summaryrefslogtreecommitdiffstats
path: root/src/math/sin.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:14:23 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:14:23 +0000
commit73df946d56c74384511a194dd01dbe099584fd1a (patch)
treefd0bcea490dd81327ddfbb31e215439672c9a068 /src/math/sin.go
parentInitial commit. (diff)
downloadgolang-1.16-73df946d56c74384511a194dd01dbe099584fd1a.tar.xz
golang-1.16-73df946d56c74384511a194dd01dbe099584fd1a.zip
Adding upstream version 1.16.10.upstream/1.16.10upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/math/sin.go')
-rw-r--r--src/math/sin.go232
1 files changed, 232 insertions, 0 deletions
diff --git a/src/math/sin.go b/src/math/sin.go
new file mode 100644
index 0000000..3b6dbe3
--- /dev/null
+++ b/src/math/sin.go
@@ -0,0 +1,232 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+/*
+ Floating-point sine and cosine.
+*/
+
+// The original C code, the long comment, and the constants
+// below were from http://netlib.sandia.gov/cephes/cmath/sin.c,
+// available from http://www.netlib.org/cephes/cmath.tgz.
+// The go code is a simplified version of the original C.
+//
+// sin.c
+//
+// Circular sine
+//
+// SYNOPSIS:
+//
+// double x, y, sin();
+// y = sin( x );
+//
+// DESCRIPTION:
+//
+// Range reduction is into intervals of pi/4. The reduction error is nearly
+// eliminated by contriving an extended precision modular arithmetic.
+//
+// Two polynomial approximating functions are employed.
+// Between 0 and pi/4 the sine is approximated by
+// x + x**3 P(x**2).
+// Between pi/4 and pi/2 the cosine is represented as
+// 1 - x**2 Q(x**2).
+//
+// ACCURACY:
+//
+// Relative error:
+// arithmetic domain # trials peak rms
+// DEC 0, 10 150000 3.0e-17 7.8e-18
+// IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17
+//
+// Partial loss of accuracy begins to occur at x = 2**30 = 1.074e9. The loss
+// is not gradual, but jumps suddenly to about 1 part in 10e7. Results may
+// be meaningless for x > 2**49 = 5.6e14.
+//
+// cos.c
+//
+// Circular cosine
+//
+// SYNOPSIS:
+//
+// double x, y, cos();
+// y = cos( x );
+//
+// DESCRIPTION:
+//
+// Range reduction is into intervals of pi/4. The reduction error is nearly
+// eliminated by contriving an extended precision modular arithmetic.
+//
+// Two polynomial approximating functions are employed.
+// Between 0 and pi/4 the cosine is approximated by
+// 1 - x**2 Q(x**2).
+// Between pi/4 and pi/2 the sine is represented as
+// x + x**3 P(x**2).
+//
+// ACCURACY:
+//
+// Relative error:
+// arithmetic domain # trials peak rms
+// IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17
+// DEC 0,+1.07e9 17000 3.0e-17 7.2e-18
+//
+// Cephes Math Library Release 2.8: June, 2000
+// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
+//
+// The readme file at http://netlib.sandia.gov/cephes/ says:
+// Some software in this archive may be from the book _Methods and
+// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
+// International, 1989) or from the Cephes Mathematical Library, a
+// commercial product. In either event, it is copyrighted by the author.
+// What you see here may be used freely but it comes with no support or
+// guarantee.
+//
+// The two known misprints in the book are repaired here in the
+// source listings for the gamma function and the incomplete beta
+// integral.
+//
+// Stephen L. Moshier
+// moshier@na-net.ornl.gov
+
+// sin coefficients
+var _sin = [...]float64{
+ 1.58962301576546568060e-10, // 0x3de5d8fd1fd19ccd
+ -2.50507477628578072866e-8, // 0xbe5ae5e5a9291f5d
+ 2.75573136213857245213e-6, // 0x3ec71de3567d48a1
+ -1.98412698295895385996e-4, // 0xbf2a01a019bfdf03
+ 8.33333333332211858878e-3, // 0x3f8111111110f7d0
+ -1.66666666666666307295e-1, // 0xbfc5555555555548
+}
+
+// cos coefficients
+var _cos = [...]float64{
+ -1.13585365213876817300e-11, // 0xbda8fa49a0861a9b
+ 2.08757008419747316778e-9, // 0x3e21ee9d7b4e3f05
+ -2.75573141792967388112e-7, // 0xbe927e4f7eac4bc6
+ 2.48015872888517045348e-5, // 0x3efa01a019c844f5
+ -1.38888888888730564116e-3, // 0xbf56c16c16c14f91
+ 4.16666666666665929218e-2, // 0x3fa555555555554b
+}
+
+// Cos returns the cosine of the radian argument x.
+//
+// Special cases are:
+// Cos(±Inf) = NaN
+// Cos(NaN) = NaN
+func Cos(x float64) float64
+
+func cos(x float64) float64 {
+ const (
+ PI4A = 7.85398125648498535156e-1 // 0x3fe921fb40000000, Pi/4 split into three parts
+ PI4B = 3.77489470793079817668e-8 // 0x3e64442d00000000,
+ PI4C = 2.69515142907905952645e-15 // 0x3ce8469898cc5170,
+ )
+ // special cases
+ switch {
+ case IsNaN(x) || IsInf(x, 0):
+ return NaN()
+ }
+
+ // make argument positive
+ sign := false
+ x = Abs(x)
+
+ var j uint64
+ var y, z float64
+ if x >= reduceThreshold {
+ j, z = trigReduce(x)
+ } else {
+ j = uint64(x * (4 / Pi)) // integer part of x/(Pi/4), as integer for tests on the phase angle
+ y = float64(j) // integer part of x/(Pi/4), as float
+
+ // map zeros to origin
+ if j&1 == 1 {
+ j++
+ y++
+ }
+ j &= 7 // octant modulo 2Pi radians (360 degrees)
+ z = ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic
+ }
+
+ if j > 3 {
+ j -= 4
+ sign = !sign
+ }
+ if j > 1 {
+ sign = !sign
+ }
+
+ zz := z * z
+ if j == 1 || j == 2 {
+ y = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5])
+ } else {
+ y = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5])
+ }
+ if sign {
+ y = -y
+ }
+ return y
+}
+
+// Sin returns the sine of the radian argument x.
+//
+// Special cases are:
+// Sin(±0) = ±0
+// Sin(±Inf) = NaN
+// Sin(NaN) = NaN
+func Sin(x float64) float64
+
+func sin(x float64) float64 {
+ const (
+ PI4A = 7.85398125648498535156e-1 // 0x3fe921fb40000000, Pi/4 split into three parts
+ PI4B = 3.77489470793079817668e-8 // 0x3e64442d00000000,
+ PI4C = 2.69515142907905952645e-15 // 0x3ce8469898cc5170,
+ )
+ // special cases
+ switch {
+ case x == 0 || IsNaN(x):
+ return x // return ±0 || NaN()
+ case IsInf(x, 0):
+ return NaN()
+ }
+
+ // make argument positive but save the sign
+ sign := false
+ if x < 0 {
+ x = -x
+ sign = true
+ }
+
+ var j uint64
+ var y, z float64
+ if x >= reduceThreshold {
+ j, z = trigReduce(x)
+ } else {
+ j = uint64(x * (4 / Pi)) // integer part of x/(Pi/4), as integer for tests on the phase angle
+ y = float64(j) // integer part of x/(Pi/4), as float
+
+ // map zeros to origin
+ if j&1 == 1 {
+ j++
+ y++
+ }
+ j &= 7 // octant modulo 2Pi radians (360 degrees)
+ z = ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic
+ }
+ // reflect in x axis
+ if j > 3 {
+ sign = !sign
+ j -= 4
+ }
+ zz := z * z
+ if j == 1 || j == 2 {
+ y = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5])
+ } else {
+ y = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5])
+ }
+ if sign {
+ y = -y
+ }
+ return y
+}