summaryrefslogtreecommitdiffstats
path: root/src/runtime/malloc.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/runtime/malloc.go')
-rw-r--r--src/runtime/malloc.go1452
1 files changed, 1452 insertions, 0 deletions
diff --git a/src/runtime/malloc.go b/src/runtime/malloc.go
new file mode 100644
index 0000000..f20ded5
--- /dev/null
+++ b/src/runtime/malloc.go
@@ -0,0 +1,1452 @@
+// Copyright 2014 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Memory allocator.
+//
+// This was originally based on tcmalloc, but has diverged quite a bit.
+// http://goog-perftools.sourceforge.net/doc/tcmalloc.html
+
+// The main allocator works in runs of pages.
+// Small allocation sizes (up to and including 32 kB) are
+// rounded to one of about 70 size classes, each of which
+// has its own free set of objects of exactly that size.
+// Any free page of memory can be split into a set of objects
+// of one size class, which are then managed using a free bitmap.
+//
+// The allocator's data structures are:
+//
+// fixalloc: a free-list allocator for fixed-size off-heap objects,
+// used to manage storage used by the allocator.
+// mheap: the malloc heap, managed at page (8192-byte) granularity.
+// mspan: a run of in-use pages managed by the mheap.
+// mcentral: collects all spans of a given size class.
+// mcache: a per-P cache of mspans with free space.
+// mstats: allocation statistics.
+//
+// Allocating a small object proceeds up a hierarchy of caches:
+//
+// 1. Round the size up to one of the small size classes
+// and look in the corresponding mspan in this P's mcache.
+// Scan the mspan's free bitmap to find a free slot.
+// If there is a free slot, allocate it.
+// This can all be done without acquiring a lock.
+//
+// 2. If the mspan has no free slots, obtain a new mspan
+// from the mcentral's list of mspans of the required size
+// class that have free space.
+// Obtaining a whole span amortizes the cost of locking
+// the mcentral.
+//
+// 3. If the mcentral's mspan list is empty, obtain a run
+// of pages from the mheap to use for the mspan.
+//
+// 4. If the mheap is empty or has no page runs large enough,
+// allocate a new group of pages (at least 1MB) from the
+// operating system. Allocating a large run of pages
+// amortizes the cost of talking to the operating system.
+//
+// Sweeping an mspan and freeing objects on it proceeds up a similar
+// hierarchy:
+//
+// 1. If the mspan is being swept in response to allocation, it
+// is returned to the mcache to satisfy the allocation.
+//
+// 2. Otherwise, if the mspan still has allocated objects in it,
+// it is placed on the mcentral free list for the mspan's size
+// class.
+//
+// 3. Otherwise, if all objects in the mspan are free, the mspan's
+// pages are returned to the mheap and the mspan is now dead.
+//
+// Allocating and freeing a large object uses the mheap
+// directly, bypassing the mcache and mcentral.
+//
+// If mspan.needzero is false, then free object slots in the mspan are
+// already zeroed. Otherwise if needzero is true, objects are zeroed as
+// they are allocated. There are various benefits to delaying zeroing
+// this way:
+//
+// 1. Stack frame allocation can avoid zeroing altogether.
+//
+// 2. It exhibits better temporal locality, since the program is
+// probably about to write to the memory.
+//
+// 3. We don't zero pages that never get reused.
+
+// Virtual memory layout
+//
+// The heap consists of a set of arenas, which are 64MB on 64-bit and
+// 4MB on 32-bit (heapArenaBytes). Each arena's start address is also
+// aligned to the arena size.
+//
+// Each arena has an associated heapArena object that stores the
+// metadata for that arena: the heap bitmap for all words in the arena
+// and the span map for all pages in the arena. heapArena objects are
+// themselves allocated off-heap.
+//
+// Since arenas are aligned, the address space can be viewed as a
+// series of arena frames. The arena map (mheap_.arenas) maps from
+// arena frame number to *heapArena, or nil for parts of the address
+// space not backed by the Go heap. The arena map is structured as a
+// two-level array consisting of a "L1" arena map and many "L2" arena
+// maps; however, since arenas are large, on many architectures, the
+// arena map consists of a single, large L2 map.
+//
+// The arena map covers the entire possible address space, allowing
+// the Go heap to use any part of the address space. The allocator
+// attempts to keep arenas contiguous so that large spans (and hence
+// large objects) can cross arenas.
+
+package runtime
+
+import (
+ "runtime/internal/atomic"
+ "runtime/internal/math"
+ "runtime/internal/sys"
+ "unsafe"
+)
+
+const (
+ debugMalloc = false
+
+ maxTinySize = _TinySize
+ tinySizeClass = _TinySizeClass
+ maxSmallSize = _MaxSmallSize
+
+ pageShift = _PageShift
+ pageSize = _PageSize
+ pageMask = _PageMask
+ // By construction, single page spans of the smallest object class
+ // have the most objects per span.
+ maxObjsPerSpan = pageSize / 8
+
+ concurrentSweep = _ConcurrentSweep
+
+ _PageSize = 1 << _PageShift
+ _PageMask = _PageSize - 1
+
+ // _64bit = 1 on 64-bit systems, 0 on 32-bit systems
+ _64bit = 1 << (^uintptr(0) >> 63) / 2
+
+ // Tiny allocator parameters, see "Tiny allocator" comment in malloc.go.
+ _TinySize = 16
+ _TinySizeClass = int8(2)
+
+ _FixAllocChunk = 16 << 10 // Chunk size for FixAlloc
+
+ // Per-P, per order stack segment cache size.
+ _StackCacheSize = 32 * 1024
+
+ // Number of orders that get caching. Order 0 is FixedStack
+ // and each successive order is twice as large.
+ // We want to cache 2KB, 4KB, 8KB, and 16KB stacks. Larger stacks
+ // will be allocated directly.
+ // Since FixedStack is different on different systems, we
+ // must vary NumStackOrders to keep the same maximum cached size.
+ // OS | FixedStack | NumStackOrders
+ // -----------------+------------+---------------
+ // linux/darwin/bsd | 2KB | 4
+ // windows/32 | 4KB | 3
+ // windows/64 | 8KB | 2
+ // plan9 | 4KB | 3
+ _NumStackOrders = 4 - sys.PtrSize/4*sys.GoosWindows - 1*sys.GoosPlan9
+
+ // heapAddrBits is the number of bits in a heap address. On
+ // amd64, addresses are sign-extended beyond heapAddrBits. On
+ // other arches, they are zero-extended.
+ //
+ // On most 64-bit platforms, we limit this to 48 bits based on a
+ // combination of hardware and OS limitations.
+ //
+ // amd64 hardware limits addresses to 48 bits, sign-extended
+ // to 64 bits. Addresses where the top 16 bits are not either
+ // all 0 or all 1 are "non-canonical" and invalid. Because of
+ // these "negative" addresses, we offset addresses by 1<<47
+ // (arenaBaseOffset) on amd64 before computing indexes into
+ // the heap arenas index. In 2017, amd64 hardware added
+ // support for 57 bit addresses; however, currently only Linux
+ // supports this extension and the kernel will never choose an
+ // address above 1<<47 unless mmap is called with a hint
+ // address above 1<<47 (which we never do).
+ //
+ // arm64 hardware (as of ARMv8) limits user addresses to 48
+ // bits, in the range [0, 1<<48).
+ //
+ // ppc64, mips64, and s390x support arbitrary 64 bit addresses
+ // in hardware. On Linux, Go leans on stricter OS limits. Based
+ // on Linux's processor.h, the user address space is limited as
+ // follows on 64-bit architectures:
+ //
+ // Architecture Name Maximum Value (exclusive)
+ // ---------------------------------------------------------------------
+ // amd64 TASK_SIZE_MAX 0x007ffffffff000 (47 bit addresses)
+ // arm64 TASK_SIZE_64 0x01000000000000 (48 bit addresses)
+ // ppc64{,le} TASK_SIZE_USER64 0x00400000000000 (46 bit addresses)
+ // mips64{,le} TASK_SIZE64 0x00010000000000 (40 bit addresses)
+ // s390x TASK_SIZE 1<<64 (64 bit addresses)
+ //
+ // These limits may increase over time, but are currently at
+ // most 48 bits except on s390x. On all architectures, Linux
+ // starts placing mmap'd regions at addresses that are
+ // significantly below 48 bits, so even if it's possible to
+ // exceed Go's 48 bit limit, it's extremely unlikely in
+ // practice.
+ //
+ // On 32-bit platforms, we accept the full 32-bit address
+ // space because doing so is cheap.
+ // mips32 only has access to the low 2GB of virtual memory, so
+ // we further limit it to 31 bits.
+ //
+ // On ios/arm64, although 64-bit pointers are presumably
+ // available, pointers are truncated to 33 bits. Furthermore,
+ // only the top 4 GiB of the address space are actually available
+ // to the application, but we allow the whole 33 bits anyway for
+ // simplicity.
+ // TODO(mknyszek): Consider limiting it to 32 bits and using
+ // arenaBaseOffset to offset into the top 4 GiB.
+ //
+ // WebAssembly currently has a limit of 4GB linear memory.
+ heapAddrBits = (_64bit*(1-sys.GoarchWasm)*(1-sys.GoosIos*sys.GoarchArm64))*48 + (1-_64bit+sys.GoarchWasm)*(32-(sys.GoarchMips+sys.GoarchMipsle)) + 33*sys.GoosIos*sys.GoarchArm64
+
+ // maxAlloc is the maximum size of an allocation. On 64-bit,
+ // it's theoretically possible to allocate 1<<heapAddrBits bytes. On
+ // 32-bit, however, this is one less than 1<<32 because the
+ // number of bytes in the address space doesn't actually fit
+ // in a uintptr.
+ maxAlloc = (1 << heapAddrBits) - (1-_64bit)*1
+
+ // The number of bits in a heap address, the size of heap
+ // arenas, and the L1 and L2 arena map sizes are related by
+ //
+ // (1 << addr bits) = arena size * L1 entries * L2 entries
+ //
+ // Currently, we balance these as follows:
+ //
+ // Platform Addr bits Arena size L1 entries L2 entries
+ // -------------- --------- ---------- ---------- -----------
+ // */64-bit 48 64MB 1 4M (32MB)
+ // windows/64-bit 48 4MB 64 1M (8MB)
+ // */32-bit 32 4MB 1 1024 (4KB)
+ // */mips(le) 31 4MB 1 512 (2KB)
+
+ // heapArenaBytes is the size of a heap arena. The heap
+ // consists of mappings of size heapArenaBytes, aligned to
+ // heapArenaBytes. The initial heap mapping is one arena.
+ //
+ // This is currently 64MB on 64-bit non-Windows and 4MB on
+ // 32-bit and on Windows. We use smaller arenas on Windows
+ // because all committed memory is charged to the process,
+ // even if it's not touched. Hence, for processes with small
+ // heaps, the mapped arena space needs to be commensurate.
+ // This is particularly important with the race detector,
+ // since it significantly amplifies the cost of committed
+ // memory.
+ heapArenaBytes = 1 << logHeapArenaBytes
+
+ // logHeapArenaBytes is log_2 of heapArenaBytes. For clarity,
+ // prefer using heapArenaBytes where possible (we need the
+ // constant to compute some other constants).
+ logHeapArenaBytes = (6+20)*(_64bit*(1-sys.GoosWindows)*(1-sys.GoarchWasm)) + (2+20)*(_64bit*sys.GoosWindows) + (2+20)*(1-_64bit) + (2+20)*sys.GoarchWasm
+
+ // heapArenaBitmapBytes is the size of each heap arena's bitmap.
+ heapArenaBitmapBytes = heapArenaBytes / (sys.PtrSize * 8 / 2)
+
+ pagesPerArena = heapArenaBytes / pageSize
+
+ // arenaL1Bits is the number of bits of the arena number
+ // covered by the first level arena map.
+ //
+ // This number should be small, since the first level arena
+ // map requires PtrSize*(1<<arenaL1Bits) of space in the
+ // binary's BSS. It can be zero, in which case the first level
+ // index is effectively unused. There is a performance benefit
+ // to this, since the generated code can be more efficient,
+ // but comes at the cost of having a large L2 mapping.
+ //
+ // We use the L1 map on 64-bit Windows because the arena size
+ // is small, but the address space is still 48 bits, and
+ // there's a high cost to having a large L2.
+ arenaL1Bits = 6 * (_64bit * sys.GoosWindows)
+
+ // arenaL2Bits is the number of bits of the arena number
+ // covered by the second level arena index.
+ //
+ // The size of each arena map allocation is proportional to
+ // 1<<arenaL2Bits, so it's important that this not be too
+ // large. 48 bits leads to 32MB arena index allocations, which
+ // is about the practical threshold.
+ arenaL2Bits = heapAddrBits - logHeapArenaBytes - arenaL1Bits
+
+ // arenaL1Shift is the number of bits to shift an arena frame
+ // number by to compute an index into the first level arena map.
+ arenaL1Shift = arenaL2Bits
+
+ // arenaBits is the total bits in a combined arena map index.
+ // This is split between the index into the L1 arena map and
+ // the L2 arena map.
+ arenaBits = arenaL1Bits + arenaL2Bits
+
+ // arenaBaseOffset is the pointer value that corresponds to
+ // index 0 in the heap arena map.
+ //
+ // On amd64, the address space is 48 bits, sign extended to 64
+ // bits. This offset lets us handle "negative" addresses (or
+ // high addresses if viewed as unsigned).
+ //
+ // On aix/ppc64, this offset allows to keep the heapAddrBits to
+ // 48. Otherwize, it would be 60 in order to handle mmap addresses
+ // (in range 0x0a00000000000000 - 0x0afffffffffffff). But in this
+ // case, the memory reserved in (s *pageAlloc).init for chunks
+ // is causing important slowdowns.
+ //
+ // On other platforms, the user address space is contiguous
+ // and starts at 0, so no offset is necessary.
+ arenaBaseOffset = 0xffff800000000000*sys.GoarchAmd64 + 0x0a00000000000000*sys.GoosAix
+ // A typed version of this constant that will make it into DWARF (for viewcore).
+ arenaBaseOffsetUintptr = uintptr(arenaBaseOffset)
+
+ // Max number of threads to run garbage collection.
+ // 2, 3, and 4 are all plausible maximums depending
+ // on the hardware details of the machine. The garbage
+ // collector scales well to 32 cpus.
+ _MaxGcproc = 32
+
+ // minLegalPointer is the smallest possible legal pointer.
+ // This is the smallest possible architectural page size,
+ // since we assume that the first page is never mapped.
+ //
+ // This should agree with minZeroPage in the compiler.
+ minLegalPointer uintptr = 4096
+)
+
+// physPageSize is the size in bytes of the OS's physical pages.
+// Mapping and unmapping operations must be done at multiples of
+// physPageSize.
+//
+// This must be set by the OS init code (typically in osinit) before
+// mallocinit.
+var physPageSize uintptr
+
+// physHugePageSize is the size in bytes of the OS's default physical huge
+// page size whose allocation is opaque to the application. It is assumed
+// and verified to be a power of two.
+//
+// If set, this must be set by the OS init code (typically in osinit) before
+// mallocinit. However, setting it at all is optional, and leaving the default
+// value is always safe (though potentially less efficient).
+//
+// Since physHugePageSize is always assumed to be a power of two,
+// physHugePageShift is defined as physHugePageSize == 1 << physHugePageShift.
+// The purpose of physHugePageShift is to avoid doing divisions in
+// performance critical functions.
+var (
+ physHugePageSize uintptr
+ physHugePageShift uint
+)
+
+// OS memory management abstraction layer
+//
+// Regions of the address space managed by the runtime may be in one of four
+// states at any given time:
+// 1) None - Unreserved and unmapped, the default state of any region.
+// 2) Reserved - Owned by the runtime, but accessing it would cause a fault.
+// Does not count against the process' memory footprint.
+// 3) Prepared - Reserved, intended not to be backed by physical memory (though
+// an OS may implement this lazily). Can transition efficiently to
+// Ready. Accessing memory in such a region is undefined (may
+// fault, may give back unexpected zeroes, etc.).
+// 4) Ready - may be accessed safely.
+//
+// This set of states is more than is strictly necessary to support all the
+// currently supported platforms. One could get by with just None, Reserved, and
+// Ready. However, the Prepared state gives us flexibility for performance
+// purposes. For example, on POSIX-y operating systems, Reserved is usually a
+// private anonymous mmap'd region with PROT_NONE set, and to transition
+// to Ready would require setting PROT_READ|PROT_WRITE. However the
+// underspecification of Prepared lets us use just MADV_FREE to transition from
+// Ready to Prepared. Thus with the Prepared state we can set the permission
+// bits just once early on, we can efficiently tell the OS that it's free to
+// take pages away from us when we don't strictly need them.
+//
+// For each OS there is a common set of helpers defined that transition
+// memory regions between these states. The helpers are as follows:
+//
+// sysAlloc transitions an OS-chosen region of memory from None to Ready.
+// More specifically, it obtains a large chunk of zeroed memory from the
+// operating system, typically on the order of a hundred kilobytes
+// or a megabyte. This memory is always immediately available for use.
+//
+// sysFree transitions a memory region from any state to None. Therefore, it
+// returns memory unconditionally. It is used if an out-of-memory error has been
+// detected midway through an allocation or to carve out an aligned section of
+// the address space. It is okay if sysFree is a no-op only if sysReserve always
+// returns a memory region aligned to the heap allocator's alignment
+// restrictions.
+//
+// sysReserve transitions a memory region from None to Reserved. It reserves
+// address space in such a way that it would cause a fatal fault upon access
+// (either via permissions or not committing the memory). Such a reservation is
+// thus never backed by physical memory.
+// If the pointer passed to it is non-nil, the caller wants the
+// reservation there, but sysReserve can still choose another
+// location if that one is unavailable.
+// NOTE: sysReserve returns OS-aligned memory, but the heap allocator
+// may use larger alignment, so the caller must be careful to realign the
+// memory obtained by sysReserve.
+//
+// sysMap transitions a memory region from Reserved to Prepared. It ensures the
+// memory region can be efficiently transitioned to Ready.
+//
+// sysUsed transitions a memory region from Prepared to Ready. It notifies the
+// operating system that the memory region is needed and ensures that the region
+// may be safely accessed. This is typically a no-op on systems that don't have
+// an explicit commit step and hard over-commit limits, but is critical on
+// Windows, for example.
+//
+// sysUnused transitions a memory region from Ready to Prepared. It notifies the
+// operating system that the physical pages backing this memory region are no
+// longer needed and can be reused for other purposes. The contents of a
+// sysUnused memory region are considered forfeit and the region must not be
+// accessed again until sysUsed is called.
+//
+// sysFault transitions a memory region from Ready or Prepared to Reserved. It
+// marks a region such that it will always fault if accessed. Used only for
+// debugging the runtime.
+
+func mallocinit() {
+ if class_to_size[_TinySizeClass] != _TinySize {
+ throw("bad TinySizeClass")
+ }
+
+ testdefersizes()
+
+ if heapArenaBitmapBytes&(heapArenaBitmapBytes-1) != 0 {
+ // heapBits expects modular arithmetic on bitmap
+ // addresses to work.
+ throw("heapArenaBitmapBytes not a power of 2")
+ }
+
+ // Copy class sizes out for statistics table.
+ for i := range class_to_size {
+ memstats.by_size[i].size = uint32(class_to_size[i])
+ }
+
+ // Check physPageSize.
+ if physPageSize == 0 {
+ // The OS init code failed to fetch the physical page size.
+ throw("failed to get system page size")
+ }
+ if physPageSize > maxPhysPageSize {
+ print("system page size (", physPageSize, ") is larger than maximum page size (", maxPhysPageSize, ")\n")
+ throw("bad system page size")
+ }
+ if physPageSize < minPhysPageSize {
+ print("system page size (", physPageSize, ") is smaller than minimum page size (", minPhysPageSize, ")\n")
+ throw("bad system page size")
+ }
+ if physPageSize&(physPageSize-1) != 0 {
+ print("system page size (", physPageSize, ") must be a power of 2\n")
+ throw("bad system page size")
+ }
+ if physHugePageSize&(physHugePageSize-1) != 0 {
+ print("system huge page size (", physHugePageSize, ") must be a power of 2\n")
+ throw("bad system huge page size")
+ }
+ if physHugePageSize > maxPhysHugePageSize {
+ // physHugePageSize is greater than the maximum supported huge page size.
+ // Don't throw here, like in the other cases, since a system configured
+ // in this way isn't wrong, we just don't have the code to support them.
+ // Instead, silently set the huge page size to zero.
+ physHugePageSize = 0
+ }
+ if physHugePageSize != 0 {
+ // Since physHugePageSize is a power of 2, it suffices to increase
+ // physHugePageShift until 1<<physHugePageShift == physHugePageSize.
+ for 1<<physHugePageShift != physHugePageSize {
+ physHugePageShift++
+ }
+ }
+ if pagesPerArena%pagesPerSpanRoot != 0 {
+ print("pagesPerArena (", pagesPerArena, ") is not divisible by pagesPerSpanRoot (", pagesPerSpanRoot, ")\n")
+ throw("bad pagesPerSpanRoot")
+ }
+ if pagesPerArena%pagesPerReclaimerChunk != 0 {
+ print("pagesPerArena (", pagesPerArena, ") is not divisible by pagesPerReclaimerChunk (", pagesPerReclaimerChunk, ")\n")
+ throw("bad pagesPerReclaimerChunk")
+ }
+
+ // Initialize the heap.
+ mheap_.init()
+ mcache0 = allocmcache()
+ lockInit(&gcBitsArenas.lock, lockRankGcBitsArenas)
+ lockInit(&proflock, lockRankProf)
+ lockInit(&globalAlloc.mutex, lockRankGlobalAlloc)
+
+ // Create initial arena growth hints.
+ if sys.PtrSize == 8 {
+ // On a 64-bit machine, we pick the following hints
+ // because:
+ //
+ // 1. Starting from the middle of the address space
+ // makes it easier to grow out a contiguous range
+ // without running in to some other mapping.
+ //
+ // 2. This makes Go heap addresses more easily
+ // recognizable when debugging.
+ //
+ // 3. Stack scanning in gccgo is still conservative,
+ // so it's important that addresses be distinguishable
+ // from other data.
+ //
+ // Starting at 0x00c0 means that the valid memory addresses
+ // will begin 0x00c0, 0x00c1, ...
+ // In little-endian, that's c0 00, c1 00, ... None of those are valid
+ // UTF-8 sequences, and they are otherwise as far away from
+ // ff (likely a common byte) as possible. If that fails, we try other 0xXXc0
+ // addresses. An earlier attempt to use 0x11f8 caused out of memory errors
+ // on OS X during thread allocations. 0x00c0 causes conflicts with
+ // AddressSanitizer which reserves all memory up to 0x0100.
+ // These choices reduce the odds of a conservative garbage collector
+ // not collecting memory because some non-pointer block of memory
+ // had a bit pattern that matched a memory address.
+ //
+ // However, on arm64, we ignore all this advice above and slam the
+ // allocation at 0x40 << 32 because when using 4k pages with 3-level
+ // translation buffers, the user address space is limited to 39 bits
+ // On ios/arm64, the address space is even smaller.
+ //
+ // On AIX, mmaps starts at 0x0A00000000000000 for 64-bit.
+ // processes.
+ for i := 0x7f; i >= 0; i-- {
+ var p uintptr
+ switch {
+ case raceenabled:
+ // The TSAN runtime requires the heap
+ // to be in the range [0x00c000000000,
+ // 0x00e000000000).
+ p = uintptr(i)<<32 | uintptrMask&(0x00c0<<32)
+ if p >= uintptrMask&0x00e000000000 {
+ continue
+ }
+ case GOARCH == "arm64" && GOOS == "ios":
+ p = uintptr(i)<<40 | uintptrMask&(0x0013<<28)
+ case GOARCH == "arm64":
+ p = uintptr(i)<<40 | uintptrMask&(0x0040<<32)
+ case GOOS == "aix":
+ if i == 0 {
+ // We don't use addresses directly after 0x0A00000000000000
+ // to avoid collisions with others mmaps done by non-go programs.
+ continue
+ }
+ p = uintptr(i)<<40 | uintptrMask&(0xa0<<52)
+ default:
+ p = uintptr(i)<<40 | uintptrMask&(0x00c0<<32)
+ }
+ hint := (*arenaHint)(mheap_.arenaHintAlloc.alloc())
+ hint.addr = p
+ hint.next, mheap_.arenaHints = mheap_.arenaHints, hint
+ }
+ } else {
+ // On a 32-bit machine, we're much more concerned
+ // about keeping the usable heap contiguous.
+ // Hence:
+ //
+ // 1. We reserve space for all heapArenas up front so
+ // they don't get interleaved with the heap. They're
+ // ~258MB, so this isn't too bad. (We could reserve a
+ // smaller amount of space up front if this is a
+ // problem.)
+ //
+ // 2. We hint the heap to start right above the end of
+ // the binary so we have the best chance of keeping it
+ // contiguous.
+ //
+ // 3. We try to stake out a reasonably large initial
+ // heap reservation.
+
+ const arenaMetaSize = (1 << arenaBits) * unsafe.Sizeof(heapArena{})
+ meta := uintptr(sysReserve(nil, arenaMetaSize))
+ if meta != 0 {
+ mheap_.heapArenaAlloc.init(meta, arenaMetaSize)
+ }
+
+ // We want to start the arena low, but if we're linked
+ // against C code, it's possible global constructors
+ // have called malloc and adjusted the process' brk.
+ // Query the brk so we can avoid trying to map the
+ // region over it (which will cause the kernel to put
+ // the region somewhere else, likely at a high
+ // address).
+ procBrk := sbrk0()
+
+ // If we ask for the end of the data segment but the
+ // operating system requires a little more space
+ // before we can start allocating, it will give out a
+ // slightly higher pointer. Except QEMU, which is
+ // buggy, as usual: it won't adjust the pointer
+ // upward. So adjust it upward a little bit ourselves:
+ // 1/4 MB to get away from the running binary image.
+ p := firstmoduledata.end
+ if p < procBrk {
+ p = procBrk
+ }
+ if mheap_.heapArenaAlloc.next <= p && p < mheap_.heapArenaAlloc.end {
+ p = mheap_.heapArenaAlloc.end
+ }
+ p = alignUp(p+(256<<10), heapArenaBytes)
+ // Because we're worried about fragmentation on
+ // 32-bit, we try to make a large initial reservation.
+ arenaSizes := []uintptr{
+ 512 << 20,
+ 256 << 20,
+ 128 << 20,
+ }
+ for _, arenaSize := range arenaSizes {
+ a, size := sysReserveAligned(unsafe.Pointer(p), arenaSize, heapArenaBytes)
+ if a != nil {
+ mheap_.arena.init(uintptr(a), size)
+ p = mheap_.arena.end // For hint below
+ break
+ }
+ }
+ hint := (*arenaHint)(mheap_.arenaHintAlloc.alloc())
+ hint.addr = p
+ hint.next, mheap_.arenaHints = mheap_.arenaHints, hint
+ }
+}
+
+// sysAlloc allocates heap arena space for at least n bytes. The
+// returned pointer is always heapArenaBytes-aligned and backed by
+// h.arenas metadata. The returned size is always a multiple of
+// heapArenaBytes. sysAlloc returns nil on failure.
+// There is no corresponding free function.
+//
+// sysAlloc returns a memory region in the Prepared state. This region must
+// be transitioned to Ready before use.
+//
+// h must be locked.
+func (h *mheap) sysAlloc(n uintptr) (v unsafe.Pointer, size uintptr) {
+ assertLockHeld(&h.lock)
+
+ n = alignUp(n, heapArenaBytes)
+
+ // First, try the arena pre-reservation.
+ v = h.arena.alloc(n, heapArenaBytes, &memstats.heap_sys)
+ if v != nil {
+ size = n
+ goto mapped
+ }
+
+ // Try to grow the heap at a hint address.
+ for h.arenaHints != nil {
+ hint := h.arenaHints
+ p := hint.addr
+ if hint.down {
+ p -= n
+ }
+ if p+n < p {
+ // We can't use this, so don't ask.
+ v = nil
+ } else if arenaIndex(p+n-1) >= 1<<arenaBits {
+ // Outside addressable heap. Can't use.
+ v = nil
+ } else {
+ v = sysReserve(unsafe.Pointer(p), n)
+ }
+ if p == uintptr(v) {
+ // Success. Update the hint.
+ if !hint.down {
+ p += n
+ }
+ hint.addr = p
+ size = n
+ break
+ }
+ // Failed. Discard this hint and try the next.
+ //
+ // TODO: This would be cleaner if sysReserve could be
+ // told to only return the requested address. In
+ // particular, this is already how Windows behaves, so
+ // it would simplify things there.
+ if v != nil {
+ sysFree(v, n, nil)
+ }
+ h.arenaHints = hint.next
+ h.arenaHintAlloc.free(unsafe.Pointer(hint))
+ }
+
+ if size == 0 {
+ if raceenabled {
+ // The race detector assumes the heap lives in
+ // [0x00c000000000, 0x00e000000000), but we
+ // just ran out of hints in this region. Give
+ // a nice failure.
+ throw("too many address space collisions for -race mode")
+ }
+
+ // All of the hints failed, so we'll take any
+ // (sufficiently aligned) address the kernel will give
+ // us.
+ v, size = sysReserveAligned(nil, n, heapArenaBytes)
+ if v == nil {
+ return nil, 0
+ }
+
+ // Create new hints for extending this region.
+ hint := (*arenaHint)(h.arenaHintAlloc.alloc())
+ hint.addr, hint.down = uintptr(v), true
+ hint.next, mheap_.arenaHints = mheap_.arenaHints, hint
+ hint = (*arenaHint)(h.arenaHintAlloc.alloc())
+ hint.addr = uintptr(v) + size
+ hint.next, mheap_.arenaHints = mheap_.arenaHints, hint
+ }
+
+ // Check for bad pointers or pointers we can't use.
+ {
+ var bad string
+ p := uintptr(v)
+ if p+size < p {
+ bad = "region exceeds uintptr range"
+ } else if arenaIndex(p) >= 1<<arenaBits {
+ bad = "base outside usable address space"
+ } else if arenaIndex(p+size-1) >= 1<<arenaBits {
+ bad = "end outside usable address space"
+ }
+ if bad != "" {
+ // This should be impossible on most architectures,
+ // but it would be really confusing to debug.
+ print("runtime: memory allocated by OS [", hex(p), ", ", hex(p+size), ") not in usable address space: ", bad, "\n")
+ throw("memory reservation exceeds address space limit")
+ }
+ }
+
+ if uintptr(v)&(heapArenaBytes-1) != 0 {
+ throw("misrounded allocation in sysAlloc")
+ }
+
+ // Transition from Reserved to Prepared.
+ sysMap(v, size, &memstats.heap_sys)
+
+mapped:
+ // Create arena metadata.
+ for ri := arenaIndex(uintptr(v)); ri <= arenaIndex(uintptr(v)+size-1); ri++ {
+ l2 := h.arenas[ri.l1()]
+ if l2 == nil {
+ // Allocate an L2 arena map.
+ l2 = (*[1 << arenaL2Bits]*heapArena)(persistentalloc(unsafe.Sizeof(*l2), sys.PtrSize, nil))
+ if l2 == nil {
+ throw("out of memory allocating heap arena map")
+ }
+ atomic.StorepNoWB(unsafe.Pointer(&h.arenas[ri.l1()]), unsafe.Pointer(l2))
+ }
+
+ if l2[ri.l2()] != nil {
+ throw("arena already initialized")
+ }
+ var r *heapArena
+ r = (*heapArena)(h.heapArenaAlloc.alloc(unsafe.Sizeof(*r), sys.PtrSize, &memstats.gcMiscSys))
+ if r == nil {
+ r = (*heapArena)(persistentalloc(unsafe.Sizeof(*r), sys.PtrSize, &memstats.gcMiscSys))
+ if r == nil {
+ throw("out of memory allocating heap arena metadata")
+ }
+ }
+
+ // Add the arena to the arenas list.
+ if len(h.allArenas) == cap(h.allArenas) {
+ size := 2 * uintptr(cap(h.allArenas)) * sys.PtrSize
+ if size == 0 {
+ size = physPageSize
+ }
+ newArray := (*notInHeap)(persistentalloc(size, sys.PtrSize, &memstats.gcMiscSys))
+ if newArray == nil {
+ throw("out of memory allocating allArenas")
+ }
+ oldSlice := h.allArenas
+ *(*notInHeapSlice)(unsafe.Pointer(&h.allArenas)) = notInHeapSlice{newArray, len(h.allArenas), int(size / sys.PtrSize)}
+ copy(h.allArenas, oldSlice)
+ // Do not free the old backing array because
+ // there may be concurrent readers. Since we
+ // double the array each time, this can lead
+ // to at most 2x waste.
+ }
+ h.allArenas = h.allArenas[:len(h.allArenas)+1]
+ h.allArenas[len(h.allArenas)-1] = ri
+
+ // Store atomically just in case an object from the
+ // new heap arena becomes visible before the heap lock
+ // is released (which shouldn't happen, but there's
+ // little downside to this).
+ atomic.StorepNoWB(unsafe.Pointer(&l2[ri.l2()]), unsafe.Pointer(r))
+ }
+
+ // Tell the race detector about the new heap memory.
+ if raceenabled {
+ racemapshadow(v, size)
+ }
+
+ return
+}
+
+// sysReserveAligned is like sysReserve, but the returned pointer is
+// aligned to align bytes. It may reserve either n or n+align bytes,
+// so it returns the size that was reserved.
+func sysReserveAligned(v unsafe.Pointer, size, align uintptr) (unsafe.Pointer, uintptr) {
+ // Since the alignment is rather large in uses of this
+ // function, we're not likely to get it by chance, so we ask
+ // for a larger region and remove the parts we don't need.
+ retries := 0
+retry:
+ p := uintptr(sysReserve(v, size+align))
+ switch {
+ case p == 0:
+ return nil, 0
+ case p&(align-1) == 0:
+ // We got lucky and got an aligned region, so we can
+ // use the whole thing.
+ return unsafe.Pointer(p), size + align
+ case GOOS == "windows":
+ // On Windows we can't release pieces of a
+ // reservation, so we release the whole thing and
+ // re-reserve the aligned sub-region. This may race,
+ // so we may have to try again.
+ sysFree(unsafe.Pointer(p), size+align, nil)
+ p = alignUp(p, align)
+ p2 := sysReserve(unsafe.Pointer(p), size)
+ if p != uintptr(p2) {
+ // Must have raced. Try again.
+ sysFree(p2, size, nil)
+ if retries++; retries == 100 {
+ throw("failed to allocate aligned heap memory; too many retries")
+ }
+ goto retry
+ }
+ // Success.
+ return p2, size
+ default:
+ // Trim off the unaligned parts.
+ pAligned := alignUp(p, align)
+ sysFree(unsafe.Pointer(p), pAligned-p, nil)
+ end := pAligned + size
+ endLen := (p + size + align) - end
+ if endLen > 0 {
+ sysFree(unsafe.Pointer(end), endLen, nil)
+ }
+ return unsafe.Pointer(pAligned), size
+ }
+}
+
+// base address for all 0-byte allocations
+var zerobase uintptr
+
+// nextFreeFast returns the next free object if one is quickly available.
+// Otherwise it returns 0.
+func nextFreeFast(s *mspan) gclinkptr {
+ theBit := sys.Ctz64(s.allocCache) // Is there a free object in the allocCache?
+ if theBit < 64 {
+ result := s.freeindex + uintptr(theBit)
+ if result < s.nelems {
+ freeidx := result + 1
+ if freeidx%64 == 0 && freeidx != s.nelems {
+ return 0
+ }
+ s.allocCache >>= uint(theBit + 1)
+ s.freeindex = freeidx
+ s.allocCount++
+ return gclinkptr(result*s.elemsize + s.base())
+ }
+ }
+ return 0
+}
+
+// nextFree returns the next free object from the cached span if one is available.
+// Otherwise it refills the cache with a span with an available object and
+// returns that object along with a flag indicating that this was a heavy
+// weight allocation. If it is a heavy weight allocation the caller must
+// determine whether a new GC cycle needs to be started or if the GC is active
+// whether this goroutine needs to assist the GC.
+//
+// Must run in a non-preemptible context since otherwise the owner of
+// c could change.
+func (c *mcache) nextFree(spc spanClass) (v gclinkptr, s *mspan, shouldhelpgc bool) {
+ s = c.alloc[spc]
+ shouldhelpgc = false
+ freeIndex := s.nextFreeIndex()
+ if freeIndex == s.nelems {
+ // The span is full.
+ if uintptr(s.allocCount) != s.nelems {
+ println("runtime: s.allocCount=", s.allocCount, "s.nelems=", s.nelems)
+ throw("s.allocCount != s.nelems && freeIndex == s.nelems")
+ }
+ c.refill(spc)
+ shouldhelpgc = true
+ s = c.alloc[spc]
+
+ freeIndex = s.nextFreeIndex()
+ }
+
+ if freeIndex >= s.nelems {
+ throw("freeIndex is not valid")
+ }
+
+ v = gclinkptr(freeIndex*s.elemsize + s.base())
+ s.allocCount++
+ if uintptr(s.allocCount) > s.nelems {
+ println("s.allocCount=", s.allocCount, "s.nelems=", s.nelems)
+ throw("s.allocCount > s.nelems")
+ }
+ return
+}
+
+// Allocate an object of size bytes.
+// Small objects are allocated from the per-P cache's free lists.
+// Large objects (> 32 kB) are allocated straight from the heap.
+func mallocgc(size uintptr, typ *_type, needzero bool) unsafe.Pointer {
+ if gcphase == _GCmarktermination {
+ throw("mallocgc called with gcphase == _GCmarktermination")
+ }
+
+ if size == 0 {
+ return unsafe.Pointer(&zerobase)
+ }
+
+ if debug.malloc {
+ if debug.sbrk != 0 {
+ align := uintptr(16)
+ if typ != nil {
+ // TODO(austin): This should be just
+ // align = uintptr(typ.align)
+ // but that's only 4 on 32-bit platforms,
+ // even if there's a uint64 field in typ (see #599).
+ // This causes 64-bit atomic accesses to panic.
+ // Hence, we use stricter alignment that matches
+ // the normal allocator better.
+ if size&7 == 0 {
+ align = 8
+ } else if size&3 == 0 {
+ align = 4
+ } else if size&1 == 0 {
+ align = 2
+ } else {
+ align = 1
+ }
+ }
+ return persistentalloc(size, align, &memstats.other_sys)
+ }
+
+ if inittrace.active && inittrace.id == getg().goid {
+ // Init functions are executed sequentially in a single Go routine.
+ inittrace.allocs += 1
+ }
+ }
+
+ // assistG is the G to charge for this allocation, or nil if
+ // GC is not currently active.
+ var assistG *g
+ if gcBlackenEnabled != 0 {
+ // Charge the current user G for this allocation.
+ assistG = getg()
+ if assistG.m.curg != nil {
+ assistG = assistG.m.curg
+ }
+ // Charge the allocation against the G. We'll account
+ // for internal fragmentation at the end of mallocgc.
+ assistG.gcAssistBytes -= int64(size)
+
+ if assistG.gcAssistBytes < 0 {
+ // This G is in debt. Assist the GC to correct
+ // this before allocating. This must happen
+ // before disabling preemption.
+ gcAssistAlloc(assistG)
+ }
+ }
+
+ // Set mp.mallocing to keep from being preempted by GC.
+ mp := acquirem()
+ if mp.mallocing != 0 {
+ throw("malloc deadlock")
+ }
+ if mp.gsignal == getg() {
+ throw("malloc during signal")
+ }
+ mp.mallocing = 1
+
+ shouldhelpgc := false
+ dataSize := size
+ c := getMCache()
+ if c == nil {
+ throw("mallocgc called without a P or outside bootstrapping")
+ }
+ var span *mspan
+ var x unsafe.Pointer
+ noscan := typ == nil || typ.ptrdata == 0
+ if size <= maxSmallSize {
+ if noscan && size < maxTinySize {
+ // Tiny allocator.
+ //
+ // Tiny allocator combines several tiny allocation requests
+ // into a single memory block. The resulting memory block
+ // is freed when all subobjects are unreachable. The subobjects
+ // must be noscan (don't have pointers), this ensures that
+ // the amount of potentially wasted memory is bounded.
+ //
+ // Size of the memory block used for combining (maxTinySize) is tunable.
+ // Current setting is 16 bytes, which relates to 2x worst case memory
+ // wastage (when all but one subobjects are unreachable).
+ // 8 bytes would result in no wastage at all, but provides less
+ // opportunities for combining.
+ // 32 bytes provides more opportunities for combining,
+ // but can lead to 4x worst case wastage.
+ // The best case winning is 8x regardless of block size.
+ //
+ // Objects obtained from tiny allocator must not be freed explicitly.
+ // So when an object will be freed explicitly, we ensure that
+ // its size >= maxTinySize.
+ //
+ // SetFinalizer has a special case for objects potentially coming
+ // from tiny allocator, it such case it allows to set finalizers
+ // for an inner byte of a memory block.
+ //
+ // The main targets of tiny allocator are small strings and
+ // standalone escaping variables. On a json benchmark
+ // the allocator reduces number of allocations by ~12% and
+ // reduces heap size by ~20%.
+ off := c.tinyoffset
+ // Align tiny pointer for required (conservative) alignment.
+ if size&7 == 0 {
+ off = alignUp(off, 8)
+ } else if sys.PtrSize == 4 && size == 12 {
+ // Conservatively align 12-byte objects to 8 bytes on 32-bit
+ // systems so that objects whose first field is a 64-bit
+ // value is aligned to 8 bytes and does not cause a fault on
+ // atomic access. See issue 37262.
+ // TODO(mknyszek): Remove this workaround if/when issue 36606
+ // is resolved.
+ off = alignUp(off, 8)
+ } else if size&3 == 0 {
+ off = alignUp(off, 4)
+ } else if size&1 == 0 {
+ off = alignUp(off, 2)
+ }
+ if off+size <= maxTinySize && c.tiny != 0 {
+ // The object fits into existing tiny block.
+ x = unsafe.Pointer(c.tiny + off)
+ c.tinyoffset = off + size
+ c.tinyAllocs++
+ mp.mallocing = 0
+ releasem(mp)
+ return x
+ }
+ // Allocate a new maxTinySize block.
+ span = c.alloc[tinySpanClass]
+ v := nextFreeFast(span)
+ if v == 0 {
+ v, span, shouldhelpgc = c.nextFree(tinySpanClass)
+ }
+ x = unsafe.Pointer(v)
+ (*[2]uint64)(x)[0] = 0
+ (*[2]uint64)(x)[1] = 0
+ // See if we need to replace the existing tiny block with the new one
+ // based on amount of remaining free space.
+ if size < c.tinyoffset || c.tiny == 0 {
+ c.tiny = uintptr(x)
+ c.tinyoffset = size
+ }
+ size = maxTinySize
+ } else {
+ var sizeclass uint8
+ if size <= smallSizeMax-8 {
+ sizeclass = size_to_class8[divRoundUp(size, smallSizeDiv)]
+ } else {
+ sizeclass = size_to_class128[divRoundUp(size-smallSizeMax, largeSizeDiv)]
+ }
+ size = uintptr(class_to_size[sizeclass])
+ spc := makeSpanClass(sizeclass, noscan)
+ span = c.alloc[spc]
+ v := nextFreeFast(span)
+ if v == 0 {
+ v, span, shouldhelpgc = c.nextFree(spc)
+ }
+ x = unsafe.Pointer(v)
+ if needzero && span.needzero != 0 {
+ memclrNoHeapPointers(unsafe.Pointer(v), size)
+ }
+ }
+ } else {
+ shouldhelpgc = true
+ span = c.allocLarge(size, needzero, noscan)
+ span.freeindex = 1
+ span.allocCount = 1
+ x = unsafe.Pointer(span.base())
+ size = span.elemsize
+ }
+
+ var scanSize uintptr
+ if !noscan {
+ // If allocating a defer+arg block, now that we've picked a malloc size
+ // large enough to hold everything, cut the "asked for" size down to
+ // just the defer header, so that the GC bitmap will record the arg block
+ // as containing nothing at all (as if it were unused space at the end of
+ // a malloc block caused by size rounding).
+ // The defer arg areas are scanned as part of scanstack.
+ if typ == deferType {
+ dataSize = unsafe.Sizeof(_defer{})
+ }
+ heapBitsSetType(uintptr(x), size, dataSize, typ)
+ if dataSize > typ.size {
+ // Array allocation. If there are any
+ // pointers, GC has to scan to the last
+ // element.
+ if typ.ptrdata != 0 {
+ scanSize = dataSize - typ.size + typ.ptrdata
+ }
+ } else {
+ scanSize = typ.ptrdata
+ }
+ c.scanAlloc += scanSize
+ }
+
+ // Ensure that the stores above that initialize x to
+ // type-safe memory and set the heap bits occur before
+ // the caller can make x observable to the garbage
+ // collector. Otherwise, on weakly ordered machines,
+ // the garbage collector could follow a pointer to x,
+ // but see uninitialized memory or stale heap bits.
+ publicationBarrier()
+
+ // Allocate black during GC.
+ // All slots hold nil so no scanning is needed.
+ // This may be racing with GC so do it atomically if there can be
+ // a race marking the bit.
+ if gcphase != _GCoff {
+ gcmarknewobject(span, uintptr(x), size, scanSize)
+ }
+
+ if raceenabled {
+ racemalloc(x, size)
+ }
+
+ if msanenabled {
+ msanmalloc(x, size)
+ }
+
+ mp.mallocing = 0
+ releasem(mp)
+
+ if debug.malloc {
+ if debug.allocfreetrace != 0 {
+ tracealloc(x, size, typ)
+ }
+
+ if inittrace.active && inittrace.id == getg().goid {
+ // Init functions are executed sequentially in a single Go routine.
+ inittrace.bytes += uint64(size)
+ }
+ }
+
+ if rate := MemProfileRate; rate > 0 {
+ if rate != 1 && size < c.nextSample {
+ c.nextSample -= size
+ } else {
+ mp := acquirem()
+ profilealloc(mp, x, size)
+ releasem(mp)
+ }
+ }
+
+ if assistG != nil {
+ // Account for internal fragmentation in the assist
+ // debt now that we know it.
+ assistG.gcAssistBytes -= int64(size - dataSize)
+ }
+
+ if shouldhelpgc {
+ if t := (gcTrigger{kind: gcTriggerHeap}); t.test() {
+ gcStart(t)
+ }
+ }
+
+ return x
+}
+
+// implementation of new builtin
+// compiler (both frontend and SSA backend) knows the signature
+// of this function
+func newobject(typ *_type) unsafe.Pointer {
+ return mallocgc(typ.size, typ, true)
+}
+
+//go:linkname reflect_unsafe_New reflect.unsafe_New
+func reflect_unsafe_New(typ *_type) unsafe.Pointer {
+ return mallocgc(typ.size, typ, true)
+}
+
+//go:linkname reflectlite_unsafe_New internal/reflectlite.unsafe_New
+func reflectlite_unsafe_New(typ *_type) unsafe.Pointer {
+ return mallocgc(typ.size, typ, true)
+}
+
+// newarray allocates an array of n elements of type typ.
+func newarray(typ *_type, n int) unsafe.Pointer {
+ if n == 1 {
+ return mallocgc(typ.size, typ, true)
+ }
+ mem, overflow := math.MulUintptr(typ.size, uintptr(n))
+ if overflow || mem > maxAlloc || n < 0 {
+ panic(plainError("runtime: allocation size out of range"))
+ }
+ return mallocgc(mem, typ, true)
+}
+
+//go:linkname reflect_unsafe_NewArray reflect.unsafe_NewArray
+func reflect_unsafe_NewArray(typ *_type, n int) unsafe.Pointer {
+ return newarray(typ, n)
+}
+
+func profilealloc(mp *m, x unsafe.Pointer, size uintptr) {
+ c := getMCache()
+ if c == nil {
+ throw("profilealloc called without a P or outside bootstrapping")
+ }
+ c.nextSample = nextSample()
+ mProf_Malloc(x, size)
+}
+
+// nextSample returns the next sampling point for heap profiling. The goal is
+// to sample allocations on average every MemProfileRate bytes, but with a
+// completely random distribution over the allocation timeline; this
+// corresponds to a Poisson process with parameter MemProfileRate. In Poisson
+// processes, the distance between two samples follows the exponential
+// distribution (exp(MemProfileRate)), so the best return value is a random
+// number taken from an exponential distribution whose mean is MemProfileRate.
+func nextSample() uintptr {
+ if MemProfileRate == 1 {
+ // Callers assign our return value to
+ // mcache.next_sample, but next_sample is not used
+ // when the rate is 1. So avoid the math below and
+ // just return something.
+ return 0
+ }
+ if GOOS == "plan9" {
+ // Plan 9 doesn't support floating point in note handler.
+ if g := getg(); g == g.m.gsignal {
+ return nextSampleNoFP()
+ }
+ }
+
+ return uintptr(fastexprand(MemProfileRate))
+}
+
+// fastexprand returns a random number from an exponential distribution with
+// the specified mean.
+func fastexprand(mean int) int32 {
+ // Avoid overflow. Maximum possible step is
+ // -ln(1/(1<<randomBitCount)) * mean, approximately 20 * mean.
+ switch {
+ case mean > 0x7000000:
+ mean = 0x7000000
+ case mean == 0:
+ return 0
+ }
+
+ // Take a random sample of the exponential distribution exp(-mean*x).
+ // The probability distribution function is mean*exp(-mean*x), so the CDF is
+ // p = 1 - exp(-mean*x), so
+ // q = 1 - p == exp(-mean*x)
+ // log_e(q) = -mean*x
+ // -log_e(q)/mean = x
+ // x = -log_e(q) * mean
+ // x = log_2(q) * (-log_e(2)) * mean ; Using log_2 for efficiency
+ const randomBitCount = 26
+ q := fastrand()%(1<<randomBitCount) + 1
+ qlog := fastlog2(float64(q)) - randomBitCount
+ if qlog > 0 {
+ qlog = 0
+ }
+ const minusLog2 = -0.6931471805599453 // -ln(2)
+ return int32(qlog*(minusLog2*float64(mean))) + 1
+}
+
+// nextSampleNoFP is similar to nextSample, but uses older,
+// simpler code to avoid floating point.
+func nextSampleNoFP() uintptr {
+ // Set first allocation sample size.
+ rate := MemProfileRate
+ if rate > 0x3fffffff { // make 2*rate not overflow
+ rate = 0x3fffffff
+ }
+ if rate != 0 {
+ return uintptr(fastrand() % uint32(2*rate))
+ }
+ return 0
+}
+
+type persistentAlloc struct {
+ base *notInHeap
+ off uintptr
+}
+
+var globalAlloc struct {
+ mutex
+ persistentAlloc
+}
+
+// persistentChunkSize is the number of bytes we allocate when we grow
+// a persistentAlloc.
+const persistentChunkSize = 256 << 10
+
+// persistentChunks is a list of all the persistent chunks we have
+// allocated. The list is maintained through the first word in the
+// persistent chunk. This is updated atomically.
+var persistentChunks *notInHeap
+
+// Wrapper around sysAlloc that can allocate small chunks.
+// There is no associated free operation.
+// Intended for things like function/type/debug-related persistent data.
+// If align is 0, uses default align (currently 8).
+// The returned memory will be zeroed.
+//
+// Consider marking persistentalloc'd types go:notinheap.
+func persistentalloc(size, align uintptr, sysStat *sysMemStat) unsafe.Pointer {
+ var p *notInHeap
+ systemstack(func() {
+ p = persistentalloc1(size, align, sysStat)
+ })
+ return unsafe.Pointer(p)
+}
+
+// Must run on system stack because stack growth can (re)invoke it.
+// See issue 9174.
+//go:systemstack
+func persistentalloc1(size, align uintptr, sysStat *sysMemStat) *notInHeap {
+ const (
+ maxBlock = 64 << 10 // VM reservation granularity is 64K on windows
+ )
+
+ if size == 0 {
+ throw("persistentalloc: size == 0")
+ }
+ if align != 0 {
+ if align&(align-1) != 0 {
+ throw("persistentalloc: align is not a power of 2")
+ }
+ if align > _PageSize {
+ throw("persistentalloc: align is too large")
+ }
+ } else {
+ align = 8
+ }
+
+ if size >= maxBlock {
+ return (*notInHeap)(sysAlloc(size, sysStat))
+ }
+
+ mp := acquirem()
+ var persistent *persistentAlloc
+ if mp != nil && mp.p != 0 {
+ persistent = &mp.p.ptr().palloc
+ } else {
+ lock(&globalAlloc.mutex)
+ persistent = &globalAlloc.persistentAlloc
+ }
+ persistent.off = alignUp(persistent.off, align)
+ if persistent.off+size > persistentChunkSize || persistent.base == nil {
+ persistent.base = (*notInHeap)(sysAlloc(persistentChunkSize, &memstats.other_sys))
+ if persistent.base == nil {
+ if persistent == &globalAlloc.persistentAlloc {
+ unlock(&globalAlloc.mutex)
+ }
+ throw("runtime: cannot allocate memory")
+ }
+
+ // Add the new chunk to the persistentChunks list.
+ for {
+ chunks := uintptr(unsafe.Pointer(persistentChunks))
+ *(*uintptr)(unsafe.Pointer(persistent.base)) = chunks
+ if atomic.Casuintptr((*uintptr)(unsafe.Pointer(&persistentChunks)), chunks, uintptr(unsafe.Pointer(persistent.base))) {
+ break
+ }
+ }
+ persistent.off = alignUp(sys.PtrSize, align)
+ }
+ p := persistent.base.add(persistent.off)
+ persistent.off += size
+ releasem(mp)
+ if persistent == &globalAlloc.persistentAlloc {
+ unlock(&globalAlloc.mutex)
+ }
+
+ if sysStat != &memstats.other_sys {
+ sysStat.add(int64(size))
+ memstats.other_sys.add(-int64(size))
+ }
+ return p
+}
+
+// inPersistentAlloc reports whether p points to memory allocated by
+// persistentalloc. This must be nosplit because it is called by the
+// cgo checker code, which is called by the write barrier code.
+//go:nosplit
+func inPersistentAlloc(p uintptr) bool {
+ chunk := atomic.Loaduintptr((*uintptr)(unsafe.Pointer(&persistentChunks)))
+ for chunk != 0 {
+ if p >= chunk && p < chunk+persistentChunkSize {
+ return true
+ }
+ chunk = *(*uintptr)(unsafe.Pointer(chunk))
+ }
+ return false
+}
+
+// linearAlloc is a simple linear allocator that pre-reserves a region
+// of memory and then maps that region into the Ready state as needed. The
+// caller is responsible for locking.
+type linearAlloc struct {
+ next uintptr // next free byte
+ mapped uintptr // one byte past end of mapped space
+ end uintptr // end of reserved space
+}
+
+func (l *linearAlloc) init(base, size uintptr) {
+ if base+size < base {
+ // Chop off the last byte. The runtime isn't prepared
+ // to deal with situations where the bounds could overflow.
+ // Leave that memory reserved, though, so we don't map it
+ // later.
+ size -= 1
+ }
+ l.next, l.mapped = base, base
+ l.end = base + size
+}
+
+func (l *linearAlloc) alloc(size, align uintptr, sysStat *sysMemStat) unsafe.Pointer {
+ p := alignUp(l.next, align)
+ if p+size > l.end {
+ return nil
+ }
+ l.next = p + size
+ if pEnd := alignUp(l.next-1, physPageSize); pEnd > l.mapped {
+ // Transition from Reserved to Prepared to Ready.
+ sysMap(unsafe.Pointer(l.mapped), pEnd-l.mapped, sysStat)
+ sysUsed(unsafe.Pointer(l.mapped), pEnd-l.mapped)
+ l.mapped = pEnd
+ }
+ return unsafe.Pointer(p)
+}
+
+// notInHeap is off-heap memory allocated by a lower-level allocator
+// like sysAlloc or persistentAlloc.
+//
+// In general, it's better to use real types marked as go:notinheap,
+// but this serves as a generic type for situations where that isn't
+// possible (like in the allocators).
+//
+// TODO: Use this as the return type of sysAlloc, persistentAlloc, etc?
+//
+//go:notinheap
+type notInHeap struct{}
+
+func (p *notInHeap) add(bytes uintptr) *notInHeap {
+ return (*notInHeap)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + bytes))
+}