diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 13:14:23 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 13:14:23 +0000 |
commit | 73df946d56c74384511a194dd01dbe099584fd1a (patch) | |
tree | fd0bcea490dd81327ddfbb31e215439672c9a068 /src/net/ip.go | |
parent | Initial commit. (diff) | |
download | golang-1.16-73df946d56c74384511a194dd01dbe099584fd1a.tar.xz golang-1.16-73df946d56c74384511a194dd01dbe099584fd1a.zip |
Adding upstream version 1.16.10.upstream/1.16.10upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | src/net/ip.go | 730 |
1 files changed, 730 insertions, 0 deletions
diff --git a/src/net/ip.go b/src/net/ip.go new file mode 100644 index 0000000..c00fe8e --- /dev/null +++ b/src/net/ip.go @@ -0,0 +1,730 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// IP address manipulations +// +// IPv4 addresses are 4 bytes; IPv6 addresses are 16 bytes. +// An IPv4 address can be converted to an IPv6 address by +// adding a canonical prefix (10 zeros, 2 0xFFs). +// This library accepts either size of byte slice but always +// returns 16-byte addresses. + +package net + +import "internal/bytealg" + +// IP address lengths (bytes). +const ( + IPv4len = 4 + IPv6len = 16 +) + +// An IP is a single IP address, a slice of bytes. +// Functions in this package accept either 4-byte (IPv4) +// or 16-byte (IPv6) slices as input. +// +// Note that in this documentation, referring to an +// IP address as an IPv4 address or an IPv6 address +// is a semantic property of the address, not just the +// length of the byte slice: a 16-byte slice can still +// be an IPv4 address. +type IP []byte + +// An IPMask is a bitmask that can be used to manipulate +// IP addresses for IP addressing and routing. +// +// See type IPNet and func ParseCIDR for details. +type IPMask []byte + +// An IPNet represents an IP network. +type IPNet struct { + IP IP // network number + Mask IPMask // network mask +} + +// IPv4 returns the IP address (in 16-byte form) of the +// IPv4 address a.b.c.d. +func IPv4(a, b, c, d byte) IP { + p := make(IP, IPv6len) + copy(p, v4InV6Prefix) + p[12] = a + p[13] = b + p[14] = c + p[15] = d + return p +} + +var v4InV6Prefix = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff} + +// IPv4Mask returns the IP mask (in 4-byte form) of the +// IPv4 mask a.b.c.d. +func IPv4Mask(a, b, c, d byte) IPMask { + p := make(IPMask, IPv4len) + p[0] = a + p[1] = b + p[2] = c + p[3] = d + return p +} + +// CIDRMask returns an IPMask consisting of 'ones' 1 bits +// followed by 0s up to a total length of 'bits' bits. +// For a mask of this form, CIDRMask is the inverse of IPMask.Size. +func CIDRMask(ones, bits int) IPMask { + if bits != 8*IPv4len && bits != 8*IPv6len { + return nil + } + if ones < 0 || ones > bits { + return nil + } + l := bits / 8 + m := make(IPMask, l) + n := uint(ones) + for i := 0; i < l; i++ { + if n >= 8 { + m[i] = 0xff + n -= 8 + continue + } + m[i] = ^byte(0xff >> n) + n = 0 + } + return m +} + +// Well-known IPv4 addresses +var ( + IPv4bcast = IPv4(255, 255, 255, 255) // limited broadcast + IPv4allsys = IPv4(224, 0, 0, 1) // all systems + IPv4allrouter = IPv4(224, 0, 0, 2) // all routers + IPv4zero = IPv4(0, 0, 0, 0) // all zeros +) + +// Well-known IPv6 addresses +var ( + IPv6zero = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} + IPv6unspecified = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} + IPv6loopback = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1} + IPv6interfacelocalallnodes = IP{0xff, 0x01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x01} + IPv6linklocalallnodes = IP{0xff, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x01} + IPv6linklocalallrouters = IP{0xff, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x02} +) + +// IsUnspecified reports whether ip is an unspecified address, either +// the IPv4 address "0.0.0.0" or the IPv6 address "::". +func (ip IP) IsUnspecified() bool { + return ip.Equal(IPv4zero) || ip.Equal(IPv6unspecified) +} + +// IsLoopback reports whether ip is a loopback address. +func (ip IP) IsLoopback() bool { + if ip4 := ip.To4(); ip4 != nil { + return ip4[0] == 127 + } + return ip.Equal(IPv6loopback) +} + +// IsMulticast reports whether ip is a multicast address. +func (ip IP) IsMulticast() bool { + if ip4 := ip.To4(); ip4 != nil { + return ip4[0]&0xf0 == 0xe0 + } + return len(ip) == IPv6len && ip[0] == 0xff +} + +// IsInterfaceLocalMulticast reports whether ip is +// an interface-local multicast address. +func (ip IP) IsInterfaceLocalMulticast() bool { + return len(ip) == IPv6len && ip[0] == 0xff && ip[1]&0x0f == 0x01 +} + +// IsLinkLocalMulticast reports whether ip is a link-local +// multicast address. +func (ip IP) IsLinkLocalMulticast() bool { + if ip4 := ip.To4(); ip4 != nil { + return ip4[0] == 224 && ip4[1] == 0 && ip4[2] == 0 + } + return len(ip) == IPv6len && ip[0] == 0xff && ip[1]&0x0f == 0x02 +} + +// IsLinkLocalUnicast reports whether ip is a link-local +// unicast address. +func (ip IP) IsLinkLocalUnicast() bool { + if ip4 := ip.To4(); ip4 != nil { + return ip4[0] == 169 && ip4[1] == 254 + } + return len(ip) == IPv6len && ip[0] == 0xfe && ip[1]&0xc0 == 0x80 +} + +// IsGlobalUnicast reports whether ip is a global unicast +// address. +// +// The identification of global unicast addresses uses address type +// identification as defined in RFC 1122, RFC 4632 and RFC 4291 with +// the exception of IPv4 directed broadcast addresses. +// It returns true even if ip is in IPv4 private address space or +// local IPv6 unicast address space. +func (ip IP) IsGlobalUnicast() bool { + return (len(ip) == IPv4len || len(ip) == IPv6len) && + !ip.Equal(IPv4bcast) && + !ip.IsUnspecified() && + !ip.IsLoopback() && + !ip.IsMulticast() && + !ip.IsLinkLocalUnicast() +} + +// Is p all zeros? +func isZeros(p IP) bool { + for i := 0; i < len(p); i++ { + if p[i] != 0 { + return false + } + } + return true +} + +// To4 converts the IPv4 address ip to a 4-byte representation. +// If ip is not an IPv4 address, To4 returns nil. +func (ip IP) To4() IP { + if len(ip) == IPv4len { + return ip + } + if len(ip) == IPv6len && + isZeros(ip[0:10]) && + ip[10] == 0xff && + ip[11] == 0xff { + return ip[12:16] + } + return nil +} + +// To16 converts the IP address ip to a 16-byte representation. +// If ip is not an IP address (it is the wrong length), To16 returns nil. +func (ip IP) To16() IP { + if len(ip) == IPv4len { + return IPv4(ip[0], ip[1], ip[2], ip[3]) + } + if len(ip) == IPv6len { + return ip + } + return nil +} + +// Default route masks for IPv4. +var ( + classAMask = IPv4Mask(0xff, 0, 0, 0) + classBMask = IPv4Mask(0xff, 0xff, 0, 0) + classCMask = IPv4Mask(0xff, 0xff, 0xff, 0) +) + +// DefaultMask returns the default IP mask for the IP address ip. +// Only IPv4 addresses have default masks; DefaultMask returns +// nil if ip is not a valid IPv4 address. +func (ip IP) DefaultMask() IPMask { + if ip = ip.To4(); ip == nil { + return nil + } + switch { + case ip[0] < 0x80: + return classAMask + case ip[0] < 0xC0: + return classBMask + default: + return classCMask + } +} + +func allFF(b []byte) bool { + for _, c := range b { + if c != 0xff { + return false + } + } + return true +} + +// Mask returns the result of masking the IP address ip with mask. +func (ip IP) Mask(mask IPMask) IP { + if len(mask) == IPv6len && len(ip) == IPv4len && allFF(mask[:12]) { + mask = mask[12:] + } + if len(mask) == IPv4len && len(ip) == IPv6len && bytealg.Equal(ip[:12], v4InV6Prefix) { + ip = ip[12:] + } + n := len(ip) + if n != len(mask) { + return nil + } + out := make(IP, n) + for i := 0; i < n; i++ { + out[i] = ip[i] & mask[i] + } + return out +} + +// ubtoa encodes the string form of the integer v to dst[start:] and +// returns the number of bytes written to dst. The caller must ensure +// that dst has sufficient length. +func ubtoa(dst []byte, start int, v byte) int { + if v < 10 { + dst[start] = v + '0' + return 1 + } else if v < 100 { + dst[start+1] = v%10 + '0' + dst[start] = v/10 + '0' + return 2 + } + + dst[start+2] = v%10 + '0' + dst[start+1] = (v/10)%10 + '0' + dst[start] = v/100 + '0' + return 3 +} + +// String returns the string form of the IP address ip. +// It returns one of 4 forms: +// - "<nil>", if ip has length 0 +// - dotted decimal ("192.0.2.1"), if ip is an IPv4 or IP4-mapped IPv6 address +// - IPv6 ("2001:db8::1"), if ip is a valid IPv6 address +// - the hexadecimal form of ip, without punctuation, if no other cases apply +func (ip IP) String() string { + p := ip + + if len(ip) == 0 { + return "<nil>" + } + + // If IPv4, use dotted notation. + if p4 := p.To4(); len(p4) == IPv4len { + const maxIPv4StringLen = len("255.255.255.255") + b := make([]byte, maxIPv4StringLen) + + n := ubtoa(b, 0, p4[0]) + b[n] = '.' + n++ + + n += ubtoa(b, n, p4[1]) + b[n] = '.' + n++ + + n += ubtoa(b, n, p4[2]) + b[n] = '.' + n++ + + n += ubtoa(b, n, p4[3]) + return string(b[:n]) + } + if len(p) != IPv6len { + return "?" + hexString(ip) + } + + // Find longest run of zeros. + e0 := -1 + e1 := -1 + for i := 0; i < IPv6len; i += 2 { + j := i + for j < IPv6len && p[j] == 0 && p[j+1] == 0 { + j += 2 + } + if j > i && j-i > e1-e0 { + e0 = i + e1 = j + i = j + } + } + // The symbol "::" MUST NOT be used to shorten just one 16 bit 0 field. + if e1-e0 <= 2 { + e0 = -1 + e1 = -1 + } + + const maxLen = len("ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff") + b := make([]byte, 0, maxLen) + + // Print with possible :: in place of run of zeros + for i := 0; i < IPv6len; i += 2 { + if i == e0 { + b = append(b, ':', ':') + i = e1 + if i >= IPv6len { + break + } + } else if i > 0 { + b = append(b, ':') + } + b = appendHex(b, (uint32(p[i])<<8)|uint32(p[i+1])) + } + return string(b) +} + +func hexString(b []byte) string { + s := make([]byte, len(b)*2) + for i, tn := range b { + s[i*2], s[i*2+1] = hexDigit[tn>>4], hexDigit[tn&0xf] + } + return string(s) +} + +// ipEmptyString is like ip.String except that it returns +// an empty string when ip is unset. +func ipEmptyString(ip IP) string { + if len(ip) == 0 { + return "" + } + return ip.String() +} + +// MarshalText implements the encoding.TextMarshaler interface. +// The encoding is the same as returned by String, with one exception: +// When len(ip) is zero, it returns an empty slice. +func (ip IP) MarshalText() ([]byte, error) { + if len(ip) == 0 { + return []byte(""), nil + } + if len(ip) != IPv4len && len(ip) != IPv6len { + return nil, &AddrError{Err: "invalid IP address", Addr: hexString(ip)} + } + return []byte(ip.String()), nil +} + +// UnmarshalText implements the encoding.TextUnmarshaler interface. +// The IP address is expected in a form accepted by ParseIP. +func (ip *IP) UnmarshalText(text []byte) error { + if len(text) == 0 { + *ip = nil + return nil + } + s := string(text) + x := ParseIP(s) + if x == nil { + return &ParseError{Type: "IP address", Text: s} + } + *ip = x + return nil +} + +// Equal reports whether ip and x are the same IP address. +// An IPv4 address and that same address in IPv6 form are +// considered to be equal. +func (ip IP) Equal(x IP) bool { + if len(ip) == len(x) { + return bytealg.Equal(ip, x) + } + if len(ip) == IPv4len && len(x) == IPv6len { + return bytealg.Equal(x[0:12], v4InV6Prefix) && bytealg.Equal(ip, x[12:]) + } + if len(ip) == IPv6len && len(x) == IPv4len { + return bytealg.Equal(ip[0:12], v4InV6Prefix) && bytealg.Equal(ip[12:], x) + } + return false +} + +func (ip IP) matchAddrFamily(x IP) bool { + return ip.To4() != nil && x.To4() != nil || ip.To16() != nil && ip.To4() == nil && x.To16() != nil && x.To4() == nil +} + +// If mask is a sequence of 1 bits followed by 0 bits, +// return the number of 1 bits. +func simpleMaskLength(mask IPMask) int { + var n int + for i, v := range mask { + if v == 0xff { + n += 8 + continue + } + // found non-ff byte + // count 1 bits + for v&0x80 != 0 { + n++ + v <<= 1 + } + // rest must be 0 bits + if v != 0 { + return -1 + } + for i++; i < len(mask); i++ { + if mask[i] != 0 { + return -1 + } + } + break + } + return n +} + +// Size returns the number of leading ones and total bits in the mask. +// If the mask is not in the canonical form--ones followed by zeros--then +// Size returns 0, 0. +func (m IPMask) Size() (ones, bits int) { + ones, bits = simpleMaskLength(m), len(m)*8 + if ones == -1 { + return 0, 0 + } + return +} + +// String returns the hexadecimal form of m, with no punctuation. +func (m IPMask) String() string { + if len(m) == 0 { + return "<nil>" + } + return hexString(m) +} + +func networkNumberAndMask(n *IPNet) (ip IP, m IPMask) { + if ip = n.IP.To4(); ip == nil { + ip = n.IP + if len(ip) != IPv6len { + return nil, nil + } + } + m = n.Mask + switch len(m) { + case IPv4len: + if len(ip) != IPv4len { + return nil, nil + } + case IPv6len: + if len(ip) == IPv4len { + m = m[12:] + } + default: + return nil, nil + } + return +} + +// Contains reports whether the network includes ip. +func (n *IPNet) Contains(ip IP) bool { + nn, m := networkNumberAndMask(n) + if x := ip.To4(); x != nil { + ip = x + } + l := len(ip) + if l != len(nn) { + return false + } + for i := 0; i < l; i++ { + if nn[i]&m[i] != ip[i]&m[i] { + return false + } + } + return true +} + +// Network returns the address's network name, "ip+net". +func (n *IPNet) Network() string { return "ip+net" } + +// String returns the CIDR notation of n like "192.0.2.0/24" +// or "2001:db8::/48" as defined in RFC 4632 and RFC 4291. +// If the mask is not in the canonical form, it returns the +// string which consists of an IP address, followed by a slash +// character and a mask expressed as hexadecimal form with no +// punctuation like "198.51.100.0/c000ff00". +func (n *IPNet) String() string { + nn, m := networkNumberAndMask(n) + if nn == nil || m == nil { + return "<nil>" + } + l := simpleMaskLength(m) + if l == -1 { + return nn.String() + "/" + m.String() + } + return nn.String() + "/" + uitoa(uint(l)) +} + +// Parse IPv4 address (d.d.d.d). +func parseIPv4(s string) IP { + var p [IPv4len]byte + for i := 0; i < IPv4len; i++ { + if len(s) == 0 { + // Missing octets. + return nil + } + if i > 0 { + if s[0] != '.' { + return nil + } + s = s[1:] + } + n, c, ok := dtoi(s) + if !ok || n > 0xFF { + return nil + } + s = s[c:] + p[i] = byte(n) + } + if len(s) != 0 { + return nil + } + return IPv4(p[0], p[1], p[2], p[3]) +} + +// parseIPv6Zone parses s as a literal IPv6 address and its associated zone +// identifier which is described in RFC 4007. +func parseIPv6Zone(s string) (IP, string) { + s, zone := splitHostZone(s) + return parseIPv6(s), zone +} + +// parseIPv6 parses s as a literal IPv6 address described in RFC 4291 +// and RFC 5952. +func parseIPv6(s string) (ip IP) { + ip = make(IP, IPv6len) + ellipsis := -1 // position of ellipsis in ip + + // Might have leading ellipsis + if len(s) >= 2 && s[0] == ':' && s[1] == ':' { + ellipsis = 0 + s = s[2:] + // Might be only ellipsis + if len(s) == 0 { + return ip + } + } + + // Loop, parsing hex numbers followed by colon. + i := 0 + for i < IPv6len { + // Hex number. + n, c, ok := xtoi(s) + if !ok || n > 0xFFFF { + return nil + } + + // If followed by dot, might be in trailing IPv4. + if c < len(s) && s[c] == '.' { + if ellipsis < 0 && i != IPv6len-IPv4len { + // Not the right place. + return nil + } + if i+IPv4len > IPv6len { + // Not enough room. + return nil + } + ip4 := parseIPv4(s) + if ip4 == nil { + return nil + } + ip[i] = ip4[12] + ip[i+1] = ip4[13] + ip[i+2] = ip4[14] + ip[i+3] = ip4[15] + s = "" + i += IPv4len + break + } + + // Save this 16-bit chunk. + ip[i] = byte(n >> 8) + ip[i+1] = byte(n) + i += 2 + + // Stop at end of string. + s = s[c:] + if len(s) == 0 { + break + } + + // Otherwise must be followed by colon and more. + if s[0] != ':' || len(s) == 1 { + return nil + } + s = s[1:] + + // Look for ellipsis. + if s[0] == ':' { + if ellipsis >= 0 { // already have one + return nil + } + ellipsis = i + s = s[1:] + if len(s) == 0 { // can be at end + break + } + } + } + + // Must have used entire string. + if len(s) != 0 { + return nil + } + + // If didn't parse enough, expand ellipsis. + if i < IPv6len { + if ellipsis < 0 { + return nil + } + n := IPv6len - i + for j := i - 1; j >= ellipsis; j-- { + ip[j+n] = ip[j] + } + for j := ellipsis + n - 1; j >= ellipsis; j-- { + ip[j] = 0 + } + } else if ellipsis >= 0 { + // Ellipsis must represent at least one 0 group. + return nil + } + return ip +} + +// ParseIP parses s as an IP address, returning the result. +// The string s can be in IPv4 dotted decimal ("192.0.2.1"), IPv6 +// ("2001:db8::68"), or IPv4-mapped IPv6 ("::ffff:192.0.2.1") form. +// If s is not a valid textual representation of an IP address, +// ParseIP returns nil. +func ParseIP(s string) IP { + for i := 0; i < len(s); i++ { + switch s[i] { + case '.': + return parseIPv4(s) + case ':': + return parseIPv6(s) + } + } + return nil +} + +// parseIPZone parses s as an IP address, return it and its associated zone +// identifier (IPv6 only). +func parseIPZone(s string) (IP, string) { + for i := 0; i < len(s); i++ { + switch s[i] { + case '.': + return parseIPv4(s), "" + case ':': + return parseIPv6Zone(s) + } + } + return nil, "" +} + +// ParseCIDR parses s as a CIDR notation IP address and prefix length, +// like "192.0.2.0/24" or "2001:db8::/32", as defined in +// RFC 4632 and RFC 4291. +// +// It returns the IP address and the network implied by the IP and +// prefix length. +// For example, ParseCIDR("192.0.2.1/24") returns the IP address +// 192.0.2.1 and the network 192.0.2.0/24. +func ParseCIDR(s string) (IP, *IPNet, error) { + i := bytealg.IndexByteString(s, '/') + if i < 0 { + return nil, nil, &ParseError{Type: "CIDR address", Text: s} + } + addr, mask := s[:i], s[i+1:] + iplen := IPv4len + ip := parseIPv4(addr) + if ip == nil { + iplen = IPv6len + ip = parseIPv6(addr) + } + n, i, ok := dtoi(mask) + if ip == nil || !ok || i != len(mask) || n < 0 || n > 8*iplen { + return nil, nil, &ParseError{Type: "CIDR address", Text: s} + } + m := CIDRMask(n, 8*iplen) + return ip, &IPNet{IP: ip.Mask(m), Mask: m}, nil +} |