+ }
+ i0 += p.Stride
+ i1 += p.Stride
+ }
+ return true
+}
+
+// NewRGBA64 returns a new RGBA64 image with the given bounds.
+func NewRGBA64(r Rectangle) *RGBA64 {
+ return &RGBA64{
+ Pix: make([]uint8, pixelBufferLength(8, r, "RGBA64")),
+ Stride: 8 * r.Dx(),
+ Rect: r,
+ }
+}
+
+// NRGBA is an in-memory image whose At method returns color.NRGBA values.
+type NRGBA struct {
+ // Pix holds the image's pixels, in R, G, B, A order. The pixel at
+ // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*4].
+ Pix []uint8
+ // Stride is the Pix stride (in bytes) between vertically adjacent pixels.
+ Stride int
+ // Rect is the image's bounds.
+ Rect Rectangle
+}
+
+func (p *NRGBA) ColorModel() color.Model { return color.NRGBAModel }
+
+func (p *NRGBA) Bounds() Rectangle { return p.Rect }
+
+func (p *NRGBA) At(x, y int) color.Color {
+ return p.NRGBAAt(x, y)
+}
+
+func (p *NRGBA) NRGBAAt(x, y int) color.NRGBA {
+ if !(Point{x, y}.In(p.Rect)) {
+ return color.NRGBA{}
+ }
+ i := p.PixOffset(x, y)
+ s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
+ return color.NRGBA{s[0], s[1], s[2], s[3]}
+}
+
+// PixOffset returns the index of the first element of Pix that corresponds to
+// the pixel at (x, y).
+func (p *NRGBA) PixOffset(x, y int) int {
+ return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4
+}
+
+func (p *NRGBA) Set(x, y int, c color.Color) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := p.PixOffset(x, y)
+ c1 := color.NRGBAModel.Convert(c).(color.NRGBA)
+ s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
+ s[0] = c1.R
+ s[1] = c1.G
+ s[2] = c1.B
+ s[3] = c1.A
+}
+
+func (p *NRGBA) SetNRGBA(x, y int, c color.NRGBA) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := p.PixOffset(x, y)
+ s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
+ s[0] = c.R
+ s[1] = c.G
+ s[2] = c.B
+ s[3] = c.A
+}
+
+// SubImage returns an image representing the portion of the image p visible
+// through r. The returned value shares pixels with the original image.
+func (p *NRGBA) SubImage(r Rectangle) Image {
+ r = r.Intersect(p.Rect)
+ // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
+ // either r1 or r2 if the intersection is empty. Without explicitly checking for
+ // this, the Pix[i:] expression below can panic.
+ if r.Empty() {
+ return &NRGBA{}
+ }
+ i := p.PixOffset(r.Min.X, r.Min.Y)
+ return &NRGBA{
+ Pix: p.Pix[i:],
+ Stride: p.Stride,
+ Rect: r,
+ }
+}
+
+// Opaque scans the entire image and reports whether it is fully opaque.
+func (p *NRGBA) Opaque() bool {
+ if p.Rect.Empty() {
+ return true
+ }
+ i0, i1 := 3, p.Rect.Dx()*4
+ for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
+ for i := i0; i < i1; i += 4 {
+ if p.Pix[i] != 0xff {
+ return false
+ }
+ }
+ i0 += p.Stride
+ i1 += p.Stride
+ }
+ return true
+}
+
+// NewNRGBA returns a new NRGBA image with the given bounds.
+func NewNRGBA(r Rectangle) *NRGBA {
+ return &NRGBA{
+ Pix: make([]uint8, pixelBufferLength(4, r, "NRGBA")),
+ Stride: 4 * r.Dx(),
+ Rect: r,
+ }
+}
+
+// NRGBA64 is an in-memory image whose At method returns color.NRGBA64 values.
+type NRGBA64 struct {
+ // Pix holds the image's pixels, in R, G, B, A order and big-endian format. The pixel at
+ // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*8].
+ Pix []uint8
+ // Stride is the Pix stride (in bytes) between vertically adjacent pixels.
+ Stride int
+ // Rect is the image's bounds.
+ Rect Rectangle
+}
+
+func (p *NRGBA64) ColorModel() color.Model { return color.NRGBA64Model }
+
+func (p *NRGBA64) Bounds() Rectangle { return p.Rect }
+
+func (p *NRGBA64) At(x, y int) color.Color {
+ return p.NRGBA64At(x, y)
+}
+
+func (p *NRGBA64) NRGBA64At(x, y int) color.NRGBA64 {
+ if !(Point{x, y}.In(p.Rect)) {
+ return color.NRGBA64{}
+ }
+ i := p.PixOffset(x, y)
+ s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857
+ return color.NRGBA64{
+ uint16(s[0])<<8 | uint16(s[1]),
+ uint16(s[2])<<8 | uint16(s[3]),
+ uint16(s[4])<<8 | uint16(s[5]),
+ uint16(s[6])<<8 | uint16(s[7]),
+ }
+}
+
+// PixOffset returns the index of the first element of Pix that corresponds to
+// the pixel at (x, y).
+func (p *NRGBA64) PixOffset(x, y int) int {
+ return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*8
+}
+
+func (p *NRGBA64) Set(x, y int, c color.Color) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := p.PixOffset(x, y)
+ c1 := color.NRGBA64Model.Convert(c).(color.NRGBA64)
+ s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857
+ s[0] = uint8(c1.R >> 8)
+ s[1] = uint8(c1.R)
+ s[2] = uint8(c1.G >> 8)
+ s[3] = uint8(c1.G)
+ s[4] = uint8(c1.B >> 8)
+ s[5] = uint8(c1.B)
+ s[6] = uint8(c1.A >> 8)
+ s[7] = uint8(c1.A)
+}
+
+func (p *NRGBA64) SetNRGBA64(x, y int, c color.NRGBA64) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := p.PixOffset(x, y)
+ s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857
+ s[0] = uint8(c.R >> 8)
+ s[1] = uint8(c.R)
+ s[2] = uint8(c.G >> 8)
+ s[3] = uint8(c.G)
+ s[4] = uint8(c.B >> 8)
+ s[5] = uint8(c.B)
+ s[6] = uint8(c.A >> 8)
+ s[7] = uint8(c.A)
+}
+
+// SubImage returns an image representing the portion of the image p visible
+// through r. The returned value shares pixels with the original image.
+func (p *NRGBA64) SubImage(r Rectangle) Image {
+ r = r.Intersect(p.Rect)
+ // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
+ // either r1 or r2 if the intersection is empty. Without explicitly checking for
+ // this, the Pix[i:] expression below can panic.
+ if r.Empty() {
+ return &NRGBA64{}
+ }
+ i := p.PixOffset(r.Min.X, r.Min.Y)
+ return &NRGBA64{
+ Pix: p.Pix[i:],
+ Stride: p.Stride,
+ Rect: r,
+ }
+}
+
+// Opaque scans the entire image and reports whether it is fully opaque.
+func (p *NRGBA64) Opaque() bool {
+ if p.Rect.Empty() {
+ return true
+ }
+ i0, i1 := 6, p.Rect.Dx()*8
+ for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
+ for i := i0; i < i1; i += 8 {
+ if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff {
+ return false
+ }
+ }
+ i0 += p.Stride
+ i1 += p.Stride
+ }
+ return true
+}
+
+// NewNRGBA64 returns a new NRGBA64 image with the given bounds.
+func NewNRGBA64(r Rectangle) *NRGBA64 {
+ return &NRGBA64{
+ Pix: make([]uint8, pixelBufferLength(8, r, "NRGBA64")),
+ Stride: 8 * r.Dx(),
+ Rect: r,
+ }
+}
+
+// Alpha is an in-memory image whose At method returns color.Alpha values.
+type Alpha struct {
+ // Pix holds the image's pixels, as alpha values. The pixel at
+ // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1].
+ Pix []uint8
+ // Stride is the Pix stride (in bytes) between vertically adjacent pixels.
+ Stride int
+ // Rect is the image's bounds.
+ Rect Rectangle
+}
+
+func (p *Alpha) ColorModel() color.Model { return color.AlphaModel }
+
+func (p *Alpha) Bounds() Rectangle { return p.Rect }
+
+func (p *Alpha) At(x, y int) color.Color {
+ return p.AlphaAt(x, y)
+}
+
+func (p *Alpha) AlphaAt(x, y int) color.Alpha {
+ if !(Point{x, y}.In(p.Rect)) {
+ return color.Alpha{}
+ }
+ i := p.PixOffset(x, y)
+ return color.Alpha{p.Pix[i]}
+}
+
+// PixOffset returns the index of the first element of Pix that corresponds to
+// the pixel at (x, y).
+func (p *Alpha) PixOffset(x, y int) int {
+ return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*1
+}
+
+func (p *Alpha) Set(x, y int, c color.Color) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := p.PixOffset(x, y)
+ p.Pix[i] = color.AlphaModel.Convert(c).(color.Alpha).A
+}
+
+func (p *Alpha) SetAlpha(x, y int, c color.Alpha) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := p.PixOffset(x, y)
+ p.Pix[i] = c.A
+}
+
+// SubImage returns an image representing the portion of the image p visible
+// through r. The returned value shares pixels with the original image.
+func (p *Alpha) SubImage(r Rectangle) Image {
+ r = r.Intersect(p.Rect)
+ // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
+ // either r1 or r2 if the intersection is empty. Without explicitly checking for
+ // this, the Pix[i:] expression below can panic.
+ if r.Empty() {
+ return &Alpha{}
+ }
+ i := p.PixOffset(r.Min.X, r.Min.Y)
+ return &Alpha{
+ Pix: p.Pix[i:],
+ Stride: p.Stride,
+ Rect: r,
+ }
+}
+
+// Opaque scans the entire image and reports whether it is fully opaque.
+func (p *Alpha) Opaque() bool {
+ if p.Rect.Empty() {
+ return true
+ }
+ i0, i1 := 0, p.Rect.Dx()
+ for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
+ for i := i0; i < i1; i++ {
+ if p.Pix[i] != 0xff {
+ return false
+ }
+ }
+ i0 += p.Stride
+ i1 += p.Stride
+ }
+ return true
+}
+
+// NewAlpha returns a new Alpha image with the given bounds.
+func NewAlpha(r Rectangle) *Alpha {
+ return &Alpha{
+ Pix: make([]uint8, pixelBufferLength(1, r, "Alpha")),
+ Stride: 1 * r.Dx(),
+ Rect: r,
+ }
+}
+
+// Alpha16 is an in-memory image whose At method returns color.Alpha16 values.
+type Alpha16 struct {
+ // Pix holds the image's pixels, as alpha values in big-endian format. The pixel at
+ // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*2].
+ Pix []uint8
+ // Stride is the Pix stride (in bytes) between vertically adjacent pixels.
+ Stride int
+ // Rect is the image's bounds.
+ Rect Rectangle
+}
+
+func (p *Alpha16) ColorModel() color.Model { return color.Alpha16Model }
+
+func (p *Alpha16) Bounds() Rectangle { return p.Rect }
+
+func (p *Alpha16) At(x, y int) color.Color {
+ return p.Alpha16At(x, y)
+}
+
+func (p *Alpha16) Alpha16At(x, y int) color.Alpha16 {
+ if !(Point{x, y}.In(p.Rect)) {
+ return color.Alpha16{}
+ }
+ i := p.PixOffset(x, y)
+ return color.Alpha16{uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1])}
+}
+
+// PixOffset returns the index of the first element of Pix that corresponds to
+// the pixel at (x, y).
+func (p *Alpha16) PixOffset(x, y int) int {
+ return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*2
+}
+
+func (p *Alpha16) Set(x, y int, c color.Color) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := p.PixOffset(x, y)
+ c1 := color.Alpha16Model.Convert(c).(color.Alpha16)
+ p.Pix[i+0] = uint8(c1.A >> 8)
+ p.Pix[i+1] = uint8(c1.A)
+}
+
+func (p *Alpha16) SetAlpha16(x, y int, c color.Alpha16) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := p.PixOffset(x, y)
+ p.Pix[i+0] = uint8(c.A >> 8)
+ p.Pix[i+1] = uint8(c.A)
+}
+
+// SubImage returns an image representing the portion of the image p visible
+// through r. The returned value shares pixels with the original image.
+func (p *Alpha16) SubImage(r Rectangle) Image {
+ r = r.Intersect(p.Rect)
+ // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
+ // either r1 or r2 if the intersection is empty. Without explicitly checking for
+ // this, the Pix[i:] expression below can panic.
+ if r.Empty() {
+ return &Alpha16{}
+ }
+ i := p.PixOffset(r.Min.X, r.Min.Y)
+ return &Alpha16{
+ Pix: p.Pix[i:],
+ Stride: p.Stride,
+ Rect: r,
+ }
+}
+
+// Opaque scans the entire image and reports whether it is fully opaque.
+func (p *Alpha16) Opaque() bool {
+ if p.Rect.Empty() {
+ return true
+ }
+ i0, i1 := 0, p.Rect.Dx()*2
+ for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
+ for i := i0; i < i1; i += 2 {
+ if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff {
+ return false
+ }
+ }
+ i0 += p.Stride
+ i1 += p.Stride
+ }
+ return true
+}
+
+// NewAlpha16 returns a new Alpha16 image with the given bounds.
+func NewAlpha16(r Rectangle) *Alpha16 {
+ return &Alpha16{
+ Pix: make([]uint8, pixelBufferLength(2, r, "Alpha16")),
+ Stride: 2 * r.Dx(),
+ Rect: r,
+ }
+}
+
+// Gray is an in-memory image whose At method returns color.Gray values.
+type Gray struct {
+ // Pix holds the image's pixels, as gray values. The pixel at
+ // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1].
+ Pix []uint8
+ // Stride is the Pix stride (in bytes) between vertically adjacent pixels.
+ Stride int
+ // Rect is the image's bounds.
+ Rect Rectangle
+}
+
+func (p *Gray) ColorModel() color.Model { return color.GrayModel }
+
+func (p *Gray) Bounds() Rectangle { return p.Rect }
+
+func (p *Gray) At(x, y int) color.Color {
+ return p.GrayAt(x, y)
+}
+
+func (p *Gray) GrayAt(x, y int) color.Gray {
+ if !(Point{x, y}.In(p.Rect)) {
+ return color.Gray{}
+ }
+ i := p.PixOffset(x, y)
+ return color.Gray{p.Pix[i]}
+}
+
+// PixOffset returns the index of the first element of Pix that corresponds to
+// the pixel at (x, y).
+func (p *Gray) PixOffset(x, y int) int {
+ return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*1
+}
+
+func (p *Gray) Set(x, y int, c color.Color) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := p.PixOffset(x, y)
+ p.Pix[i] = color.GrayModel.Convert(c).(color.Gray).Y
+}
+
+func (p *Gray) SetGray(x, y int, c color.Gray) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := p.PixOffset(x, y)
+ p.Pix[i] = c.Y
+}
+
+// SubImage returns an image representing the portion of the image p visible
+// through r. The returned value shares pixels with the original image.
+func (p *Gray) SubImage(r Rectangle) Image {
+ r = r.Intersect(p.Rect)
+ // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
+ // either r1 or r2 if the intersection is empty. Without explicitly checking for
+ // this, the Pix[i:] expression below can panic.
+ if r.Empty() {
+ return &Gray{}
+ }
+ i := p.PixOffset(r.Min.X, r.Min.Y)
+ return &Gray{
+ Pix: p.Pix[i:],
+ Stride: p.Stride,
+ Rect: r,
+ }
+}
+
+// Opaque scans the entire image and reports whether it is fully opaque.
+func (p *Gray) Opaque() bool {
+ return true
+}
+
+// NewGray returns a new Gray image with the given bounds.
+func NewGray(r Rectangle) *Gray {
+ return &Gray{
+ Pix: make([]uint8, pixelBufferLength(1, r, "Gray")),
+ Stride: 1 * r.Dx(),
+ Rect: r,
+ }
+}
+
+// Gray16 is an in-memory image whose At method returns color.Gray16 values.
+type Gray16 struct {
+ // Pix holds the image's pixels, as gray values in big-endian format. The pixel at
+ // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*2].
+ Pix []uint8
+ // Stride is the Pix stride (in bytes) between vertically adjacent pixels.
+ Stride int
+ // Rect is the image's bounds.
+ Rect Rectangle
+}
+
+func (p *Gray16) ColorModel() color.Model { return color.Gray16Model }
+
+func (p *Gray16) Bounds() Rectangle { return p.Rect }
+
+func (p *Gray16) At(x, y int) color.Color {
+ return p.Gray16At(x, y)
+}
+
+func (p *Gray16) Gray16At(x, y int) color.Gray16 {
+ if !(Point{x, y}.In(p.Rect)) {
+ return color.Gray16{}
+ }
+ i := p.PixOffset(x, y)
+ return color.Gray16{uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1])}
+}
+
+// PixOffset returns the index of the first element of Pix that corresponds to
+// the pixel at (x, y).
+func (p *Gray16) PixOffset(x, y int) int {
+ return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*2
+}
+
+func (p *Gray16) Set(x, y int, c color.Color) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := p.PixOffset(x, y)
+ c1 := color.Gray16Model.Convert(c).(color.Gray16)
+ p.Pix[i+0] = uint8(c1.Y >> 8)
+ p.Pix[i+1] = uint8(c1.Y)
+}
+
+func (p *Gray16) SetGray16(x, y int, c color.Gray16) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := p.PixOffset(x, y)
+ p.Pix[i+0] = uint8(c.Y >> 8)
+ p.Pix[i+1] = uint8(c.Y)
+}
+
+// SubImage returns an image representing the portion of the image p visible
+// through r. The returned value shares pixels with the original image.
+func (p *Gray16) SubImage(r Rectangle) Image {
+ r = r.Intersect(p.Rect)
+ // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
+ // either r1 or r2 if the intersection is empty. Without explicitly checking for
+ // this, the Pix[i:] expression below can panic.
+ if r.Empty() {
+ return &Gray16{}
+ }
+ i := p.PixOffset(r.Min.X, r.Min.Y)
+ return &Gray16{
+ Pix: p.Pix[i:],
+ Stride: p.Stride,
+ Rect: r,
+ }
+}
+
+// Opaque scans the entire image and reports whether it is fully opaque.
+func (p *Gray16) Opaque() bool {
+ return true
+}
+
+// NewGray16 returns a new Gray16 image with the given bounds.
+func NewGray16(r Rectangle) *Gray16 {
+ return &Gray16{
+ Pix: make([]uint8, pixelBufferLength(2, r, "Gray16")),
+ Stride: 2 * r.Dx(),
+ Rect: r,
+ }
+}
+
+// CMYK is an in-memory image whose At method returns color.CMYK values.
+type CMYK struct {
+ // Pix holds the image's pixels, in C, M, Y, K order. The pixel at
+ // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*4].
+ Pix []uint8
+ // Stride is the Pix stride (in bytes) between vertically adjacent pixels.
+ Stride int
+ // Rect is the image's bounds.
+ Rect Rectangle
+}
+
+func (p *CMYK) ColorModel() color.Model { return color.CMYKModel }
+
+func (p *CMYK) Bounds() Rectangle { return p.Rect }
+
+func (p *CMYK) At(x, y int) color.Color {
+ return p.CMYKAt(x, y)
+}
+
+func (p *CMYK) CMYKAt(x, y int) color.CMYK {
+ if !(Point{x, y}.In(p.Rect)) {
+ return color.CMYK{}
+ }
+ i := p.PixOffset(x, y)
+ s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
+ return color.CMYK{s[0], s[1], s[2], s[3]}
+}
+
+// PixOffset returns the index of the first element of Pix that corresponds to
+// the pixel at (x, y).
+func (p *CMYK) PixOffset(x, y int) int {
+ return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4
+}
+
+func (p *CMYK) Set(x, y int, c color.Color) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := p.PixOffset(x, y)
+ c1 := color.CMYKModel.Convert(c).(color.CMYK)
+ s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
+ s[0] = c1.C
+ s[1] = c1.M
+ s[2] = c1.Y
+ s[3] = c1.K
+}
+
+func (p *CMYK) SetCMYK(x, y int, c color.CMYK) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := p.PixOffset(x, y)
+ s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
+ s[0] = c.C
+ s[1] = c.M
+ s[2] = c.Y
+ s[3] = c.K
+}
+
+// SubImage returns an image representing the portion of the image p visible
+// through r. The returned value shares pixels with the original image.
+func (p *CMYK) SubImage(r Rectangle) Image {
+ r = r.Intersect(p.Rect)
+ // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
+ // either r1 or r2 if the intersection is empty. Without explicitly checking for
+ // this, the Pix[i:] expression below can panic.
+ if r.Empty() {
+ return &CMYK{}
+ }
+ i := p.PixOffset(r.Min.X, r.Min.Y)
+ return &CMYK{
+ Pix: p.Pix[i:],
+ Stride: p.Stride,
+ Rect: r,
+ }
+}
+
+// Opaque scans the entire image and reports whether it is fully opaque.
+func (p *CMYK) Opaque() bool {
+ return true
+}
+
+// NewCMYK returns a new CMYK image with the given bounds.
+func NewCMYK(r Rectangle) *CMYK {
+ return &CMYK{
+ Pix: make([]uint8, pixelBufferLength(4, r, "CMYK")),
+ Stride: 4 * r.Dx(),
+ Rect: r,
+ }
+}
+
+// Paletted is an in-memory image of uint8 indices into a given palette.
+type Paletted struct {
+ // Pix holds the image's pixels, as palette indices. The pixel at
+ // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1].
+ Pix []uint8
+ // Stride is the Pix stride (in bytes) between vertically adjacent pixels.
+ Stride int
+ // Rect is the image's bounds.
+ Rect Rectangle
+ // Palette is the image's palette.
+ Palette color.Palette
+}
+
+func (p *Paletted) ColorModel() color.Model { return p.Palette }
+
+func (p *Paletted) Bounds() Rectangle { return p.Rect }
+
+func (p *Paletted) At(x, y int) color.Color {
+ if len(p.Palette) == 0 {
+ return nil
+ }
+ if !(Point{x, y}.In(p.Rect)) {
+ return p.Palette[0]
+ }
+ i := p.PixOffset(x, y)
+ return p.Palette[p.Pix[i]]
+}
+
+// PixOffset returns the index of the first element of Pix that corresponds to
+// the pixel at (x, y).
+func (p *Paletted) PixOffset(x, y int) int {
+ return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*1
+}
+
+func (p *Paletted) Set(x, y int, c color.Color) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := p.PixOffset(x, y)
+ p.Pix[i] = uint8(p.Palette.Index(c))
+}
+
+func (p *Paletted) ColorIndexAt(x, y int) uint8 {
+ if !(Point{x, y}.In(p.Rect)) {
+ return 0
+ }
+ i := p.PixOffset(x, y)
+ return p.Pix[i]
+}
+
+func (p *Paletted) SetColorIndex(x, y int, index uint8) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := p.PixOffset(x, y)
+ p.Pix[i] = index
+}
+
+// SubImage returns an image representing the portion of the image p visible
+// through r. The returned value shares pixels with the original image.
+func (p *Paletted) SubImage(r Rectangle) Image {
+ r = r.Intersect(p.Rect)
+ // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
+ // either r1 or r2 if the intersection is empty. Without explicitly checking for
+ // this, the Pix[i:] expression below can panic.
+ if r.Empty() {
+ return &Paletted{
+ Palette: p.Palette,
+ }
+ }
+ i := p.PixOffset(r.Min.X, r.Min.Y)
+ return &Paletted{
+ Pix: p.Pix[i:],
+ Stride: p.Stride,
+ Rect: p.Rect.Intersect(r),
+ Palette: p.Palette,
+ }
+}
+
+// Opaque scans the entire image and reports whether it is fully opaque.
+func (p *Paletted) Opaque() bool {
+ var present [256]bool
+ i0, i1 := 0, p.Rect.Dx()
+ for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
+ for _, c := range p.Pix[i0:i1] {
+ present[c] = true
+ }
+ i0 += p.Stride
+ i1 += p.Stride
+ }
+ for i, c := range p.Palette {
+ if !present[i] {
+ continue
+ }
+ _, _, _, a := c.RGBA()
+ if a != 0xffff {
+ return false
+ }
+ }
+ return true
+}
+
+// NewPaletted returns a new Paletted image with the given width, height and
+// palette.
+func NewPaletted(r Rectangle, p color.Palette) *Paletted {
+ return &Paletted{
+ Pix: make([]uint8, pixelBufferLength(1, r, "Paletted")),
+ Stride: 1 * r.Dx(),
+ Rect: r,
+ Palette: p,
+ }
+}