summaryrefslogtreecommitdiffstats
path: root/src/compress/bzip2/huffman.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/compress/bzip2/huffman.go')
-rw-r--r--src/compress/bzip2/huffman.go237
1 files changed, 237 insertions, 0 deletions
diff --git a/src/compress/bzip2/huffman.go b/src/compress/bzip2/huffman.go
new file mode 100644
index 0000000..36ae954
--- /dev/null
+++ b/src/compress/bzip2/huffman.go
@@ -0,0 +1,237 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package bzip2
+
+import "sort"
+
+// A huffmanTree is a binary tree which is navigated, bit-by-bit to reach a
+// symbol.
+type huffmanTree struct {
+ // nodes contains all the non-leaf nodes in the tree. nodes[0] is the
+ // root of the tree and nextNode contains the index of the next element
+ // of nodes to use when the tree is being constructed.
+ nodes []huffmanNode
+ nextNode int
+}
+
+// A huffmanNode is a node in the tree. left and right contain indexes into the
+// nodes slice of the tree. If left or right is invalidNodeValue then the child
+// is a left node and its value is in leftValue/rightValue.
+//
+// The symbols are uint16s because bzip2 encodes not only MTF indexes in the
+// tree, but also two magic values for run-length encoding and an EOF symbol.
+// Thus there are more than 256 possible symbols.
+type huffmanNode struct {
+ left, right uint16
+ leftValue, rightValue uint16
+}
+
+// invalidNodeValue is an invalid index which marks a leaf node in the tree.
+const invalidNodeValue = 0xffff
+
+// Decode reads bits from the given bitReader and navigates the tree until a
+// symbol is found.
+func (t *huffmanTree) Decode(br *bitReader) (v uint16) {
+ nodeIndex := uint16(0) // node 0 is the root of the tree.
+
+ for {
+ node := &t.nodes[nodeIndex]
+
+ var bit uint16
+ if br.bits > 0 {
+ // Get next bit - fast path.
+ br.bits--
+ bit = uint16(br.n>>(br.bits&63)) & 1
+ } else {
+ // Get next bit - slow path.
+ // Use ReadBits to retrieve a single bit
+ // from the underling io.ByteReader.
+ bit = uint16(br.ReadBits(1))
+ }
+
+ // Trick a compiler into generating conditional move instead of branch,
+ // by making both loads unconditional.
+ l, r := node.left, node.right
+
+ if bit == 1 {
+ nodeIndex = l
+ } else {
+ nodeIndex = r
+ }
+
+ if nodeIndex == invalidNodeValue {
+ // We found a leaf. Use the value of bit to decide
+ // whether is a left or a right value.
+ l, r := node.leftValue, node.rightValue
+ if bit == 1 {
+ v = l
+ } else {
+ v = r
+ }
+ return
+ }
+ }
+}
+
+// newHuffmanTree builds a Huffman tree from a slice containing the code
+// lengths of each symbol. The maximum code length is 32 bits.
+func newHuffmanTree(lengths []uint8) (huffmanTree, error) {
+ // There are many possible trees that assign the same code length to
+ // each symbol (consider reflecting a tree down the middle, for
+ // example). Since the code length assignments determine the
+ // efficiency of the tree, each of these trees is equally good. In
+ // order to minimize the amount of information needed to build a tree
+ // bzip2 uses a canonical tree so that it can be reconstructed given
+ // only the code length assignments.
+
+ if len(lengths) < 2 {
+ panic("newHuffmanTree: too few symbols")
+ }
+
+ var t huffmanTree
+
+ // First we sort the code length assignments by ascending code length,
+ // using the symbol value to break ties.
+ pairs := make([]huffmanSymbolLengthPair, len(lengths))
+ for i, length := range lengths {
+ pairs[i].value = uint16(i)
+ pairs[i].length = length
+ }
+
+ sort.Slice(pairs, func(i, j int) bool {
+ if pairs[i].length < pairs[j].length {
+ return true
+ }
+ if pairs[i].length > pairs[j].length {
+ return false
+ }
+ if pairs[i].value < pairs[j].value {
+ return true
+ }
+ return false
+ })
+
+ // Now we assign codes to the symbols, starting with the longest code.
+ // We keep the codes packed into a uint32, at the most-significant end.
+ // So branches are taken from the MSB downwards. This makes it easy to
+ // sort them later.
+ code := uint32(0)
+ length := uint8(32)
+
+ codes := make([]huffmanCode, len(lengths))
+ for i := len(pairs) - 1; i >= 0; i-- {
+ if length > pairs[i].length {
+ length = pairs[i].length
+ }
+ codes[i].code = code
+ codes[i].codeLen = length
+ codes[i].value = pairs[i].value
+ // We need to 'increment' the code, which means treating |code|
+ // like a |length| bit number.
+ code += 1 << (32 - length)
+ }
+
+ // Now we can sort by the code so that the left half of each branch are
+ // grouped together, recursively.
+ sort.Slice(codes, func(i, j int) bool {
+ return codes[i].code < codes[j].code
+ })
+
+ t.nodes = make([]huffmanNode, len(codes))
+ _, err := buildHuffmanNode(&t, codes, 0)
+ return t, err
+}
+
+// huffmanSymbolLengthPair contains a symbol and its code length.
+type huffmanSymbolLengthPair struct {
+ value uint16
+ length uint8
+}
+
+// huffmanCode contains a symbol, its code and code length.
+type huffmanCode struct {
+ code uint32
+ codeLen uint8
+ value uint16
+}
+
+// buildHuffmanNode takes a slice of sorted huffmanCodes and builds a node in
+// the Huffman tree at the given level. It returns the index of the newly
+// constructed node.
+func buildHuffmanNode(t *huffmanTree, codes []huffmanCode, level uint32) (nodeIndex uint16, err error) {
+ test := uint32(1) << (31 - level)
+
+ // We have to search the list of codes to find the divide between the left and right sides.
+ firstRightIndex := len(codes)
+ for i, code := range codes {
+ if code.code&test != 0 {
+ firstRightIndex = i
+ break
+ }
+ }
+
+ left := codes[:firstRightIndex]
+ right := codes[firstRightIndex:]
+
+ if len(left) == 0 || len(right) == 0 {
+ // There is a superfluous level in the Huffman tree indicating
+ // a bug in the encoder. However, this bug has been observed in
+ // the wild so we handle it.
+
+ // If this function was called recursively then we know that
+ // len(codes) >= 2 because, otherwise, we would have hit the
+ // "leaf node" case, below, and not recursed.
+ //
+ // However, for the initial call it's possible that len(codes)
+ // is zero or one. Both cases are invalid because a zero length
+ // tree cannot encode anything and a length-1 tree can only
+ // encode EOF and so is superfluous. We reject both.
+ if len(codes) < 2 {
+ return 0, StructuralError("empty Huffman tree")
+ }
+
+ // In this case the recursion doesn't always reduce the length
+ // of codes so we need to ensure termination via another
+ // mechanism.
+ if level == 31 {
+ // Since len(codes) >= 2 the only way that the values
+ // can match at all 32 bits is if they are equal, which
+ // is invalid. This ensures that we never enter
+ // infinite recursion.
+ return 0, StructuralError("equal symbols in Huffman tree")
+ }
+
+ if len(left) == 0 {
+ return buildHuffmanNode(t, right, level+1)
+ }
+ return buildHuffmanNode(t, left, level+1)
+ }
+
+ nodeIndex = uint16(t.nextNode)
+ node := &t.nodes[t.nextNode]
+ t.nextNode++
+
+ if len(left) == 1 {
+ // leaf node
+ node.left = invalidNodeValue
+ node.leftValue = left[0].value
+ } else {
+ node.left, err = buildHuffmanNode(t, left, level+1)
+ }
+
+ if err != nil {
+ return
+ }
+
+ if len(right) == 1 {
+ // leaf node
+ node.right = invalidNodeValue
+ node.rightValue = right[0].value
+ } else {
+ node.right, err = buildHuffmanNode(t, right, level+1)
+ }
+
+ return
+}