diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 13:14:23 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 13:14:23 +0000 |
commit | 73df946d56c74384511a194dd01dbe099584fd1a (patch) | |
tree | fd0bcea490dd81327ddfbb31e215439672c9a068 /src/math/fma.go | |
parent | Initial commit. (diff) | |
download | golang-1.16-73df946d56c74384511a194dd01dbe099584fd1a.tar.xz golang-1.16-73df946d56c74384511a194dd01dbe099584fd1a.zip |
Adding upstream version 1.16.10.upstream/1.16.10upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/math/fma.go')
-rw-r--r-- | src/math/fma.go | 170 |
1 files changed, 170 insertions, 0 deletions
diff --git a/src/math/fma.go b/src/math/fma.go new file mode 100644 index 0000000..db78dfa --- /dev/null +++ b/src/math/fma.go @@ -0,0 +1,170 @@ +// Copyright 2019 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package math + +import "math/bits" + +func zero(x uint64) uint64 { + if x == 0 { + return 1 + } + return 0 + // branchless: + // return ((x>>1 | x&1) - 1) >> 63 +} + +func nonzero(x uint64) uint64 { + if x != 0 { + return 1 + } + return 0 + // branchless: + // return 1 - ((x>>1|x&1)-1)>>63 +} + +func shl(u1, u2 uint64, n uint) (r1, r2 uint64) { + r1 = u1<<n | u2>>(64-n) | u2<<(n-64) + r2 = u2 << n + return +} + +func shr(u1, u2 uint64, n uint) (r1, r2 uint64) { + r2 = u2>>n | u1<<(64-n) | u1>>(n-64) + r1 = u1 >> n + return +} + +// shrcompress compresses the bottom n+1 bits of the two-word +// value into a single bit. the result is equal to the value +// shifted to the right by n, except the result's 0th bit is +// set to the bitwise OR of the bottom n+1 bits. +func shrcompress(u1, u2 uint64, n uint) (r1, r2 uint64) { + // TODO: Performance here is really sensitive to the + // order/placement of these branches. n == 0 is common + // enough to be in the fast path. Perhaps more measurement + // needs to be done to find the optimal order/placement? + switch { + case n == 0: + return u1, u2 + case n == 64: + return 0, u1 | nonzero(u2) + case n >= 128: + return 0, nonzero(u1 | u2) + case n < 64: + r1, r2 = shr(u1, u2, n) + r2 |= nonzero(u2 & (1<<n - 1)) + case n < 128: + r1, r2 = shr(u1, u2, n) + r2 |= nonzero(u1&(1<<(n-64)-1) | u2) + } + return +} + +func lz(u1, u2 uint64) (l int32) { + l = int32(bits.LeadingZeros64(u1)) + if l == 64 { + l += int32(bits.LeadingZeros64(u2)) + } + return l +} + +// split splits b into sign, biased exponent, and mantissa. +// It adds the implicit 1 bit to the mantissa for normal values, +// and normalizes subnormal values. +func split(b uint64) (sign uint32, exp int32, mantissa uint64) { + sign = uint32(b >> 63) + exp = int32(b>>52) & mask + mantissa = b & fracMask + + if exp == 0 { + // Normalize value if subnormal. + shift := uint(bits.LeadingZeros64(mantissa) - 11) + mantissa <<= shift + exp = 1 - int32(shift) + } else { + // Add implicit 1 bit + mantissa |= 1 << 52 + } + return +} + +// FMA returns x * y + z, computed with only one rounding. +// (That is, FMA returns the fused multiply-add of x, y, and z.) +func FMA(x, y, z float64) float64 { + bx, by, bz := Float64bits(x), Float64bits(y), Float64bits(z) + + // Inf or NaN or zero involved. At most one rounding will occur. + if x == 0.0 || y == 0.0 || z == 0.0 || bx&uvinf == uvinf || by&uvinf == uvinf { + return x*y + z + } + // Handle non-finite z separately. Evaluating x*y+z where + // x and y are finite, but z is infinite, should always result in z. + if bz&uvinf == uvinf { + return z + } + + // Inputs are (sub)normal. + // Split x, y, z into sign, exponent, mantissa. + xs, xe, xm := split(bx) + ys, ye, ym := split(by) + zs, ze, zm := split(bz) + + // Compute product p = x*y as sign, exponent, two-word mantissa. + // Start with exponent. "is normal" bit isn't subtracted yet. + pe := xe + ye - bias + 1 + + // pm1:pm2 is the double-word mantissa for the product p. + // Shift left to leave top bit in product. Effectively + // shifts the 106-bit product to the left by 21. + pm1, pm2 := bits.Mul64(xm<<10, ym<<11) + zm1, zm2 := zm<<10, uint64(0) + ps := xs ^ ys // product sign + + // normalize to 62nd bit + is62zero := uint((^pm1 >> 62) & 1) + pm1, pm2 = shl(pm1, pm2, is62zero) + pe -= int32(is62zero) + + // Swap addition operands so |p| >= |z| + if pe < ze || (pe == ze && (pm1 < zm1 || (pm1 == zm1 && pm2 < zm2))) { + ps, pe, pm1, pm2, zs, ze, zm1, zm2 = zs, ze, zm1, zm2, ps, pe, pm1, pm2 + } + + // Align significands + zm1, zm2 = shrcompress(zm1, zm2, uint(pe-ze)) + + // Compute resulting significands, normalizing if necessary. + var m, c uint64 + if ps == zs { + // Adding (pm1:pm2) + (zm1:zm2) + pm2, c = bits.Add64(pm2, zm2, 0) + pm1, _ = bits.Add64(pm1, zm1, c) + pe -= int32(^pm1 >> 63) + pm1, m = shrcompress(pm1, pm2, uint(64+pm1>>63)) + } else { + // Subtracting (pm1:pm2) - (zm1:zm2) + // TODO: should we special-case cancellation? + pm2, c = bits.Sub64(pm2, zm2, 0) + pm1, _ = bits.Sub64(pm1, zm1, c) + nz := lz(pm1, pm2) + pe -= nz + m, pm2 = shl(pm1, pm2, uint(nz-1)) + m |= nonzero(pm2) + } + + // Round and break ties to even + if pe > 1022+bias || pe == 1022+bias && (m+1<<9)>>63 == 1 { + // rounded value overflows exponent range + return Float64frombits(uint64(ps)<<63 | uvinf) + } + if pe < 0 { + n := uint(-pe) + m = m>>n | nonzero(m&(1<<n-1)) + pe = 0 + } + m = ((m + 1<<9) >> 10) & ^zero((m&(1<<10-1))^1<<9) + pe &= -int32(nonzero(m)) + return Float64frombits(uint64(ps)<<63 + uint64(pe)<<52 + m) +} |