summaryrefslogtreecommitdiffstats
path: root/src/math/big/sqrt.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/math/big/sqrt.go')
-rw-r--r--src/math/big/sqrt.go128
1 files changed, 128 insertions, 0 deletions
diff --git a/src/math/big/sqrt.go b/src/math/big/sqrt.go
new file mode 100644
index 0000000..0d50164
--- /dev/null
+++ b/src/math/big/sqrt.go
@@ -0,0 +1,128 @@
+// Copyright 2017 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package big
+
+import (
+ "math"
+ "sync"
+)
+
+var threeOnce struct {
+ sync.Once
+ v *Float
+}
+
+func three() *Float {
+ threeOnce.Do(func() {
+ threeOnce.v = NewFloat(3.0)
+ })
+ return threeOnce.v
+}
+
+// Sqrt sets z to the rounded square root of x, and returns it.
+//
+// If z's precision is 0, it is changed to x's precision before the
+// operation. Rounding is performed according to z's precision and
+// rounding mode, but z's accuracy is not computed. Specifically, the
+// result of z.Acc() is undefined.
+//
+// The function panics if z < 0. The value of z is undefined in that
+// case.
+func (z *Float) Sqrt(x *Float) *Float {
+ if debugFloat {
+ x.validate()
+ }
+
+ if z.prec == 0 {
+ z.prec = x.prec
+ }
+
+ if x.Sign() == -1 {
+ // following IEEE754-2008 (section 7.2)
+ panic(ErrNaN{"square root of negative operand"})
+ }
+
+ // handle ±0 and +∞
+ if x.form != finite {
+ z.acc = Exact
+ z.form = x.form
+ z.neg = x.neg // IEEE754-2008 requires √±0 = ±0
+ return z
+ }
+
+ // MantExp sets the argument's precision to the receiver's, and
+ // when z.prec > x.prec this will lower z.prec. Restore it after
+ // the MantExp call.
+ prec := z.prec
+ b := x.MantExp(z)
+ z.prec = prec
+
+ // Compute √(z·2**b) as
+ // √( z)·2**(½b) if b is even
+ // √(2z)·2**(⌊½b⌋) if b > 0 is odd
+ // √(½z)·2**(⌈½b⌉) if b < 0 is odd
+ switch b % 2 {
+ case 0:
+ // nothing to do
+ case 1:
+ z.exp++
+ case -1:
+ z.exp--
+ }
+ // 0.25 <= z < 2.0
+
+ // Solving 1/x² - z = 0 avoids Quo calls and is faster, especially
+ // for high precisions.
+ z.sqrtInverse(z)
+
+ // re-attach halved exponent
+ return z.SetMantExp(z, b/2)
+}
+
+// Compute √x (to z.prec precision) by solving
+// 1/t² - x = 0
+// for t (using Newton's method), and then inverting.
+func (z *Float) sqrtInverse(x *Float) {
+ // let
+ // f(t) = 1/t² - x
+ // then
+ // g(t) = f(t)/f'(t) = -½t(1 - xt²)
+ // and the next guess is given by
+ // t2 = t - g(t) = ½t(3 - xt²)
+ u := newFloat(z.prec)
+ v := newFloat(z.prec)
+ three := three()
+ ng := func(t *Float) *Float {
+ u.prec = t.prec
+ v.prec = t.prec
+ u.Mul(t, t) // u = t²
+ u.Mul(x, u) // = xt²
+ v.Sub(three, u) // v = 3 - xt²
+ u.Mul(t, v) // u = t(3 - xt²)
+ u.exp-- // = ½t(3 - xt²)
+ return t.Set(u)
+ }
+
+ xf, _ := x.Float64()
+ sqi := newFloat(z.prec)
+ sqi.SetFloat64(1 / math.Sqrt(xf))
+ for prec := z.prec + 32; sqi.prec < prec; {
+ sqi.prec *= 2
+ sqi = ng(sqi)
+ }
+ // sqi = 1/√x
+
+ // x/√x = √x
+ z.Mul(x, sqi)
+}
+
+// newFloat returns a new *Float with space for twice the given
+// precision.
+func newFloat(prec2 uint32) *Float {
+ z := new(Float)
+ // nat.make ensures the slice length is > 0
+ z.mant = z.mant.make(int(prec2/_W) * 2)
+ return z
+}