summaryrefslogtreecommitdiffstats
path: root/src/runtime/asm_amd64.s
diff options
context:
space:
mode:
Diffstat (limited to 'src/runtime/asm_amd64.s')
-rw-r--r--src/runtime/asm_amd64.s1833
1 files changed, 1833 insertions, 0 deletions
diff --git a/src/runtime/asm_amd64.s b/src/runtime/asm_amd64.s
new file mode 100644
index 0000000..4ac8708
--- /dev/null
+++ b/src/runtime/asm_amd64.s
@@ -0,0 +1,1833 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+#include "go_asm.h"
+#include "go_tls.h"
+#include "funcdata.h"
+#include "textflag.h"
+
+// _rt0_amd64 is common startup code for most amd64 systems when using
+// internal linking. This is the entry point for the program from the
+// kernel for an ordinary -buildmode=exe program. The stack holds the
+// number of arguments and the C-style argv.
+TEXT _rt0_amd64(SB),NOSPLIT,$-8
+ MOVQ 0(SP), DI // argc
+ LEAQ 8(SP), SI // argv
+ JMP runtime·rt0_go(SB)
+
+// main is common startup code for most amd64 systems when using
+// external linking. The C startup code will call the symbol "main"
+// passing argc and argv in the usual C ABI registers DI and SI.
+TEXT main(SB),NOSPLIT,$-8
+ JMP runtime·rt0_go(SB)
+
+// _rt0_amd64_lib is common startup code for most amd64 systems when
+// using -buildmode=c-archive or -buildmode=c-shared. The linker will
+// arrange to invoke this function as a global constructor (for
+// c-archive) or when the shared library is loaded (for c-shared).
+// We expect argc and argv to be passed in the usual C ABI registers
+// DI and SI.
+TEXT _rt0_amd64_lib(SB),NOSPLIT,$0x50
+ // Align stack per ELF ABI requirements.
+ MOVQ SP, AX
+ ANDQ $~15, SP
+ // Save C ABI callee-saved registers, as caller may need them.
+ MOVQ BX, 0x10(SP)
+ MOVQ BP, 0x18(SP)
+ MOVQ R12, 0x20(SP)
+ MOVQ R13, 0x28(SP)
+ MOVQ R14, 0x30(SP)
+ MOVQ R15, 0x38(SP)
+ MOVQ AX, 0x40(SP)
+
+ MOVQ DI, _rt0_amd64_lib_argc<>(SB)
+ MOVQ SI, _rt0_amd64_lib_argv<>(SB)
+
+ // Synchronous initialization.
+ CALL runtime·libpreinit(SB)
+
+ // Create a new thread to finish Go runtime initialization.
+ MOVQ _cgo_sys_thread_create(SB), AX
+ TESTQ AX, AX
+ JZ nocgo
+ MOVQ $_rt0_amd64_lib_go(SB), DI
+ MOVQ $0, SI
+ CALL AX
+ JMP restore
+
+nocgo:
+ MOVQ $0x800000, 0(SP) // stacksize
+ MOVQ $_rt0_amd64_lib_go(SB), AX
+ MOVQ AX, 8(SP) // fn
+ CALL runtime·newosproc0(SB)
+
+restore:
+ MOVQ 0x10(SP), BX
+ MOVQ 0x18(SP), BP
+ MOVQ 0x20(SP), R12
+ MOVQ 0x28(SP), R13
+ MOVQ 0x30(SP), R14
+ MOVQ 0x38(SP), R15
+ MOVQ 0x40(SP), SP
+ RET
+
+// _rt0_amd64_lib_go initializes the Go runtime.
+// This is started in a separate thread by _rt0_amd64_lib.
+TEXT _rt0_amd64_lib_go(SB),NOSPLIT,$0
+ MOVQ _rt0_amd64_lib_argc<>(SB), DI
+ MOVQ _rt0_amd64_lib_argv<>(SB), SI
+ JMP runtime·rt0_go(SB)
+
+DATA _rt0_amd64_lib_argc<>(SB)/8, $0
+GLOBL _rt0_amd64_lib_argc<>(SB),NOPTR, $8
+DATA _rt0_amd64_lib_argv<>(SB)/8, $0
+GLOBL _rt0_amd64_lib_argv<>(SB),NOPTR, $8
+
+// Defined as ABIInternal since it does not use the stack-based Go ABI (and
+// in addition there are no calls to this entry point from Go code).
+TEXT runtime·rt0_go<ABIInternal>(SB),NOSPLIT,$0
+ // copy arguments forward on an even stack
+ MOVQ DI, AX // argc
+ MOVQ SI, BX // argv
+ SUBQ $(4*8+7), SP // 2args 2auto
+ ANDQ $~15, SP
+ MOVQ AX, 16(SP)
+ MOVQ BX, 24(SP)
+
+ // create istack out of the given (operating system) stack.
+ // _cgo_init may update stackguard.
+ MOVQ $runtime·g0(SB), DI
+ LEAQ (-64*1024+104)(SP), BX
+ MOVQ BX, g_stackguard0(DI)
+ MOVQ BX, g_stackguard1(DI)
+ MOVQ BX, (g_stack+stack_lo)(DI)
+ MOVQ SP, (g_stack+stack_hi)(DI)
+
+ // find out information about the processor we're on
+ MOVL $0, AX
+ CPUID
+ MOVL AX, SI
+ CMPL AX, $0
+ JE nocpuinfo
+
+ // Figure out how to serialize RDTSC.
+ // On Intel processors LFENCE is enough. AMD requires MFENCE.
+ // Don't know about the rest, so let's do MFENCE.
+ CMPL BX, $0x756E6547 // "Genu"
+ JNE notintel
+ CMPL DX, $0x49656E69 // "ineI"
+ JNE notintel
+ CMPL CX, $0x6C65746E // "ntel"
+ JNE notintel
+ MOVB $1, runtime·isIntel(SB)
+ MOVB $1, runtime·lfenceBeforeRdtsc(SB)
+notintel:
+
+ // Load EAX=1 cpuid flags
+ MOVL $1, AX
+ CPUID
+ MOVL AX, runtime·processorVersionInfo(SB)
+
+nocpuinfo:
+ // if there is an _cgo_init, call it.
+ MOVQ _cgo_init(SB), AX
+ TESTQ AX, AX
+ JZ needtls
+ // arg 1: g0, already in DI
+ MOVQ $setg_gcc<>(SB), SI // arg 2: setg_gcc
+#ifdef GOOS_android
+ MOVQ $runtime·tls_g(SB), DX // arg 3: &tls_g
+ // arg 4: TLS base, stored in slot 0 (Android's TLS_SLOT_SELF).
+ // Compensate for tls_g (+16).
+ MOVQ -16(TLS), CX
+#else
+ MOVQ $0, DX // arg 3, 4: not used when using platform's TLS
+ MOVQ $0, CX
+#endif
+#ifdef GOOS_windows
+ // Adjust for the Win64 calling convention.
+ MOVQ CX, R9 // arg 4
+ MOVQ DX, R8 // arg 3
+ MOVQ SI, DX // arg 2
+ MOVQ DI, CX // arg 1
+#endif
+ CALL AX
+
+ // update stackguard after _cgo_init
+ MOVQ $runtime·g0(SB), CX
+ MOVQ (g_stack+stack_lo)(CX), AX
+ ADDQ $const__StackGuard, AX
+ MOVQ AX, g_stackguard0(CX)
+ MOVQ AX, g_stackguard1(CX)
+
+#ifndef GOOS_windows
+ JMP ok
+#endif
+needtls:
+#ifdef GOOS_plan9
+ // skip TLS setup on Plan 9
+ JMP ok
+#endif
+#ifdef GOOS_solaris
+ // skip TLS setup on Solaris
+ JMP ok
+#endif
+#ifdef GOOS_illumos
+ // skip TLS setup on illumos
+ JMP ok
+#endif
+#ifdef GOOS_darwin
+ // skip TLS setup on Darwin
+ JMP ok
+#endif
+#ifdef GOOS_openbsd
+ // skip TLS setup on OpenBSD
+ JMP ok
+#endif
+
+ LEAQ runtime·m0+m_tls(SB), DI
+ CALL runtime·settls(SB)
+
+ // store through it, to make sure it works
+ get_tls(BX)
+ MOVQ $0x123, g(BX)
+ MOVQ runtime·m0+m_tls(SB), AX
+ CMPQ AX, $0x123
+ JEQ 2(PC)
+ CALL runtime·abort(SB)
+ok:
+ // set the per-goroutine and per-mach "registers"
+ get_tls(BX)
+ LEAQ runtime·g0(SB), CX
+ MOVQ CX, g(BX)
+ LEAQ runtime·m0(SB), AX
+
+ // save m->g0 = g0
+ MOVQ CX, m_g0(AX)
+ // save m0 to g0->m
+ MOVQ AX, g_m(CX)
+
+ CLD // convention is D is always left cleared
+ CALL runtime·check(SB)
+
+ MOVL 16(SP), AX // copy argc
+ MOVL AX, 0(SP)
+ MOVQ 24(SP), AX // copy argv
+ MOVQ AX, 8(SP)
+ CALL runtime·args(SB)
+ CALL runtime·osinit(SB)
+ CALL runtime·schedinit(SB)
+
+ // create a new goroutine to start program
+ MOVQ $runtime·mainPC(SB), AX // entry
+ PUSHQ AX
+ PUSHQ $0 // arg size
+ CALL runtime·newproc(SB)
+ POPQ AX
+ POPQ AX
+
+ // start this M
+ CALL runtime·mstart(SB)
+
+ CALL runtime·abort(SB) // mstart should never return
+ RET
+
+ // Prevent dead-code elimination of debugCallV1, which is
+ // intended to be called by debuggers.
+ MOVQ $runtime·debugCallV1<ABIInternal>(SB), AX
+ RET
+
+// mainPC is a function value for runtime.main, to be passed to newproc.
+// The reference to runtime.main is made via ABIInternal, since the
+// actual function (not the ABI0 wrapper) is needed by newproc.
+DATA runtime·mainPC+0(SB)/8,$runtime·main<ABIInternal>(SB)
+GLOBL runtime·mainPC(SB),RODATA,$8
+
+TEXT runtime·breakpoint(SB),NOSPLIT,$0-0
+ BYTE $0xcc
+ RET
+
+TEXT runtime·asminit(SB),NOSPLIT,$0-0
+ // No per-thread init.
+ RET
+
+/*
+ * go-routine
+ */
+
+// func gosave(buf *gobuf)
+// save state in Gobuf; setjmp
+TEXT runtime·gosave(SB), NOSPLIT, $0-8
+ MOVQ buf+0(FP), AX // gobuf
+ LEAQ buf+0(FP), BX // caller's SP
+ MOVQ BX, gobuf_sp(AX)
+ MOVQ 0(SP), BX // caller's PC
+ MOVQ BX, gobuf_pc(AX)
+ MOVQ $0, gobuf_ret(AX)
+ MOVQ BP, gobuf_bp(AX)
+ // Assert ctxt is zero. See func save.
+ MOVQ gobuf_ctxt(AX), BX
+ TESTQ BX, BX
+ JZ 2(PC)
+ CALL runtime·badctxt(SB)
+ get_tls(CX)
+ MOVQ g(CX), BX
+ MOVQ BX, gobuf_g(AX)
+ RET
+
+// func gogo(buf *gobuf)
+// restore state from Gobuf; longjmp
+TEXT runtime·gogo(SB), NOSPLIT, $16-8
+ MOVQ buf+0(FP), BX // gobuf
+ MOVQ gobuf_g(BX), DX
+ MOVQ 0(DX), CX // make sure g != nil
+ get_tls(CX)
+ MOVQ DX, g(CX)
+ MOVQ gobuf_sp(BX), SP // restore SP
+ MOVQ gobuf_ret(BX), AX
+ MOVQ gobuf_ctxt(BX), DX
+ MOVQ gobuf_bp(BX), BP
+ MOVQ $0, gobuf_sp(BX) // clear to help garbage collector
+ MOVQ $0, gobuf_ret(BX)
+ MOVQ $0, gobuf_ctxt(BX)
+ MOVQ $0, gobuf_bp(BX)
+ MOVQ gobuf_pc(BX), BX
+ JMP BX
+
+// func mcall(fn func(*g))
+// Switch to m->g0's stack, call fn(g).
+// Fn must never return. It should gogo(&g->sched)
+// to keep running g.
+TEXT runtime·mcall(SB), NOSPLIT, $0-8
+ MOVQ fn+0(FP), DI
+
+ get_tls(CX)
+ MOVQ g(CX), AX // save state in g->sched
+ MOVQ 0(SP), BX // caller's PC
+ MOVQ BX, (g_sched+gobuf_pc)(AX)
+ LEAQ fn+0(FP), BX // caller's SP
+ MOVQ BX, (g_sched+gobuf_sp)(AX)
+ MOVQ AX, (g_sched+gobuf_g)(AX)
+ MOVQ BP, (g_sched+gobuf_bp)(AX)
+
+ // switch to m->g0 & its stack, call fn
+ MOVQ g(CX), BX
+ MOVQ g_m(BX), BX
+ MOVQ m_g0(BX), SI
+ CMPQ SI, AX // if g == m->g0 call badmcall
+ JNE 3(PC)
+ MOVQ $runtime·badmcall(SB), AX
+ JMP AX
+ MOVQ SI, g(CX) // g = m->g0
+ MOVQ (g_sched+gobuf_sp)(SI), SP // sp = m->g0->sched.sp
+ PUSHQ AX
+ MOVQ DI, DX
+ MOVQ 0(DI), DI
+ CALL DI
+ POPQ AX
+ MOVQ $runtime·badmcall2(SB), AX
+ JMP AX
+ RET
+
+// systemstack_switch is a dummy routine that systemstack leaves at the bottom
+// of the G stack. We need to distinguish the routine that
+// lives at the bottom of the G stack from the one that lives
+// at the top of the system stack because the one at the top of
+// the system stack terminates the stack walk (see topofstack()).
+TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0
+ RET
+
+// func systemstack(fn func())
+TEXT runtime·systemstack(SB), NOSPLIT, $0-8
+ MOVQ fn+0(FP), DI // DI = fn
+ get_tls(CX)
+ MOVQ g(CX), AX // AX = g
+ MOVQ g_m(AX), BX // BX = m
+
+ CMPQ AX, m_gsignal(BX)
+ JEQ noswitch
+
+ MOVQ m_g0(BX), DX // DX = g0
+ CMPQ AX, DX
+ JEQ noswitch
+
+ CMPQ AX, m_curg(BX)
+ JNE bad
+
+ // switch stacks
+ // save our state in g->sched. Pretend to
+ // be systemstack_switch if the G stack is scanned.
+ MOVQ $runtime·systemstack_switch(SB), SI
+ MOVQ SI, (g_sched+gobuf_pc)(AX)
+ MOVQ SP, (g_sched+gobuf_sp)(AX)
+ MOVQ AX, (g_sched+gobuf_g)(AX)
+ MOVQ BP, (g_sched+gobuf_bp)(AX)
+
+ // switch to g0
+ MOVQ DX, g(CX)
+ MOVQ (g_sched+gobuf_sp)(DX), BX
+ // make it look like mstart called systemstack on g0, to stop traceback
+ SUBQ $8, BX
+ MOVQ $runtime·mstart(SB), DX
+ MOVQ DX, 0(BX)
+ MOVQ BX, SP
+
+ // call target function
+ MOVQ DI, DX
+ MOVQ 0(DI), DI
+ CALL DI
+
+ // switch back to g
+ get_tls(CX)
+ MOVQ g(CX), AX
+ MOVQ g_m(AX), BX
+ MOVQ m_curg(BX), AX
+ MOVQ AX, g(CX)
+ MOVQ (g_sched+gobuf_sp)(AX), SP
+ MOVQ $0, (g_sched+gobuf_sp)(AX)
+ RET
+
+noswitch:
+ // already on m stack; tail call the function
+ // Using a tail call here cleans up tracebacks since we won't stop
+ // at an intermediate systemstack.
+ MOVQ DI, DX
+ MOVQ 0(DI), DI
+ JMP DI
+
+bad:
+ // Bad: g is not gsignal, not g0, not curg. What is it?
+ MOVQ $runtime·badsystemstack(SB), AX
+ CALL AX
+ INT $3
+
+
+/*
+ * support for morestack
+ */
+
+// Called during function prolog when more stack is needed.
+//
+// The traceback routines see morestack on a g0 as being
+// the top of a stack (for example, morestack calling newstack
+// calling the scheduler calling newm calling gc), so we must
+// record an argument size. For that purpose, it has no arguments.
+TEXT runtime·morestack(SB),NOSPLIT,$0-0
+ // Cannot grow scheduler stack (m->g0).
+ get_tls(CX)
+ MOVQ g(CX), BX
+ MOVQ g_m(BX), BX
+ MOVQ m_g0(BX), SI
+ CMPQ g(CX), SI
+ JNE 3(PC)
+ CALL runtime·badmorestackg0(SB)
+ CALL runtime·abort(SB)
+
+ // Cannot grow signal stack (m->gsignal).
+ MOVQ m_gsignal(BX), SI
+ CMPQ g(CX), SI
+ JNE 3(PC)
+ CALL runtime·badmorestackgsignal(SB)
+ CALL runtime·abort(SB)
+
+ // Called from f.
+ // Set m->morebuf to f's caller.
+ NOP SP // tell vet SP changed - stop checking offsets
+ MOVQ 8(SP), AX // f's caller's PC
+ MOVQ AX, (m_morebuf+gobuf_pc)(BX)
+ LEAQ 16(SP), AX // f's caller's SP
+ MOVQ AX, (m_morebuf+gobuf_sp)(BX)
+ get_tls(CX)
+ MOVQ g(CX), SI
+ MOVQ SI, (m_morebuf+gobuf_g)(BX)
+
+ // Set g->sched to context in f.
+ MOVQ 0(SP), AX // f's PC
+ MOVQ AX, (g_sched+gobuf_pc)(SI)
+ MOVQ SI, (g_sched+gobuf_g)(SI)
+ LEAQ 8(SP), AX // f's SP
+ MOVQ AX, (g_sched+gobuf_sp)(SI)
+ MOVQ BP, (g_sched+gobuf_bp)(SI)
+ MOVQ DX, (g_sched+gobuf_ctxt)(SI)
+
+ // Call newstack on m->g0's stack.
+ MOVQ m_g0(BX), BX
+ MOVQ BX, g(CX)
+ MOVQ (g_sched+gobuf_sp)(BX), SP
+ CALL runtime·newstack(SB)
+ CALL runtime·abort(SB) // crash if newstack returns
+ RET
+
+// morestack but not preserving ctxt.
+TEXT runtime·morestack_noctxt(SB),NOSPLIT,$0
+ MOVL $0, DX
+ JMP runtime·morestack(SB)
+
+// reflectcall: call a function with the given argument list
+// func call(argtype *_type, f *FuncVal, arg *byte, argsize, retoffset uint32).
+// we don't have variable-sized frames, so we use a small number
+// of constant-sized-frame functions to encode a few bits of size in the pc.
+// Caution: ugly multiline assembly macros in your future!
+
+#define DISPATCH(NAME,MAXSIZE) \
+ CMPQ CX, $MAXSIZE; \
+ JA 3(PC); \
+ MOVQ $NAME(SB), AX; \
+ JMP AX
+// Note: can't just "JMP NAME(SB)" - bad inlining results.
+
+TEXT ·reflectcall<ABIInternal>(SB), NOSPLIT, $0-32
+ MOVLQZX argsize+24(FP), CX
+ DISPATCH(runtime·call16, 16)
+ DISPATCH(runtime·call32, 32)
+ DISPATCH(runtime·call64, 64)
+ DISPATCH(runtime·call128, 128)
+ DISPATCH(runtime·call256, 256)
+ DISPATCH(runtime·call512, 512)
+ DISPATCH(runtime·call1024, 1024)
+ DISPATCH(runtime·call2048, 2048)
+ DISPATCH(runtime·call4096, 4096)
+ DISPATCH(runtime·call8192, 8192)
+ DISPATCH(runtime·call16384, 16384)
+ DISPATCH(runtime·call32768, 32768)
+ DISPATCH(runtime·call65536, 65536)
+ DISPATCH(runtime·call131072, 131072)
+ DISPATCH(runtime·call262144, 262144)
+ DISPATCH(runtime·call524288, 524288)
+ DISPATCH(runtime·call1048576, 1048576)
+ DISPATCH(runtime·call2097152, 2097152)
+ DISPATCH(runtime·call4194304, 4194304)
+ DISPATCH(runtime·call8388608, 8388608)
+ DISPATCH(runtime·call16777216, 16777216)
+ DISPATCH(runtime·call33554432, 33554432)
+ DISPATCH(runtime·call67108864, 67108864)
+ DISPATCH(runtime·call134217728, 134217728)
+ DISPATCH(runtime·call268435456, 268435456)
+ DISPATCH(runtime·call536870912, 536870912)
+ DISPATCH(runtime·call1073741824, 1073741824)
+ MOVQ $runtime·badreflectcall(SB), AX
+ JMP AX
+
+#define CALLFN(NAME,MAXSIZE) \
+TEXT NAME(SB), WRAPPER, $MAXSIZE-32; \
+ NO_LOCAL_POINTERS; \
+ /* copy arguments to stack */ \
+ MOVQ argptr+16(FP), SI; \
+ MOVLQZX argsize+24(FP), CX; \
+ MOVQ SP, DI; \
+ REP;MOVSB; \
+ /* call function */ \
+ MOVQ f+8(FP), DX; \
+ PCDATA $PCDATA_StackMapIndex, $0; \
+ MOVQ (DX), AX; \
+ CALL AX; \
+ /* copy return values back */ \
+ MOVQ argtype+0(FP), DX; \
+ MOVQ argptr+16(FP), DI; \
+ MOVLQZX argsize+24(FP), CX; \
+ MOVLQZX retoffset+28(FP), BX; \
+ MOVQ SP, SI; \
+ ADDQ BX, DI; \
+ ADDQ BX, SI; \
+ SUBQ BX, CX; \
+ CALL callRet<>(SB); \
+ RET
+
+// callRet copies return values back at the end of call*. This is a
+// separate function so it can allocate stack space for the arguments
+// to reflectcallmove. It does not follow the Go ABI; it expects its
+// arguments in registers.
+TEXT callRet<>(SB), NOSPLIT, $32-0
+ NO_LOCAL_POINTERS
+ MOVQ DX, 0(SP)
+ MOVQ DI, 8(SP)
+ MOVQ SI, 16(SP)
+ MOVQ CX, 24(SP)
+ CALL runtime·reflectcallmove(SB)
+ RET
+
+CALLFN(·call16, 16)
+CALLFN(·call32, 32)
+CALLFN(·call64, 64)
+CALLFN(·call128, 128)
+CALLFN(·call256, 256)
+CALLFN(·call512, 512)
+CALLFN(·call1024, 1024)
+CALLFN(·call2048, 2048)
+CALLFN(·call4096, 4096)
+CALLFN(·call8192, 8192)
+CALLFN(·call16384, 16384)
+CALLFN(·call32768, 32768)
+CALLFN(·call65536, 65536)
+CALLFN(·call131072, 131072)
+CALLFN(·call262144, 262144)
+CALLFN(·call524288, 524288)
+CALLFN(·call1048576, 1048576)
+CALLFN(·call2097152, 2097152)
+CALLFN(·call4194304, 4194304)
+CALLFN(·call8388608, 8388608)
+CALLFN(·call16777216, 16777216)
+CALLFN(·call33554432, 33554432)
+CALLFN(·call67108864, 67108864)
+CALLFN(·call134217728, 134217728)
+CALLFN(·call268435456, 268435456)
+CALLFN(·call536870912, 536870912)
+CALLFN(·call1073741824, 1073741824)
+
+TEXT runtime·procyield(SB),NOSPLIT,$0-0
+ MOVL cycles+0(FP), AX
+again:
+ PAUSE
+ SUBL $1, AX
+ JNZ again
+ RET
+
+
+TEXT ·publicationBarrier(SB),NOSPLIT,$0-0
+ // Stores are already ordered on x86, so this is just a
+ // compile barrier.
+ RET
+
+// func jmpdefer(fv *funcval, argp uintptr)
+// argp is a caller SP.
+// called from deferreturn.
+// 1. pop the caller
+// 2. sub 5 bytes from the callers return
+// 3. jmp to the argument
+TEXT runtime·jmpdefer(SB), NOSPLIT, $0-16
+ MOVQ fv+0(FP), DX // fn
+ MOVQ argp+8(FP), BX // caller sp
+ LEAQ -8(BX), SP // caller sp after CALL
+ MOVQ -8(SP), BP // restore BP as if deferreturn returned (harmless if framepointers not in use)
+ SUBQ $5, (SP) // return to CALL again
+ MOVQ 0(DX), BX
+ JMP BX // but first run the deferred function
+
+// Save state of caller into g->sched. Smashes R8, R9.
+TEXT gosave<>(SB),NOSPLIT,$0
+ get_tls(R8)
+ MOVQ g(R8), R8
+ MOVQ 0(SP), R9
+ MOVQ R9, (g_sched+gobuf_pc)(R8)
+ LEAQ 8(SP), R9
+ MOVQ R9, (g_sched+gobuf_sp)(R8)
+ MOVQ $0, (g_sched+gobuf_ret)(R8)
+ MOVQ BP, (g_sched+gobuf_bp)(R8)
+ // Assert ctxt is zero. See func save.
+ MOVQ (g_sched+gobuf_ctxt)(R8), R9
+ TESTQ R9, R9
+ JZ 2(PC)
+ CALL runtime·badctxt(SB)
+ RET
+
+// func asmcgocall(fn, arg unsafe.Pointer) int32
+// Call fn(arg) on the scheduler stack,
+// aligned appropriately for the gcc ABI.
+// See cgocall.go for more details.
+TEXT ·asmcgocall(SB),NOSPLIT,$0-20
+ MOVQ fn+0(FP), AX
+ MOVQ arg+8(FP), BX
+
+ MOVQ SP, DX
+
+ // Figure out if we need to switch to m->g0 stack.
+ // We get called to create new OS threads too, and those
+ // come in on the m->g0 stack already.
+ get_tls(CX)
+ MOVQ g(CX), R8
+ CMPQ R8, $0
+ JEQ nosave
+ MOVQ g_m(R8), R8
+ MOVQ m_g0(R8), SI
+ MOVQ g(CX), DI
+ CMPQ SI, DI
+ JEQ nosave
+ MOVQ m_gsignal(R8), SI
+ CMPQ SI, DI
+ JEQ nosave
+
+ // Switch to system stack.
+ MOVQ m_g0(R8), SI
+ CALL gosave<>(SB)
+ MOVQ SI, g(CX)
+ MOVQ (g_sched+gobuf_sp)(SI), SP
+
+ // Now on a scheduling stack (a pthread-created stack).
+ // Make sure we have enough room for 4 stack-backed fast-call
+ // registers as per windows amd64 calling convention.
+ SUBQ $64, SP
+ ANDQ $~15, SP // alignment for gcc ABI
+ MOVQ DI, 48(SP) // save g
+ MOVQ (g_stack+stack_hi)(DI), DI
+ SUBQ DX, DI
+ MOVQ DI, 40(SP) // save depth in stack (can't just save SP, as stack might be copied during a callback)
+ MOVQ BX, DI // DI = first argument in AMD64 ABI
+ MOVQ BX, CX // CX = first argument in Win64
+ CALL AX
+
+ // Restore registers, g, stack pointer.
+ get_tls(CX)
+ MOVQ 48(SP), DI
+ MOVQ (g_stack+stack_hi)(DI), SI
+ SUBQ 40(SP), SI
+ MOVQ DI, g(CX)
+ MOVQ SI, SP
+
+ MOVL AX, ret+16(FP)
+ RET
+
+nosave:
+ // Running on a system stack, perhaps even without a g.
+ // Having no g can happen during thread creation or thread teardown
+ // (see needm/dropm on Solaris, for example).
+ // This code is like the above sequence but without saving/restoring g
+ // and without worrying about the stack moving out from under us
+ // (because we're on a system stack, not a goroutine stack).
+ // The above code could be used directly if already on a system stack,
+ // but then the only path through this code would be a rare case on Solaris.
+ // Using this code for all "already on system stack" calls exercises it more,
+ // which should help keep it correct.
+ SUBQ $64, SP
+ ANDQ $~15, SP
+ MOVQ $0, 48(SP) // where above code stores g, in case someone looks during debugging
+ MOVQ DX, 40(SP) // save original stack pointer
+ MOVQ BX, DI // DI = first argument in AMD64 ABI
+ MOVQ BX, CX // CX = first argument in Win64
+ CALL AX
+ MOVQ 40(SP), SI // restore original stack pointer
+ MOVQ SI, SP
+ MOVL AX, ret+16(FP)
+ RET
+
+// func cgocallback(fn, frame unsafe.Pointer, ctxt uintptr)
+// See cgocall.go for more details.
+TEXT ·cgocallback(SB),NOSPLIT,$24-24
+ NO_LOCAL_POINTERS
+
+ // If g is nil, Go did not create the current thread.
+ // Call needm to obtain one m for temporary use.
+ // In this case, we're running on the thread stack, so there's
+ // lots of space, but the linker doesn't know. Hide the call from
+ // the linker analysis by using an indirect call through AX.
+ get_tls(CX)
+#ifdef GOOS_windows
+ MOVL $0, BX
+ CMPQ CX, $0
+ JEQ 2(PC)
+#endif
+ MOVQ g(CX), BX
+ CMPQ BX, $0
+ JEQ needm
+ MOVQ g_m(BX), BX
+ MOVQ BX, savedm-8(SP) // saved copy of oldm
+ JMP havem
+needm:
+ MOVQ $runtime·needm(SB), AX
+ CALL AX
+ MOVQ $0, savedm-8(SP) // dropm on return
+ get_tls(CX)
+ MOVQ g(CX), BX
+ MOVQ g_m(BX), BX
+
+ // Set m->sched.sp = SP, so that if a panic happens
+ // during the function we are about to execute, it will
+ // have a valid SP to run on the g0 stack.
+ // The next few lines (after the havem label)
+ // will save this SP onto the stack and then write
+ // the same SP back to m->sched.sp. That seems redundant,
+ // but if an unrecovered panic happens, unwindm will
+ // restore the g->sched.sp from the stack location
+ // and then systemstack will try to use it. If we don't set it here,
+ // that restored SP will be uninitialized (typically 0) and
+ // will not be usable.
+ MOVQ m_g0(BX), SI
+ MOVQ SP, (g_sched+gobuf_sp)(SI)
+
+havem:
+ // Now there's a valid m, and we're running on its m->g0.
+ // Save current m->g0->sched.sp on stack and then set it to SP.
+ // Save current sp in m->g0->sched.sp in preparation for
+ // switch back to m->curg stack.
+ // NOTE: unwindm knows that the saved g->sched.sp is at 0(SP).
+ MOVQ m_g0(BX), SI
+ MOVQ (g_sched+gobuf_sp)(SI), AX
+ MOVQ AX, 0(SP)
+ MOVQ SP, (g_sched+gobuf_sp)(SI)
+
+ // Switch to m->curg stack and call runtime.cgocallbackg.
+ // Because we are taking over the execution of m->curg
+ // but *not* resuming what had been running, we need to
+ // save that information (m->curg->sched) so we can restore it.
+ // We can restore m->curg->sched.sp easily, because calling
+ // runtime.cgocallbackg leaves SP unchanged upon return.
+ // To save m->curg->sched.pc, we push it onto the curg stack and
+ // open a frame the same size as cgocallback's g0 frame.
+ // Once we switch to the curg stack, the pushed PC will appear
+ // to be the return PC of cgocallback, so that the traceback
+ // will seamlessly trace back into the earlier calls.
+ MOVQ m_curg(BX), SI
+ MOVQ SI, g(CX)
+ MOVQ (g_sched+gobuf_sp)(SI), DI // prepare stack as DI
+ MOVQ (g_sched+gobuf_pc)(SI), BX
+ MOVQ BX, -8(DI) // "push" return PC on the g stack
+ // Gather our arguments into registers.
+ MOVQ fn+0(FP), BX
+ MOVQ frame+8(FP), CX
+ MOVQ ctxt+16(FP), DX
+ // Compute the size of the frame, including return PC and, if
+ // GOEXPERIMENT=framepointer, the saved base pointer
+ LEAQ fn+0(FP), AX
+ SUBQ SP, AX // AX is our actual frame size
+ SUBQ AX, DI // Allocate the same frame size on the g stack
+ MOVQ DI, SP
+
+ MOVQ BX, 0(SP)
+ MOVQ CX, 8(SP)
+ MOVQ DX, 16(SP)
+ CALL runtime·cgocallbackg(SB)
+
+ // Compute the size of the frame again. FP and SP have
+ // completely different values here than they did above,
+ // but only their difference matters.
+ LEAQ fn+0(FP), AX
+ SUBQ SP, AX
+
+ // Restore g->sched (== m->curg->sched) from saved values.
+ get_tls(CX)
+ MOVQ g(CX), SI
+ MOVQ SP, DI
+ ADDQ AX, DI
+ MOVQ -8(DI), BX
+ MOVQ BX, (g_sched+gobuf_pc)(SI)
+ MOVQ DI, (g_sched+gobuf_sp)(SI)
+
+ // Switch back to m->g0's stack and restore m->g0->sched.sp.
+ // (Unlike m->curg, the g0 goroutine never uses sched.pc,
+ // so we do not have to restore it.)
+ MOVQ g(CX), BX
+ MOVQ g_m(BX), BX
+ MOVQ m_g0(BX), SI
+ MOVQ SI, g(CX)
+ MOVQ (g_sched+gobuf_sp)(SI), SP
+ MOVQ 0(SP), AX
+ MOVQ AX, (g_sched+gobuf_sp)(SI)
+
+ // If the m on entry was nil, we called needm above to borrow an m
+ // for the duration of the call. Since the call is over, return it with dropm.
+ MOVQ savedm-8(SP), BX
+ CMPQ BX, $0
+ JNE 3(PC)
+ MOVQ $runtime·dropm(SB), AX
+ CALL AX
+
+ // Done!
+ RET
+
+// func setg(gg *g)
+// set g. for use by needm.
+TEXT runtime·setg(SB), NOSPLIT, $0-8
+ MOVQ gg+0(FP), BX
+#ifdef GOOS_windows
+ CMPQ BX, $0
+ JNE settls
+ MOVQ $0, 0x28(GS)
+ RET
+settls:
+ MOVQ g_m(BX), AX
+ LEAQ m_tls(AX), AX
+ MOVQ AX, 0x28(GS)
+#endif
+ get_tls(CX)
+ MOVQ BX, g(CX)
+ RET
+
+// void setg_gcc(G*); set g called from gcc.
+TEXT setg_gcc<>(SB),NOSPLIT,$0
+ get_tls(AX)
+ MOVQ DI, g(AX)
+ RET
+
+TEXT runtime·abort(SB),NOSPLIT,$0-0
+ INT $3
+loop:
+ JMP loop
+
+// check that SP is in range [g->stack.lo, g->stack.hi)
+TEXT runtime·stackcheck(SB), NOSPLIT, $0-0
+ get_tls(CX)
+ MOVQ g(CX), AX
+ CMPQ (g_stack+stack_hi)(AX), SP
+ JHI 2(PC)
+ CALL runtime·abort(SB)
+ CMPQ SP, (g_stack+stack_lo)(AX)
+ JHI 2(PC)
+ CALL runtime·abort(SB)
+ RET
+
+// func cputicks() int64
+TEXT runtime·cputicks(SB),NOSPLIT,$0-0
+ CMPB runtime·lfenceBeforeRdtsc(SB), $1
+ JNE mfence
+ LFENCE
+ JMP done
+mfence:
+ MFENCE
+done:
+ RDTSC
+ SHLQ $32, DX
+ ADDQ DX, AX
+ MOVQ AX, ret+0(FP)
+ RET
+
+// func memhash(p unsafe.Pointer, h, s uintptr) uintptr
+// hash function using AES hardware instructions
+TEXT runtime·memhash(SB),NOSPLIT,$0-32
+ CMPB runtime·useAeshash(SB), $0
+ JEQ noaes
+ MOVQ p+0(FP), AX // ptr to data
+ MOVQ s+16(FP), CX // size
+ LEAQ ret+24(FP), DX
+ JMP aeshashbody<>(SB)
+noaes:
+ JMP runtime·memhashFallback(SB)
+
+// func strhash(p unsafe.Pointer, h uintptr) uintptr
+TEXT runtime·strhash(SB),NOSPLIT,$0-24
+ CMPB runtime·useAeshash(SB), $0
+ JEQ noaes
+ MOVQ p+0(FP), AX // ptr to string struct
+ MOVQ 8(AX), CX // length of string
+ MOVQ (AX), AX // string data
+ LEAQ ret+16(FP), DX
+ JMP aeshashbody<>(SB)
+noaes:
+ JMP runtime·strhashFallback(SB)
+
+// AX: data
+// CX: length
+// DX: address to put return value
+TEXT aeshashbody<>(SB),NOSPLIT,$0-0
+ // Fill an SSE register with our seeds.
+ MOVQ h+8(FP), X0 // 64 bits of per-table hash seed
+ PINSRW $4, CX, X0 // 16 bits of length
+ PSHUFHW $0, X0, X0 // repeat length 4 times total
+ MOVO X0, X1 // save unscrambled seed
+ PXOR runtime·aeskeysched(SB), X0 // xor in per-process seed
+ AESENC X0, X0 // scramble seed
+
+ CMPQ CX, $16
+ JB aes0to15
+ JE aes16
+ CMPQ CX, $32
+ JBE aes17to32
+ CMPQ CX, $64
+ JBE aes33to64
+ CMPQ CX, $128
+ JBE aes65to128
+ JMP aes129plus
+
+aes0to15:
+ TESTQ CX, CX
+ JE aes0
+
+ ADDQ $16, AX
+ TESTW $0xff0, AX
+ JE endofpage
+
+ // 16 bytes loaded at this address won't cross
+ // a page boundary, so we can load it directly.
+ MOVOU -16(AX), X1
+ ADDQ CX, CX
+ MOVQ $masks<>(SB), AX
+ PAND (AX)(CX*8), X1
+final1:
+ PXOR X0, X1 // xor data with seed
+ AESENC X1, X1 // scramble combo 3 times
+ AESENC X1, X1
+ AESENC X1, X1
+ MOVQ X1, (DX)
+ RET
+
+endofpage:
+ // address ends in 1111xxxx. Might be up against
+ // a page boundary, so load ending at last byte.
+ // Then shift bytes down using pshufb.
+ MOVOU -32(AX)(CX*1), X1
+ ADDQ CX, CX
+ MOVQ $shifts<>(SB), AX
+ PSHUFB (AX)(CX*8), X1
+ JMP final1
+
+aes0:
+ // Return scrambled input seed
+ AESENC X0, X0
+ MOVQ X0, (DX)
+ RET
+
+aes16:
+ MOVOU (AX), X1
+ JMP final1
+
+aes17to32:
+ // make second starting seed
+ PXOR runtime·aeskeysched+16(SB), X1
+ AESENC X1, X1
+
+ // load data to be hashed
+ MOVOU (AX), X2
+ MOVOU -16(AX)(CX*1), X3
+
+ // xor with seed
+ PXOR X0, X2
+ PXOR X1, X3
+
+ // scramble 3 times
+ AESENC X2, X2
+ AESENC X3, X3
+ AESENC X2, X2
+ AESENC X3, X3
+ AESENC X2, X2
+ AESENC X3, X3
+
+ // combine results
+ PXOR X3, X2
+ MOVQ X2, (DX)
+ RET
+
+aes33to64:
+ // make 3 more starting seeds
+ MOVO X1, X2
+ MOVO X1, X3
+ PXOR runtime·aeskeysched+16(SB), X1
+ PXOR runtime·aeskeysched+32(SB), X2
+ PXOR runtime·aeskeysched+48(SB), X3
+ AESENC X1, X1
+ AESENC X2, X2
+ AESENC X3, X3
+
+ MOVOU (AX), X4
+ MOVOU 16(AX), X5
+ MOVOU -32(AX)(CX*1), X6
+ MOVOU -16(AX)(CX*1), X7
+
+ PXOR X0, X4
+ PXOR X1, X5
+ PXOR X2, X6
+ PXOR X3, X7
+
+ AESENC X4, X4
+ AESENC X5, X5
+ AESENC X6, X6
+ AESENC X7, X7
+
+ AESENC X4, X4
+ AESENC X5, X5
+ AESENC X6, X6
+ AESENC X7, X7
+
+ AESENC X4, X4
+ AESENC X5, X5
+ AESENC X6, X6
+ AESENC X7, X7
+
+ PXOR X6, X4
+ PXOR X7, X5
+ PXOR X5, X4
+ MOVQ X4, (DX)
+ RET
+
+aes65to128:
+ // make 7 more starting seeds
+ MOVO X1, X2
+ MOVO X1, X3
+ MOVO X1, X4
+ MOVO X1, X5
+ MOVO X1, X6
+ MOVO X1, X7
+ PXOR runtime·aeskeysched+16(SB), X1
+ PXOR runtime·aeskeysched+32(SB), X2
+ PXOR runtime·aeskeysched+48(SB), X3
+ PXOR runtime·aeskeysched+64(SB), X4
+ PXOR runtime·aeskeysched+80(SB), X5
+ PXOR runtime·aeskeysched+96(SB), X6
+ PXOR runtime·aeskeysched+112(SB), X7
+ AESENC X1, X1
+ AESENC X2, X2
+ AESENC X3, X3
+ AESENC X4, X4
+ AESENC X5, X5
+ AESENC X6, X6
+ AESENC X7, X7
+
+ // load data
+ MOVOU (AX), X8
+ MOVOU 16(AX), X9
+ MOVOU 32(AX), X10
+ MOVOU 48(AX), X11
+ MOVOU -64(AX)(CX*1), X12
+ MOVOU -48(AX)(CX*1), X13
+ MOVOU -32(AX)(CX*1), X14
+ MOVOU -16(AX)(CX*1), X15
+
+ // xor with seed
+ PXOR X0, X8
+ PXOR X1, X9
+ PXOR X2, X10
+ PXOR X3, X11
+ PXOR X4, X12
+ PXOR X5, X13
+ PXOR X6, X14
+ PXOR X7, X15
+
+ // scramble 3 times
+ AESENC X8, X8
+ AESENC X9, X9
+ AESENC X10, X10
+ AESENC X11, X11
+ AESENC X12, X12
+ AESENC X13, X13
+ AESENC X14, X14
+ AESENC X15, X15
+
+ AESENC X8, X8
+ AESENC X9, X9
+ AESENC X10, X10
+ AESENC X11, X11
+ AESENC X12, X12
+ AESENC X13, X13
+ AESENC X14, X14
+ AESENC X15, X15
+
+ AESENC X8, X8
+ AESENC X9, X9
+ AESENC X10, X10
+ AESENC X11, X11
+ AESENC X12, X12
+ AESENC X13, X13
+ AESENC X14, X14
+ AESENC X15, X15
+
+ // combine results
+ PXOR X12, X8
+ PXOR X13, X9
+ PXOR X14, X10
+ PXOR X15, X11
+ PXOR X10, X8
+ PXOR X11, X9
+ PXOR X9, X8
+ MOVQ X8, (DX)
+ RET
+
+aes129plus:
+ // make 7 more starting seeds
+ MOVO X1, X2
+ MOVO X1, X3
+ MOVO X1, X4
+ MOVO X1, X5
+ MOVO X1, X6
+ MOVO X1, X7
+ PXOR runtime·aeskeysched+16(SB), X1
+ PXOR runtime·aeskeysched+32(SB), X2
+ PXOR runtime·aeskeysched+48(SB), X3
+ PXOR runtime·aeskeysched+64(SB), X4
+ PXOR runtime·aeskeysched+80(SB), X5
+ PXOR runtime·aeskeysched+96(SB), X6
+ PXOR runtime·aeskeysched+112(SB), X7
+ AESENC X1, X1
+ AESENC X2, X2
+ AESENC X3, X3
+ AESENC X4, X4
+ AESENC X5, X5
+ AESENC X6, X6
+ AESENC X7, X7
+
+ // start with last (possibly overlapping) block
+ MOVOU -128(AX)(CX*1), X8
+ MOVOU -112(AX)(CX*1), X9
+ MOVOU -96(AX)(CX*1), X10
+ MOVOU -80(AX)(CX*1), X11
+ MOVOU -64(AX)(CX*1), X12
+ MOVOU -48(AX)(CX*1), X13
+ MOVOU -32(AX)(CX*1), X14
+ MOVOU -16(AX)(CX*1), X15
+
+ // xor in seed
+ PXOR X0, X8
+ PXOR X1, X9
+ PXOR X2, X10
+ PXOR X3, X11
+ PXOR X4, X12
+ PXOR X5, X13
+ PXOR X6, X14
+ PXOR X7, X15
+
+ // compute number of remaining 128-byte blocks
+ DECQ CX
+ SHRQ $7, CX
+
+aesloop:
+ // scramble state
+ AESENC X8, X8
+ AESENC X9, X9
+ AESENC X10, X10
+ AESENC X11, X11
+ AESENC X12, X12
+ AESENC X13, X13
+ AESENC X14, X14
+ AESENC X15, X15
+
+ // scramble state, xor in a block
+ MOVOU (AX), X0
+ MOVOU 16(AX), X1
+ MOVOU 32(AX), X2
+ MOVOU 48(AX), X3
+ AESENC X0, X8
+ AESENC X1, X9
+ AESENC X2, X10
+ AESENC X3, X11
+ MOVOU 64(AX), X4
+ MOVOU 80(AX), X5
+ MOVOU 96(AX), X6
+ MOVOU 112(AX), X7
+ AESENC X4, X12
+ AESENC X5, X13
+ AESENC X6, X14
+ AESENC X7, X15
+
+ ADDQ $128, AX
+ DECQ CX
+ JNE aesloop
+
+ // 3 more scrambles to finish
+ AESENC X8, X8
+ AESENC X9, X9
+ AESENC X10, X10
+ AESENC X11, X11
+ AESENC X12, X12
+ AESENC X13, X13
+ AESENC X14, X14
+ AESENC X15, X15
+ AESENC X8, X8
+ AESENC X9, X9
+ AESENC X10, X10
+ AESENC X11, X11
+ AESENC X12, X12
+ AESENC X13, X13
+ AESENC X14, X14
+ AESENC X15, X15
+ AESENC X8, X8
+ AESENC X9, X9
+ AESENC X10, X10
+ AESENC X11, X11
+ AESENC X12, X12
+ AESENC X13, X13
+ AESENC X14, X14
+ AESENC X15, X15
+
+ PXOR X12, X8
+ PXOR X13, X9
+ PXOR X14, X10
+ PXOR X15, X11
+ PXOR X10, X8
+ PXOR X11, X9
+ PXOR X9, X8
+ MOVQ X8, (DX)
+ RET
+
+// func memhash32(p unsafe.Pointer, h uintptr) uintptr
+TEXT runtime·memhash32(SB),NOSPLIT,$0-24
+ CMPB runtime·useAeshash(SB), $0
+ JEQ noaes
+ MOVQ p+0(FP), AX // ptr to data
+ MOVQ h+8(FP), X0 // seed
+ PINSRD $2, (AX), X0 // data
+ AESENC runtime·aeskeysched+0(SB), X0
+ AESENC runtime·aeskeysched+16(SB), X0
+ AESENC runtime·aeskeysched+32(SB), X0
+ MOVQ X0, ret+16(FP)
+ RET
+noaes:
+ JMP runtime·memhash32Fallback(SB)
+
+// func memhash64(p unsafe.Pointer, h uintptr) uintptr
+TEXT runtime·memhash64(SB),NOSPLIT,$0-24
+ CMPB runtime·useAeshash(SB), $0
+ JEQ noaes
+ MOVQ p+0(FP), AX // ptr to data
+ MOVQ h+8(FP), X0 // seed
+ PINSRQ $1, (AX), X0 // data
+ AESENC runtime·aeskeysched+0(SB), X0
+ AESENC runtime·aeskeysched+16(SB), X0
+ AESENC runtime·aeskeysched+32(SB), X0
+ MOVQ X0, ret+16(FP)
+ RET
+noaes:
+ JMP runtime·memhash64Fallback(SB)
+
+// simple mask to get rid of data in the high part of the register.
+DATA masks<>+0x00(SB)/8, $0x0000000000000000
+DATA masks<>+0x08(SB)/8, $0x0000000000000000
+DATA masks<>+0x10(SB)/8, $0x00000000000000ff
+DATA masks<>+0x18(SB)/8, $0x0000000000000000
+DATA masks<>+0x20(SB)/8, $0x000000000000ffff
+DATA masks<>+0x28(SB)/8, $0x0000000000000000
+DATA masks<>+0x30(SB)/8, $0x0000000000ffffff
+DATA masks<>+0x38(SB)/8, $0x0000000000000000
+DATA masks<>+0x40(SB)/8, $0x00000000ffffffff
+DATA masks<>+0x48(SB)/8, $0x0000000000000000
+DATA masks<>+0x50(SB)/8, $0x000000ffffffffff
+DATA masks<>+0x58(SB)/8, $0x0000000000000000
+DATA masks<>+0x60(SB)/8, $0x0000ffffffffffff
+DATA masks<>+0x68(SB)/8, $0x0000000000000000
+DATA masks<>+0x70(SB)/8, $0x00ffffffffffffff
+DATA masks<>+0x78(SB)/8, $0x0000000000000000
+DATA masks<>+0x80(SB)/8, $0xffffffffffffffff
+DATA masks<>+0x88(SB)/8, $0x0000000000000000
+DATA masks<>+0x90(SB)/8, $0xffffffffffffffff
+DATA masks<>+0x98(SB)/8, $0x00000000000000ff
+DATA masks<>+0xa0(SB)/8, $0xffffffffffffffff
+DATA masks<>+0xa8(SB)/8, $0x000000000000ffff
+DATA masks<>+0xb0(SB)/8, $0xffffffffffffffff
+DATA masks<>+0xb8(SB)/8, $0x0000000000ffffff
+DATA masks<>+0xc0(SB)/8, $0xffffffffffffffff
+DATA masks<>+0xc8(SB)/8, $0x00000000ffffffff
+DATA masks<>+0xd0(SB)/8, $0xffffffffffffffff
+DATA masks<>+0xd8(SB)/8, $0x000000ffffffffff
+DATA masks<>+0xe0(SB)/8, $0xffffffffffffffff
+DATA masks<>+0xe8(SB)/8, $0x0000ffffffffffff
+DATA masks<>+0xf0(SB)/8, $0xffffffffffffffff
+DATA masks<>+0xf8(SB)/8, $0x00ffffffffffffff
+GLOBL masks<>(SB),RODATA,$256
+
+// func checkASM() bool
+TEXT ·checkASM(SB),NOSPLIT,$0-1
+ // check that masks<>(SB) and shifts<>(SB) are aligned to 16-byte
+ MOVQ $masks<>(SB), AX
+ MOVQ $shifts<>(SB), BX
+ ORQ BX, AX
+ TESTQ $15, AX
+ SETEQ ret+0(FP)
+ RET
+
+// these are arguments to pshufb. They move data down from
+// the high bytes of the register to the low bytes of the register.
+// index is how many bytes to move.
+DATA shifts<>+0x00(SB)/8, $0x0000000000000000
+DATA shifts<>+0x08(SB)/8, $0x0000000000000000
+DATA shifts<>+0x10(SB)/8, $0xffffffffffffff0f
+DATA shifts<>+0x18(SB)/8, $0xffffffffffffffff
+DATA shifts<>+0x20(SB)/8, $0xffffffffffff0f0e
+DATA shifts<>+0x28(SB)/8, $0xffffffffffffffff
+DATA shifts<>+0x30(SB)/8, $0xffffffffff0f0e0d
+DATA shifts<>+0x38(SB)/8, $0xffffffffffffffff
+DATA shifts<>+0x40(SB)/8, $0xffffffff0f0e0d0c
+DATA shifts<>+0x48(SB)/8, $0xffffffffffffffff
+DATA shifts<>+0x50(SB)/8, $0xffffff0f0e0d0c0b
+DATA shifts<>+0x58(SB)/8, $0xffffffffffffffff
+DATA shifts<>+0x60(SB)/8, $0xffff0f0e0d0c0b0a
+DATA shifts<>+0x68(SB)/8, $0xffffffffffffffff
+DATA shifts<>+0x70(SB)/8, $0xff0f0e0d0c0b0a09
+DATA shifts<>+0x78(SB)/8, $0xffffffffffffffff
+DATA shifts<>+0x80(SB)/8, $0x0f0e0d0c0b0a0908
+DATA shifts<>+0x88(SB)/8, $0xffffffffffffffff
+DATA shifts<>+0x90(SB)/8, $0x0e0d0c0b0a090807
+DATA shifts<>+0x98(SB)/8, $0xffffffffffffff0f
+DATA shifts<>+0xa0(SB)/8, $0x0d0c0b0a09080706
+DATA shifts<>+0xa8(SB)/8, $0xffffffffffff0f0e
+DATA shifts<>+0xb0(SB)/8, $0x0c0b0a0908070605
+DATA shifts<>+0xb8(SB)/8, $0xffffffffff0f0e0d
+DATA shifts<>+0xc0(SB)/8, $0x0b0a090807060504
+DATA shifts<>+0xc8(SB)/8, $0xffffffff0f0e0d0c
+DATA shifts<>+0xd0(SB)/8, $0x0a09080706050403
+DATA shifts<>+0xd8(SB)/8, $0xffffff0f0e0d0c0b
+DATA shifts<>+0xe0(SB)/8, $0x0908070605040302
+DATA shifts<>+0xe8(SB)/8, $0xffff0f0e0d0c0b0a
+DATA shifts<>+0xf0(SB)/8, $0x0807060504030201
+DATA shifts<>+0xf8(SB)/8, $0xff0f0e0d0c0b0a09
+GLOBL shifts<>(SB),RODATA,$256
+
+TEXT runtime·return0(SB), NOSPLIT, $0
+ MOVL $0, AX
+ RET
+
+
+// Called from cgo wrappers, this function returns g->m->curg.stack.hi.
+// Must obey the gcc calling convention.
+TEXT _cgo_topofstack(SB),NOSPLIT,$0
+ get_tls(CX)
+ MOVQ g(CX), AX
+ MOVQ g_m(AX), AX
+ MOVQ m_curg(AX), AX
+ MOVQ (g_stack+stack_hi)(AX), AX
+ RET
+
+// The top-most function running on a goroutine
+// returns to goexit+PCQuantum. Defined as ABIInternal
+// so as to make it identifiable to traceback (this
+// function it used as a sentinel; traceback wants to
+// see the func PC, not a wrapper PC).
+TEXT runtime·goexit<ABIInternal>(SB),NOSPLIT,$0-0
+ BYTE $0x90 // NOP
+ CALL runtime·goexit1(SB) // does not return
+ // traceback from goexit1 must hit code range of goexit
+ BYTE $0x90 // NOP
+
+// This is called from .init_array and follows the platform, not Go, ABI.
+TEXT runtime·addmoduledata(SB),NOSPLIT,$0-0
+ PUSHQ R15 // The access to global variables below implicitly uses R15, which is callee-save
+ MOVQ runtime·lastmoduledatap(SB), AX
+ MOVQ DI, moduledata_next(AX)
+ MOVQ DI, runtime·lastmoduledatap(SB)
+ POPQ R15
+ RET
+
+// gcWriteBarrier performs a heap pointer write and informs the GC.
+//
+// gcWriteBarrier does NOT follow the Go ABI. It takes two arguments:
+// - DI is the destination of the write
+// - AX is the value being written at DI
+// It clobbers FLAGS. It does not clobber any general-purpose registers,
+// but may clobber others (e.g., SSE registers).
+// Defined as ABIInternal since it does not use the stack-based Go ABI.
+TEXT runtime·gcWriteBarrier<ABIInternal>(SB),NOSPLIT,$120
+ // Save the registers clobbered by the fast path. This is slightly
+ // faster than having the caller spill these.
+ MOVQ R14, 104(SP)
+ MOVQ R13, 112(SP)
+ // TODO: Consider passing g.m.p in as an argument so they can be shared
+ // across a sequence of write barriers.
+ get_tls(R13)
+ MOVQ g(R13), R13
+ MOVQ g_m(R13), R13
+ MOVQ m_p(R13), R13
+ MOVQ (p_wbBuf+wbBuf_next)(R13), R14
+ // Increment wbBuf.next position.
+ LEAQ 16(R14), R14
+ MOVQ R14, (p_wbBuf+wbBuf_next)(R13)
+ CMPQ R14, (p_wbBuf+wbBuf_end)(R13)
+ // Record the write.
+ MOVQ AX, -16(R14) // Record value
+ // Note: This turns bad pointer writes into bad
+ // pointer reads, which could be confusing. We could avoid
+ // reading from obviously bad pointers, which would
+ // take care of the vast majority of these. We could
+ // patch this up in the signal handler, or use XCHG to
+ // combine the read and the write.
+ MOVQ (DI), R13
+ MOVQ R13, -8(R14) // Record *slot
+ // Is the buffer full? (flags set in CMPQ above)
+ JEQ flush
+ret:
+ MOVQ 104(SP), R14
+ MOVQ 112(SP), R13
+ // Do the write.
+ MOVQ AX, (DI)
+ RET
+
+flush:
+ // Save all general purpose registers since these could be
+ // clobbered by wbBufFlush and were not saved by the caller.
+ // It is possible for wbBufFlush to clobber other registers
+ // (e.g., SSE registers), but the compiler takes care of saving
+ // those in the caller if necessary. This strikes a balance
+ // with registers that are likely to be used.
+ //
+ // We don't have type information for these, but all code under
+ // here is NOSPLIT, so nothing will observe these.
+ //
+ // TODO: We could strike a different balance; e.g., saving X0
+ // and not saving GP registers that are less likely to be used.
+ MOVQ DI, 0(SP) // Also first argument to wbBufFlush
+ MOVQ AX, 8(SP) // Also second argument to wbBufFlush
+ MOVQ BX, 16(SP)
+ MOVQ CX, 24(SP)
+ MOVQ DX, 32(SP)
+ // DI already saved
+ MOVQ SI, 40(SP)
+ MOVQ BP, 48(SP)
+ MOVQ R8, 56(SP)
+ MOVQ R9, 64(SP)
+ MOVQ R10, 72(SP)
+ MOVQ R11, 80(SP)
+ MOVQ R12, 88(SP)
+ // R13 already saved
+ // R14 already saved
+ MOVQ R15, 96(SP)
+
+ // This takes arguments DI and AX
+ CALL runtime·wbBufFlush(SB)
+
+ MOVQ 0(SP), DI
+ MOVQ 8(SP), AX
+ MOVQ 16(SP), BX
+ MOVQ 24(SP), CX
+ MOVQ 32(SP), DX
+ MOVQ 40(SP), SI
+ MOVQ 48(SP), BP
+ MOVQ 56(SP), R8
+ MOVQ 64(SP), R9
+ MOVQ 72(SP), R10
+ MOVQ 80(SP), R11
+ MOVQ 88(SP), R12
+ MOVQ 96(SP), R15
+ JMP ret
+
+// gcWriteBarrierCX is gcWriteBarrier, but with args in DI and CX.
+// Defined as ABIInternal since it does not use the stable Go ABI.
+TEXT runtime·gcWriteBarrierCX<ABIInternal>(SB),NOSPLIT,$0
+ XCHGQ CX, AX
+ CALL runtime·gcWriteBarrier<ABIInternal>(SB)
+ XCHGQ CX, AX
+ RET
+
+// gcWriteBarrierDX is gcWriteBarrier, but with args in DI and DX.
+// Defined as ABIInternal since it does not use the stable Go ABI.
+TEXT runtime·gcWriteBarrierDX<ABIInternal>(SB),NOSPLIT,$0
+ XCHGQ DX, AX
+ CALL runtime·gcWriteBarrier<ABIInternal>(SB)
+ XCHGQ DX, AX
+ RET
+
+// gcWriteBarrierBX is gcWriteBarrier, but with args in DI and BX.
+// Defined as ABIInternal since it does not use the stable Go ABI.
+TEXT runtime·gcWriteBarrierBX<ABIInternal>(SB),NOSPLIT,$0
+ XCHGQ BX, AX
+ CALL runtime·gcWriteBarrier<ABIInternal>(SB)
+ XCHGQ BX, AX
+ RET
+
+// gcWriteBarrierBP is gcWriteBarrier, but with args in DI and BP.
+// Defined as ABIInternal since it does not use the stable Go ABI.
+TEXT runtime·gcWriteBarrierBP<ABIInternal>(SB),NOSPLIT,$0
+ XCHGQ BP, AX
+ CALL runtime·gcWriteBarrier<ABIInternal>(SB)
+ XCHGQ BP, AX
+ RET
+
+// gcWriteBarrierSI is gcWriteBarrier, but with args in DI and SI.
+// Defined as ABIInternal since it does not use the stable Go ABI.
+TEXT runtime·gcWriteBarrierSI<ABIInternal>(SB),NOSPLIT,$0
+ XCHGQ SI, AX
+ CALL runtime·gcWriteBarrier<ABIInternal>(SB)
+ XCHGQ SI, AX
+ RET
+
+// gcWriteBarrierR8 is gcWriteBarrier, but with args in DI and R8.
+// Defined as ABIInternal since it does not use the stable Go ABI.
+TEXT runtime·gcWriteBarrierR8<ABIInternal>(SB),NOSPLIT,$0
+ XCHGQ R8, AX
+ CALL runtime·gcWriteBarrier<ABIInternal>(SB)
+ XCHGQ R8, AX
+ RET
+
+// gcWriteBarrierR9 is gcWriteBarrier, but with args in DI and R9.
+// Defined as ABIInternal since it does not use the stable Go ABI.
+TEXT runtime·gcWriteBarrierR9<ABIInternal>(SB),NOSPLIT,$0
+ XCHGQ R9, AX
+ CALL runtime·gcWriteBarrier<ABIInternal>(SB)
+ XCHGQ R9, AX
+ RET
+
+DATA debugCallFrameTooLarge<>+0x00(SB)/20, $"call frame too large"
+GLOBL debugCallFrameTooLarge<>(SB), RODATA, $20 // Size duplicated below
+
+// debugCallV1 is the entry point for debugger-injected function
+// calls on running goroutines. It informs the runtime that a
+// debug call has been injected and creates a call frame for the
+// debugger to fill in.
+//
+// To inject a function call, a debugger should:
+// 1. Check that the goroutine is in state _Grunning and that
+// there are at least 256 bytes free on the stack.
+// 2. Push the current PC on the stack (updating SP).
+// 3. Write the desired argument frame size at SP-16 (using the SP
+// after step 2).
+// 4. Save all machine registers (including flags and XMM reigsters)
+// so they can be restored later by the debugger.
+// 5. Set the PC to debugCallV1 and resume execution.
+//
+// If the goroutine is in state _Grunnable, then it's not generally
+// safe to inject a call because it may return out via other runtime
+// operations. Instead, the debugger should unwind the stack to find
+// the return to non-runtime code, add a temporary breakpoint there,
+// and inject the call once that breakpoint is hit.
+//
+// If the goroutine is in any other state, it's not safe to inject a call.
+//
+// This function communicates back to the debugger by setting RAX and
+// invoking INT3 to raise a breakpoint signal. See the comments in the
+// implementation for the protocol the debugger is expected to
+// follow. InjectDebugCall in the runtime tests demonstrates this protocol.
+//
+// The debugger must ensure that any pointers passed to the function
+// obey escape analysis requirements. Specifically, it must not pass
+// a stack pointer to an escaping argument. debugCallV1 cannot check
+// this invariant.
+//
+// This is ABIInternal because Go code injects its PC directly into new
+// goroutine stacks.
+TEXT runtime·debugCallV1<ABIInternal>(SB),NOSPLIT,$152-0
+ // Save all registers that may contain pointers so they can be
+ // conservatively scanned.
+ //
+ // We can't do anything that might clobber any of these
+ // registers before this.
+ MOVQ R15, r15-(14*8+8)(SP)
+ MOVQ R14, r14-(13*8+8)(SP)
+ MOVQ R13, r13-(12*8+8)(SP)
+ MOVQ R12, r12-(11*8+8)(SP)
+ MOVQ R11, r11-(10*8+8)(SP)
+ MOVQ R10, r10-(9*8+8)(SP)
+ MOVQ R9, r9-(8*8+8)(SP)
+ MOVQ R8, r8-(7*8+8)(SP)
+ MOVQ DI, di-(6*8+8)(SP)
+ MOVQ SI, si-(5*8+8)(SP)
+ MOVQ BP, bp-(4*8+8)(SP)
+ MOVQ BX, bx-(3*8+8)(SP)
+ MOVQ DX, dx-(2*8+8)(SP)
+ // Save the frame size before we clobber it. Either of the last
+ // saves could clobber this depending on whether there's a saved BP.
+ MOVQ frameSize-24(FP), DX // aka -16(RSP) before prologue
+ MOVQ CX, cx-(1*8+8)(SP)
+ MOVQ AX, ax-(0*8+8)(SP)
+
+ // Save the argument frame size.
+ MOVQ DX, frameSize-128(SP)
+
+ // Perform a safe-point check.
+ MOVQ retpc-8(FP), AX // Caller's PC
+ MOVQ AX, 0(SP)
+ CALL runtime·debugCallCheck(SB)
+ MOVQ 8(SP), AX
+ TESTQ AX, AX
+ JZ good
+ // The safety check failed. Put the reason string at the top
+ // of the stack.
+ MOVQ AX, 0(SP)
+ MOVQ 16(SP), AX
+ MOVQ AX, 8(SP)
+ // Set AX to 8 and invoke INT3. The debugger should get the
+ // reason a call can't be injected from the top of the stack
+ // and resume execution.
+ MOVQ $8, AX
+ BYTE $0xcc
+ JMP restore
+
+good:
+ // Registers are saved and it's safe to make a call.
+ // Open up a call frame, moving the stack if necessary.
+ //
+ // Once the frame is allocated, this will set AX to 0 and
+ // invoke INT3. The debugger should write the argument
+ // frame for the call at SP, push the trapping PC on the
+ // stack, set the PC to the function to call, set RCX to point
+ // to the closure (if a closure call), and resume execution.
+ //
+ // If the function returns, this will set AX to 1 and invoke
+ // INT3. The debugger can then inspect any return value saved
+ // on the stack at SP and resume execution again.
+ //
+ // If the function panics, this will set AX to 2 and invoke INT3.
+ // The interface{} value of the panic will be at SP. The debugger
+ // can inspect the panic value and resume execution again.
+#define DEBUG_CALL_DISPATCH(NAME,MAXSIZE) \
+ CMPQ AX, $MAXSIZE; \
+ JA 5(PC); \
+ MOVQ $NAME(SB), AX; \
+ MOVQ AX, 0(SP); \
+ CALL runtime·debugCallWrap(SB); \
+ JMP restore
+
+ MOVQ frameSize-128(SP), AX
+ DEBUG_CALL_DISPATCH(debugCall32<>, 32)
+ DEBUG_CALL_DISPATCH(debugCall64<>, 64)
+ DEBUG_CALL_DISPATCH(debugCall128<>, 128)
+ DEBUG_CALL_DISPATCH(debugCall256<>, 256)
+ DEBUG_CALL_DISPATCH(debugCall512<>, 512)
+ DEBUG_CALL_DISPATCH(debugCall1024<>, 1024)
+ DEBUG_CALL_DISPATCH(debugCall2048<>, 2048)
+ DEBUG_CALL_DISPATCH(debugCall4096<>, 4096)
+ DEBUG_CALL_DISPATCH(debugCall8192<>, 8192)
+ DEBUG_CALL_DISPATCH(debugCall16384<>, 16384)
+ DEBUG_CALL_DISPATCH(debugCall32768<>, 32768)
+ DEBUG_CALL_DISPATCH(debugCall65536<>, 65536)
+ // The frame size is too large. Report the error.
+ MOVQ $debugCallFrameTooLarge<>(SB), AX
+ MOVQ AX, 0(SP)
+ MOVQ $20, 8(SP) // length of debugCallFrameTooLarge string
+ MOVQ $8, AX
+ BYTE $0xcc
+ JMP restore
+
+restore:
+ // Calls and failures resume here.
+ //
+ // Set AX to 16 and invoke INT3. The debugger should restore
+ // all registers except RIP and RSP and resume execution.
+ MOVQ $16, AX
+ BYTE $0xcc
+ // We must not modify flags after this point.
+
+ // Restore pointer-containing registers, which may have been
+ // modified from the debugger's copy by stack copying.
+ MOVQ ax-(0*8+8)(SP), AX
+ MOVQ cx-(1*8+8)(SP), CX
+ MOVQ dx-(2*8+8)(SP), DX
+ MOVQ bx-(3*8+8)(SP), BX
+ MOVQ bp-(4*8+8)(SP), BP
+ MOVQ si-(5*8+8)(SP), SI
+ MOVQ di-(6*8+8)(SP), DI
+ MOVQ r8-(7*8+8)(SP), R8
+ MOVQ r9-(8*8+8)(SP), R9
+ MOVQ r10-(9*8+8)(SP), R10
+ MOVQ r11-(10*8+8)(SP), R11
+ MOVQ r12-(11*8+8)(SP), R12
+ MOVQ r13-(12*8+8)(SP), R13
+ MOVQ r14-(13*8+8)(SP), R14
+ MOVQ r15-(14*8+8)(SP), R15
+
+ RET
+
+// runtime.debugCallCheck assumes that functions defined with the
+// DEBUG_CALL_FN macro are safe points to inject calls.
+#define DEBUG_CALL_FN(NAME,MAXSIZE) \
+TEXT NAME(SB),WRAPPER,$MAXSIZE-0; \
+ NO_LOCAL_POINTERS; \
+ MOVQ $0, AX; \
+ BYTE $0xcc; \
+ MOVQ $1, AX; \
+ BYTE $0xcc; \
+ RET
+DEBUG_CALL_FN(debugCall32<>, 32)
+DEBUG_CALL_FN(debugCall64<>, 64)
+DEBUG_CALL_FN(debugCall128<>, 128)
+DEBUG_CALL_FN(debugCall256<>, 256)
+DEBUG_CALL_FN(debugCall512<>, 512)
+DEBUG_CALL_FN(debugCall1024<>, 1024)
+DEBUG_CALL_FN(debugCall2048<>, 2048)
+DEBUG_CALL_FN(debugCall4096<>, 4096)
+DEBUG_CALL_FN(debugCall8192<>, 8192)
+DEBUG_CALL_FN(debugCall16384<>, 16384)
+DEBUG_CALL_FN(debugCall32768<>, 32768)
+DEBUG_CALL_FN(debugCall65536<>, 65536)
+
+// func debugCallPanicked(val interface{})
+TEXT runtime·debugCallPanicked(SB),NOSPLIT,$16-16
+ // Copy the panic value to the top of stack.
+ MOVQ val_type+0(FP), AX
+ MOVQ AX, 0(SP)
+ MOVQ val_data+8(FP), AX
+ MOVQ AX, 8(SP)
+ MOVQ $2, AX
+ BYTE $0xcc
+ RET
+
+// Note: these functions use a special calling convention to save generated code space.
+// Arguments are passed in registers, but the space for those arguments are allocated
+// in the caller's stack frame. These stubs write the args into that stack space and
+// then tail call to the corresponding runtime handler.
+// The tail call makes these stubs disappear in backtraces.
+// Defined as ABIInternal since they do not use the stack-based Go ABI.
+TEXT runtime·panicIndex<ABIInternal>(SB),NOSPLIT,$0-16
+ MOVQ AX, x+0(FP)
+ MOVQ CX, y+8(FP)
+ JMP runtime·goPanicIndex(SB)
+TEXT runtime·panicIndexU<ABIInternal>(SB),NOSPLIT,$0-16
+ MOVQ AX, x+0(FP)
+ MOVQ CX, y+8(FP)
+ JMP runtime·goPanicIndexU(SB)
+TEXT runtime·panicSliceAlen<ABIInternal>(SB),NOSPLIT,$0-16
+ MOVQ CX, x+0(FP)
+ MOVQ DX, y+8(FP)
+ JMP runtime·goPanicSliceAlen(SB)
+TEXT runtime·panicSliceAlenU<ABIInternal>(SB),NOSPLIT,$0-16
+ MOVQ CX, x+0(FP)
+ MOVQ DX, y+8(FP)
+ JMP runtime·goPanicSliceAlenU(SB)
+TEXT runtime·panicSliceAcap<ABIInternal>(SB),NOSPLIT,$0-16
+ MOVQ CX, x+0(FP)
+ MOVQ DX, y+8(FP)
+ JMP runtime·goPanicSliceAcap(SB)
+TEXT runtime·panicSliceAcapU<ABIInternal>(SB),NOSPLIT,$0-16
+ MOVQ CX, x+0(FP)
+ MOVQ DX, y+8(FP)
+ JMP runtime·goPanicSliceAcapU(SB)
+TEXT runtime·panicSliceB<ABIInternal>(SB),NOSPLIT,$0-16
+ MOVQ AX, x+0(FP)
+ MOVQ CX, y+8(FP)
+ JMP runtime·goPanicSliceB(SB)
+TEXT runtime·panicSliceBU<ABIInternal>(SB),NOSPLIT,$0-16
+ MOVQ AX, x+0(FP)
+ MOVQ CX, y+8(FP)
+ JMP runtime·goPanicSliceBU(SB)
+TEXT runtime·panicSlice3Alen<ABIInternal>(SB),NOSPLIT,$0-16
+ MOVQ DX, x+0(FP)
+ MOVQ BX, y+8(FP)
+ JMP runtime·goPanicSlice3Alen(SB)
+TEXT runtime·panicSlice3AlenU<ABIInternal>(SB),NOSPLIT,$0-16
+ MOVQ DX, x+0(FP)
+ MOVQ BX, y+8(FP)
+ JMP runtime·goPanicSlice3AlenU(SB)
+TEXT runtime·panicSlice3Acap<ABIInternal>(SB),NOSPLIT,$0-16
+ MOVQ DX, x+0(FP)
+ MOVQ BX, y+8(FP)
+ JMP runtime·goPanicSlice3Acap(SB)
+TEXT runtime·panicSlice3AcapU<ABIInternal>(SB),NOSPLIT,$0-16
+ MOVQ DX, x+0(FP)
+ MOVQ BX, y+8(FP)
+ JMP runtime·goPanicSlice3AcapU(SB)
+TEXT runtime·panicSlice3B<ABIInternal>(SB),NOSPLIT,$0-16
+ MOVQ CX, x+0(FP)
+ MOVQ DX, y+8(FP)
+ JMP runtime·goPanicSlice3B(SB)
+TEXT runtime·panicSlice3BU<ABIInternal>(SB),NOSPLIT,$0-16
+ MOVQ CX, x+0(FP)
+ MOVQ DX, y+8(FP)
+ JMP runtime·goPanicSlice3BU(SB)
+TEXT runtime·panicSlice3C<ABIInternal>(SB),NOSPLIT,$0-16
+ MOVQ AX, x+0(FP)
+ MOVQ CX, y+8(FP)
+ JMP runtime·goPanicSlice3C(SB)
+TEXT runtime·panicSlice3CU<ABIInternal>(SB),NOSPLIT,$0-16
+ MOVQ AX, x+0(FP)
+ MOVQ CX, y+8(FP)
+ JMP runtime·goPanicSlice3CU(SB)
+
+#ifdef GOOS_android
+// Use the free TLS_SLOT_APP slot #2 on Android Q.
+// Earlier androids are set up in gcc_android.c.
+DATA runtime·tls_g+0(SB)/8, $16
+GLOBL runtime·tls_g+0(SB), NOPTR, $8
+#endif
+
+// The compiler and assembler's -spectre=ret mode rewrites
+// all indirect CALL AX / JMP AX instructions to be
+// CALL retpolineAX / JMP retpolineAX.
+// See https://support.google.com/faqs/answer/7625886.
+#define RETPOLINE(reg) \
+ /* CALL setup */ BYTE $0xE8; BYTE $(2+2); BYTE $0; BYTE $0; BYTE $0; \
+ /* nospec: */ \
+ /* PAUSE */ BYTE $0xF3; BYTE $0x90; \
+ /* JMP nospec */ BYTE $0xEB; BYTE $-(2+2); \
+ /* setup: */ \
+ /* MOVQ AX, 0(SP) */ BYTE $0x48|((reg&8)>>1); BYTE $0x89; \
+ BYTE $0x04|((reg&7)<<3); BYTE $0x24; \
+ /* RET */ BYTE $0xC3
+
+TEXT runtime·retpolineAX(SB),NOSPLIT,$0; RETPOLINE(0)
+TEXT runtime·retpolineCX(SB),NOSPLIT,$0; RETPOLINE(1)
+TEXT runtime·retpolineDX(SB),NOSPLIT,$0; RETPOLINE(2)
+TEXT runtime·retpolineBX(SB),NOSPLIT,$0; RETPOLINE(3)
+/* SP is 4, can't happen / magic encodings */
+TEXT runtime·retpolineBP(SB),NOSPLIT,$0; RETPOLINE(5)
+TEXT runtime·retpolineSI(SB),NOSPLIT,$0; RETPOLINE(6)
+TEXT runtime·retpolineDI(SB),NOSPLIT,$0; RETPOLINE(7)
+TEXT runtime·retpolineR8(SB),NOSPLIT,$0; RETPOLINE(8)
+TEXT runtime·retpolineR9(SB),NOSPLIT,$0; RETPOLINE(9)
+TEXT runtime·retpolineR10(SB),NOSPLIT,$0; RETPOLINE(10)
+TEXT runtime·retpolineR11(SB),NOSPLIT,$0; RETPOLINE(11)
+TEXT runtime·retpolineR12(SB),NOSPLIT,$0; RETPOLINE(12)
+TEXT runtime·retpolineR13(SB),NOSPLIT,$0; RETPOLINE(13)
+TEXT runtime·retpolineR14(SB),NOSPLIT,$0; RETPOLINE(14)
+TEXT runtime·retpolineR15(SB),NOSPLIT,$0; RETPOLINE(15)