summaryrefslogtreecommitdiffstats
path: root/src/bytes/buffer.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/bytes/buffer.go')
-rw-r--r--src/bytes/buffer.go460
1 files changed, 460 insertions, 0 deletions
diff --git a/src/bytes/buffer.go b/src/bytes/buffer.go
new file mode 100644
index 0000000..f19a4cf
--- /dev/null
+++ b/src/bytes/buffer.go
@@ -0,0 +1,460 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package bytes
+
+// Simple byte buffer for marshaling data.
+
+import (
+ "errors"
+ "io"
+ "unicode/utf8"
+)
+
+// smallBufferSize is an initial allocation minimal capacity.
+const smallBufferSize = 64
+
+// A Buffer is a variable-sized buffer of bytes with Read and Write methods.
+// The zero value for Buffer is an empty buffer ready to use.
+type Buffer struct {
+ buf []byte // contents are the bytes buf[off : len(buf)]
+ off int // read at &buf[off], write at &buf[len(buf)]
+ lastRead readOp // last read operation, so that Unread* can work correctly.
+}
+
+// The readOp constants describe the last action performed on
+// the buffer, so that UnreadRune and UnreadByte can check for
+// invalid usage. opReadRuneX constants are chosen such that
+// converted to int they correspond to the rune size that was read.
+type readOp int8
+
+// Don't use iota for these, as the values need to correspond with the
+// names and comments, which is easier to see when being explicit.
+const (
+ opRead readOp = -1 // Any other read operation.
+ opInvalid readOp = 0 // Non-read operation.
+ opReadRune1 readOp = 1 // Read rune of size 1.
+ opReadRune2 readOp = 2 // Read rune of size 2.
+ opReadRune3 readOp = 3 // Read rune of size 3.
+ opReadRune4 readOp = 4 // Read rune of size 4.
+)
+
+// ErrTooLarge is passed to panic if memory cannot be allocated to store data in a buffer.
+var ErrTooLarge = errors.New("bytes.Buffer: too large")
+var errNegativeRead = errors.New("bytes.Buffer: reader returned negative count from Read")
+
+const maxInt = int(^uint(0) >> 1)
+
+// Bytes returns a slice of length b.Len() holding the unread portion of the buffer.
+// The slice is valid for use only until the next buffer modification (that is,
+// only until the next call to a method like Read, Write, Reset, or Truncate).
+// The slice aliases the buffer content at least until the next buffer modification,
+// so immediate changes to the slice will affect the result of future reads.
+func (b *Buffer) Bytes() []byte { return b.buf[b.off:] }
+
+// String returns the contents of the unread portion of the buffer
+// as a string. If the Buffer is a nil pointer, it returns "<nil>".
+//
+// To build strings more efficiently, see the strings.Builder type.
+func (b *Buffer) String() string {
+ if b == nil {
+ // Special case, useful in debugging.
+ return "<nil>"
+ }
+ return string(b.buf[b.off:])
+}
+
+// empty reports whether the unread portion of the buffer is empty.
+func (b *Buffer) empty() bool { return len(b.buf) <= b.off }
+
+// Len returns the number of bytes of the unread portion of the buffer;
+// b.Len() == len(b.Bytes()).
+func (b *Buffer) Len() int { return len(b.buf) - b.off }
+
+// Cap returns the capacity of the buffer's underlying byte slice, that is, the
+// total space allocated for the buffer's data.
+func (b *Buffer) Cap() int { return cap(b.buf) }
+
+// Truncate discards all but the first n unread bytes from the buffer
+// but continues to use the same allocated storage.
+// It panics if n is negative or greater than the length of the buffer.
+func (b *Buffer) Truncate(n int) {
+ if n == 0 {
+ b.Reset()
+ return
+ }
+ b.lastRead = opInvalid
+ if n < 0 || n > b.Len() {
+ panic("bytes.Buffer: truncation out of range")
+ }
+ b.buf = b.buf[:b.off+n]
+}
+
+// Reset resets the buffer to be empty,
+// but it retains the underlying storage for use by future writes.
+// Reset is the same as Truncate(0).
+func (b *Buffer) Reset() {
+ b.buf = b.buf[:0]
+ b.off = 0
+ b.lastRead = opInvalid
+}
+
+// tryGrowByReslice is a inlineable version of grow for the fast-case where the
+// internal buffer only needs to be resliced.
+// It returns the index where bytes should be written and whether it succeeded.
+func (b *Buffer) tryGrowByReslice(n int) (int, bool) {
+ if l := len(b.buf); n <= cap(b.buf)-l {
+ b.buf = b.buf[:l+n]
+ return l, true
+ }
+ return 0, false
+}
+
+// grow grows the buffer to guarantee space for n more bytes.
+// It returns the index where bytes should be written.
+// If the buffer can't grow it will panic with ErrTooLarge.
+func (b *Buffer) grow(n int) int {
+ m := b.Len()
+ // If buffer is empty, reset to recover space.
+ if m == 0 && b.off != 0 {
+ b.Reset()
+ }
+ // Try to grow by means of a reslice.
+ if i, ok := b.tryGrowByReslice(n); ok {
+ return i
+ }
+ if b.buf == nil && n <= smallBufferSize {
+ b.buf = make([]byte, n, smallBufferSize)
+ return 0
+ }
+ c := cap(b.buf)
+ if n <= c/2-m {
+ // We can slide things down instead of allocating a new
+ // slice. We only need m+n <= c to slide, but
+ // we instead let capacity get twice as large so we
+ // don't spend all our time copying.
+ copy(b.buf, b.buf[b.off:])
+ } else if c > maxInt-c-n {
+ panic(ErrTooLarge)
+ } else {
+ // Not enough space anywhere, we need to allocate.
+ buf := makeSlice(2*c + n)
+ copy(buf, b.buf[b.off:])
+ b.buf = buf
+ }
+ // Restore b.off and len(b.buf).
+ b.off = 0
+ b.buf = b.buf[:m+n]
+ return m
+}
+
+// Grow grows the buffer's capacity, if necessary, to guarantee space for
+// another n bytes. After Grow(n), at least n bytes can be written to the
+// buffer without another allocation.
+// If n is negative, Grow will panic.
+// If the buffer can't grow it will panic with ErrTooLarge.
+func (b *Buffer) Grow(n int) {
+ if n < 0 {
+ panic("bytes.Buffer.Grow: negative count")
+ }
+ m := b.grow(n)
+ b.buf = b.buf[:m]
+}
+
+// Write appends the contents of p to the buffer, growing the buffer as
+// needed. The return value n is the length of p; err is always nil. If the
+// buffer becomes too large, Write will panic with ErrTooLarge.
+func (b *Buffer) Write(p []byte) (n int, err error) {
+ b.lastRead = opInvalid
+ m, ok := b.tryGrowByReslice(len(p))
+ if !ok {
+ m = b.grow(len(p))
+ }
+ return copy(b.buf[m:], p), nil
+}
+
+// WriteString appends the contents of s to the buffer, growing the buffer as
+// needed. The return value n is the length of s; err is always nil. If the
+// buffer becomes too large, WriteString will panic with ErrTooLarge.
+func (b *Buffer) WriteString(s string) (n int, err error) {
+ b.lastRead = opInvalid
+ m, ok := b.tryGrowByReslice(len(s))
+ if !ok {
+ m = b.grow(len(s))
+ }
+ return copy(b.buf[m:], s), nil
+}
+
+// MinRead is the minimum slice size passed to a Read call by
+// Buffer.ReadFrom. As long as the Buffer has at least MinRead bytes beyond
+// what is required to hold the contents of r, ReadFrom will not grow the
+// underlying buffer.
+const MinRead = 512
+
+// ReadFrom reads data from r until EOF and appends it to the buffer, growing
+// the buffer as needed. The return value n is the number of bytes read. Any
+// error except io.EOF encountered during the read is also returned. If the
+// buffer becomes too large, ReadFrom will panic with ErrTooLarge.
+func (b *Buffer) ReadFrom(r io.Reader) (n int64, err error) {
+ b.lastRead = opInvalid
+ for {
+ i := b.grow(MinRead)
+ b.buf = b.buf[:i]
+ m, e := r.Read(b.buf[i:cap(b.buf)])
+ if m < 0 {
+ panic(errNegativeRead)
+ }
+
+ b.buf = b.buf[:i+m]
+ n += int64(m)
+ if e == io.EOF {
+ return n, nil // e is EOF, so return nil explicitly
+ }
+ if e != nil {
+ return n, e
+ }
+ }
+}
+
+// makeSlice allocates a slice of size n. If the allocation fails, it panics
+// with ErrTooLarge.
+func makeSlice(n int) []byte {
+ // If the make fails, give a known error.
+ defer func() {
+ if recover() != nil {
+ panic(ErrTooLarge)
+ }
+ }()
+ return make([]byte, n)
+}
+
+// WriteTo writes data to w until the buffer is drained or an error occurs.
+// The return value n is the number of bytes written; it always fits into an
+// int, but it is int64 to match the io.WriterTo interface. Any error
+// encountered during the write is also returned.
+func (b *Buffer) WriteTo(w io.Writer) (n int64, err error) {
+ b.lastRead = opInvalid
+ if nBytes := b.Len(); nBytes > 0 {
+ m, e := w.Write(b.buf[b.off:])
+ if m > nBytes {
+ panic("bytes.Buffer.WriteTo: invalid Write count")
+ }
+ b.off += m
+ n = int64(m)
+ if e != nil {
+ return n, e
+ }
+ // all bytes should have been written, by definition of
+ // Write method in io.Writer
+ if m != nBytes {
+ return n, io.ErrShortWrite
+ }
+ }
+ // Buffer is now empty; reset.
+ b.Reset()
+ return n, nil
+}
+
+// WriteByte appends the byte c to the buffer, growing the buffer as needed.
+// The returned error is always nil, but is included to match bufio.Writer's
+// WriteByte. If the buffer becomes too large, WriteByte will panic with
+// ErrTooLarge.
+func (b *Buffer) WriteByte(c byte) error {
+ b.lastRead = opInvalid
+ m, ok := b.tryGrowByReslice(1)
+ if !ok {
+ m = b.grow(1)
+ }
+ b.buf[m] = c
+ return nil
+}
+
+// WriteRune appends the UTF-8 encoding of Unicode code point r to the
+// buffer, returning its length and an error, which is always nil but is
+// included to match bufio.Writer's WriteRune. The buffer is grown as needed;
+// if it becomes too large, WriteRune will panic with ErrTooLarge.
+func (b *Buffer) WriteRune(r rune) (n int, err error) {
+ if r < utf8.RuneSelf {
+ b.WriteByte(byte(r))
+ return 1, nil
+ }
+ b.lastRead = opInvalid
+ m, ok := b.tryGrowByReslice(utf8.UTFMax)
+ if !ok {
+ m = b.grow(utf8.UTFMax)
+ }
+ n = utf8.EncodeRune(b.buf[m:m+utf8.UTFMax], r)
+ b.buf = b.buf[:m+n]
+ return n, nil
+}
+
+// Read reads the next len(p) bytes from the buffer or until the buffer
+// is drained. The return value n is the number of bytes read. If the
+// buffer has no data to return, err is io.EOF (unless len(p) is zero);
+// otherwise it is nil.
+func (b *Buffer) Read(p []byte) (n int, err error) {
+ b.lastRead = opInvalid
+ if b.empty() {
+ // Buffer is empty, reset to recover space.
+ b.Reset()
+ if len(p) == 0 {
+ return 0, nil
+ }
+ return 0, io.EOF
+ }
+ n = copy(p, b.buf[b.off:])
+ b.off += n
+ if n > 0 {
+ b.lastRead = opRead
+ }
+ return n, nil
+}
+
+// Next returns a slice containing the next n bytes from the buffer,
+// advancing the buffer as if the bytes had been returned by Read.
+// If there are fewer than n bytes in the buffer, Next returns the entire buffer.
+// The slice is only valid until the next call to a read or write method.
+func (b *Buffer) Next(n int) []byte {
+ b.lastRead = opInvalid
+ m := b.Len()
+ if n > m {
+ n = m
+ }
+ data := b.buf[b.off : b.off+n]
+ b.off += n
+ if n > 0 {
+ b.lastRead = opRead
+ }
+ return data
+}
+
+// ReadByte reads and returns the next byte from the buffer.
+// If no byte is available, it returns error io.EOF.
+func (b *Buffer) ReadByte() (byte, error) {
+ if b.empty() {
+ // Buffer is empty, reset to recover space.
+ b.Reset()
+ return 0, io.EOF
+ }
+ c := b.buf[b.off]
+ b.off++
+ b.lastRead = opRead
+ return c, nil
+}
+
+// ReadRune reads and returns the next UTF-8-encoded
+// Unicode code point from the buffer.
+// If no bytes are available, the error returned is io.EOF.
+// If the bytes are an erroneous UTF-8 encoding, it
+// consumes one byte and returns U+FFFD, 1.
+func (b *Buffer) ReadRune() (r rune, size int, err error) {
+ if b.empty() {
+ // Buffer is empty, reset to recover space.
+ b.Reset()
+ return 0, 0, io.EOF
+ }
+ c := b.buf[b.off]
+ if c < utf8.RuneSelf {
+ b.off++
+ b.lastRead = opReadRune1
+ return rune(c), 1, nil
+ }
+ r, n := utf8.DecodeRune(b.buf[b.off:])
+ b.off += n
+ b.lastRead = readOp(n)
+ return r, n, nil
+}
+
+// UnreadRune unreads the last rune returned by ReadRune.
+// If the most recent read or write operation on the buffer was
+// not a successful ReadRune, UnreadRune returns an error. (In this regard
+// it is stricter than UnreadByte, which will unread the last byte
+// from any read operation.)
+func (b *Buffer) UnreadRune() error {
+ if b.lastRead <= opInvalid {
+ return errors.New("bytes.Buffer: UnreadRune: previous operation was not a successful ReadRune")
+ }
+ if b.off >= int(b.lastRead) {
+ b.off -= int(b.lastRead)
+ }
+ b.lastRead = opInvalid
+ return nil
+}
+
+var errUnreadByte = errors.New("bytes.Buffer: UnreadByte: previous operation was not a successful read")
+
+// UnreadByte unreads the last byte returned by the most recent successful
+// read operation that read at least one byte. If a write has happened since
+// the last read, if the last read returned an error, or if the read read zero
+// bytes, UnreadByte returns an error.
+func (b *Buffer) UnreadByte() error {
+ if b.lastRead == opInvalid {
+ return errUnreadByte
+ }
+ b.lastRead = opInvalid
+ if b.off > 0 {
+ b.off--
+ }
+ return nil
+}
+
+// ReadBytes reads until the first occurrence of delim in the input,
+// returning a slice containing the data up to and including the delimiter.
+// If ReadBytes encounters an error before finding a delimiter,
+// it returns the data read before the error and the error itself (often io.EOF).
+// ReadBytes returns err != nil if and only if the returned data does not end in
+// delim.
+func (b *Buffer) ReadBytes(delim byte) (line []byte, err error) {
+ slice, err := b.readSlice(delim)
+ // return a copy of slice. The buffer's backing array may
+ // be overwritten by later calls.
+ line = append(line, slice...)
+ return line, err
+}
+
+// readSlice is like ReadBytes but returns a reference to internal buffer data.
+func (b *Buffer) readSlice(delim byte) (line []byte, err error) {
+ i := IndexByte(b.buf[b.off:], delim)
+ end := b.off + i + 1
+ if i < 0 {
+ end = len(b.buf)
+ err = io.EOF
+ }
+ line = b.buf[b.off:end]
+ b.off = end
+ b.lastRead = opRead
+ return line, err
+}
+
+// ReadString reads until the first occurrence of delim in the input,
+// returning a string containing the data up to and including the delimiter.
+// If ReadString encounters an error before finding a delimiter,
+// it returns the data read before the error and the error itself (often io.EOF).
+// ReadString returns err != nil if and only if the returned data does not end
+// in delim.
+func (b *Buffer) ReadString(delim byte) (line string, err error) {
+ slice, err := b.readSlice(delim)
+ return string(slice), err
+}
+
+// NewBuffer creates and initializes a new Buffer using buf as its
+// initial contents. The new Buffer takes ownership of buf, and the
+// caller should not use buf after this call. NewBuffer is intended to
+// prepare a Buffer to read existing data. It can also be used to set
+// the initial size of the internal buffer for writing. To do that,
+// buf should have the desired capacity but a length of zero.
+//
+// In most cases, new(Buffer) (or just declaring a Buffer variable) is
+// sufficient to initialize a Buffer.
+func NewBuffer(buf []byte) *Buffer { return &Buffer{buf: buf} }
+
+// NewBufferString creates and initializes a new Buffer using string s as its
+// initial contents. It is intended to prepare a buffer to read an existing
+// string.
+//
+// In most cases, new(Buffer) (or just declaring a Buffer variable) is
+// sufficient to initialize a Buffer.
+func NewBufferString(s string) *Buffer {
+ return &Buffer{buf: []byte(s)}
+}