diff options
Diffstat (limited to 'src/runtime/pprof/pprof.go')
-rw-r--r-- | src/runtime/pprof/pprof.go | 945 |
1 files changed, 945 insertions, 0 deletions
diff --git a/src/runtime/pprof/pprof.go b/src/runtime/pprof/pprof.go new file mode 100644 index 0000000..d3b7df3 --- /dev/null +++ b/src/runtime/pprof/pprof.go @@ -0,0 +1,945 @@ +// Copyright 2010 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package pprof writes runtime profiling data in the format expected +// by the pprof visualization tool. +// +// Profiling a Go program +// +// The first step to profiling a Go program is to enable profiling. +// Support for profiling benchmarks built with the standard testing +// package is built into go test. For example, the following command +// runs benchmarks in the current directory and writes the CPU and +// memory profiles to cpu.prof and mem.prof: +// +// go test -cpuprofile cpu.prof -memprofile mem.prof -bench . +// +// To add equivalent profiling support to a standalone program, add +// code like the following to your main function: +// +// var cpuprofile = flag.String("cpuprofile", "", "write cpu profile to `file`") +// var memprofile = flag.String("memprofile", "", "write memory profile to `file`") +// +// func main() { +// flag.Parse() +// if *cpuprofile != "" { +// f, err := os.Create(*cpuprofile) +// if err != nil { +// log.Fatal("could not create CPU profile: ", err) +// } +// defer f.Close() // error handling omitted for example +// if err := pprof.StartCPUProfile(f); err != nil { +// log.Fatal("could not start CPU profile: ", err) +// } +// defer pprof.StopCPUProfile() +// } +// +// // ... rest of the program ... +// +// if *memprofile != "" { +// f, err := os.Create(*memprofile) +// if err != nil { +// log.Fatal("could not create memory profile: ", err) +// } +// defer f.Close() // error handling omitted for example +// runtime.GC() // get up-to-date statistics +// if err := pprof.WriteHeapProfile(f); err != nil { +// log.Fatal("could not write memory profile: ", err) +// } +// } +// } +// +// There is also a standard HTTP interface to profiling data. Adding +// the following line will install handlers under the /debug/pprof/ +// URL to download live profiles: +// +// import _ "net/http/pprof" +// +// See the net/http/pprof package for more details. +// +// Profiles can then be visualized with the pprof tool: +// +// go tool pprof cpu.prof +// +// There are many commands available from the pprof command line. +// Commonly used commands include "top", which prints a summary of the +// top program hot-spots, and "web", which opens an interactive graph +// of hot-spots and their call graphs. Use "help" for information on +// all pprof commands. +// +// For more information about pprof, see +// https://github.com/google/pprof/blob/master/doc/README.md. +package pprof + +import ( + "bufio" + "bytes" + "fmt" + "io" + "runtime" + "sort" + "strings" + "sync" + "text/tabwriter" + "time" + "unsafe" +) + +// BUG(rsc): Profiles are only as good as the kernel support used to generate them. +// See https://golang.org/issue/13841 for details about known problems. + +// A Profile is a collection of stack traces showing the call sequences +// that led to instances of a particular event, such as allocation. +// Packages can create and maintain their own profiles; the most common +// use is for tracking resources that must be explicitly closed, such as files +// or network connections. +// +// A Profile's methods can be called from multiple goroutines simultaneously. +// +// Each Profile has a unique name. A few profiles are predefined: +// +// goroutine - stack traces of all current goroutines +// heap - a sampling of memory allocations of live objects +// allocs - a sampling of all past memory allocations +// threadcreate - stack traces that led to the creation of new OS threads +// block - stack traces that led to blocking on synchronization primitives +// mutex - stack traces of holders of contended mutexes +// +// These predefined profiles maintain themselves and panic on an explicit +// Add or Remove method call. +// +// The heap profile reports statistics as of the most recently completed +// garbage collection; it elides more recent allocation to avoid skewing +// the profile away from live data and toward garbage. +// If there has been no garbage collection at all, the heap profile reports +// all known allocations. This exception helps mainly in programs running +// without garbage collection enabled, usually for debugging purposes. +// +// The heap profile tracks both the allocation sites for all live objects in +// the application memory and for all objects allocated since the program start. +// Pprof's -inuse_space, -inuse_objects, -alloc_space, and -alloc_objects +// flags select which to display, defaulting to -inuse_space (live objects, +// scaled by size). +// +// The allocs profile is the same as the heap profile but changes the default +// pprof display to -alloc_space, the total number of bytes allocated since +// the program began (including garbage-collected bytes). +// +// The CPU profile is not available as a Profile. It has a special API, +// the StartCPUProfile and StopCPUProfile functions, because it streams +// output to a writer during profiling. +// +type Profile struct { + name string + mu sync.Mutex + m map[interface{}][]uintptr + count func() int + write func(io.Writer, int) error +} + +// profiles records all registered profiles. +var profiles struct { + mu sync.Mutex + m map[string]*Profile +} + +var goroutineProfile = &Profile{ + name: "goroutine", + count: countGoroutine, + write: writeGoroutine, +} + +var threadcreateProfile = &Profile{ + name: "threadcreate", + count: countThreadCreate, + write: writeThreadCreate, +} + +var heapProfile = &Profile{ + name: "heap", + count: countHeap, + write: writeHeap, +} + +var allocsProfile = &Profile{ + name: "allocs", + count: countHeap, // identical to heap profile + write: writeAlloc, +} + +var blockProfile = &Profile{ + name: "block", + count: countBlock, + write: writeBlock, +} + +var mutexProfile = &Profile{ + name: "mutex", + count: countMutex, + write: writeMutex, +} + +func lockProfiles() { + profiles.mu.Lock() + if profiles.m == nil { + // Initial built-in profiles. + profiles.m = map[string]*Profile{ + "goroutine": goroutineProfile, + "threadcreate": threadcreateProfile, + "heap": heapProfile, + "allocs": allocsProfile, + "block": blockProfile, + "mutex": mutexProfile, + } + } +} + +func unlockProfiles() { + profiles.mu.Unlock() +} + +// NewProfile creates a new profile with the given name. +// If a profile with that name already exists, NewProfile panics. +// The convention is to use a 'import/path.' prefix to create +// separate name spaces for each package. +// For compatibility with various tools that read pprof data, +// profile names should not contain spaces. +func NewProfile(name string) *Profile { + lockProfiles() + defer unlockProfiles() + if name == "" { + panic("pprof: NewProfile with empty name") + } + if profiles.m[name] != nil { + panic("pprof: NewProfile name already in use: " + name) + } + p := &Profile{ + name: name, + m: map[interface{}][]uintptr{}, + } + profiles.m[name] = p + return p +} + +// Lookup returns the profile with the given name, or nil if no such profile exists. +func Lookup(name string) *Profile { + lockProfiles() + defer unlockProfiles() + return profiles.m[name] +} + +// Profiles returns a slice of all the known profiles, sorted by name. +func Profiles() []*Profile { + lockProfiles() + defer unlockProfiles() + + all := make([]*Profile, 0, len(profiles.m)) + for _, p := range profiles.m { + all = append(all, p) + } + + sort.Slice(all, func(i, j int) bool { return all[i].name < all[j].name }) + return all +} + +// Name returns this profile's name, which can be passed to Lookup to reobtain the profile. +func (p *Profile) Name() string { + return p.name +} + +// Count returns the number of execution stacks currently in the profile. +func (p *Profile) Count() int { + p.mu.Lock() + defer p.mu.Unlock() + if p.count != nil { + return p.count() + } + return len(p.m) +} + +// Add adds the current execution stack to the profile, associated with value. +// Add stores value in an internal map, so value must be suitable for use as +// a map key and will not be garbage collected until the corresponding +// call to Remove. Add panics if the profile already contains a stack for value. +// +// The skip parameter has the same meaning as runtime.Caller's skip +// and controls where the stack trace begins. Passing skip=0 begins the +// trace in the function calling Add. For example, given this +// execution stack: +// +// Add +// called from rpc.NewClient +// called from mypkg.Run +// called from main.main +// +// Passing skip=0 begins the stack trace at the call to Add inside rpc.NewClient. +// Passing skip=1 begins the stack trace at the call to NewClient inside mypkg.Run. +// +func (p *Profile) Add(value interface{}, skip int) { + if p.name == "" { + panic("pprof: use of uninitialized Profile") + } + if p.write != nil { + panic("pprof: Add called on built-in Profile " + p.name) + } + + stk := make([]uintptr, 32) + n := runtime.Callers(skip+1, stk[:]) + stk = stk[:n] + if len(stk) == 0 { + // The value for skip is too large, and there's no stack trace to record. + stk = []uintptr{funcPC(lostProfileEvent)} + } + + p.mu.Lock() + defer p.mu.Unlock() + if p.m[value] != nil { + panic("pprof: Profile.Add of duplicate value") + } + p.m[value] = stk +} + +// Remove removes the execution stack associated with value from the profile. +// It is a no-op if the value is not in the profile. +func (p *Profile) Remove(value interface{}) { + p.mu.Lock() + defer p.mu.Unlock() + delete(p.m, value) +} + +// WriteTo writes a pprof-formatted snapshot of the profile to w. +// If a write to w returns an error, WriteTo returns that error. +// Otherwise, WriteTo returns nil. +// +// The debug parameter enables additional output. +// Passing debug=0 writes the gzip-compressed protocol buffer described +// in https://github.com/google/pprof/tree/master/proto#overview. +// Passing debug=1 writes the legacy text format with comments +// translating addresses to function names and line numbers, so that a +// programmer can read the profile without tools. +// +// The predefined profiles may assign meaning to other debug values; +// for example, when printing the "goroutine" profile, debug=2 means to +// print the goroutine stacks in the same form that a Go program uses +// when dying due to an unrecovered panic. +func (p *Profile) WriteTo(w io.Writer, debug int) error { + if p.name == "" { + panic("pprof: use of zero Profile") + } + if p.write != nil { + return p.write(w, debug) + } + + // Obtain consistent snapshot under lock; then process without lock. + p.mu.Lock() + all := make([][]uintptr, 0, len(p.m)) + for _, stk := range p.m { + all = append(all, stk) + } + p.mu.Unlock() + + // Map order is non-deterministic; make output deterministic. + sort.Slice(all, func(i, j int) bool { + t, u := all[i], all[j] + for k := 0; k < len(t) && k < len(u); k++ { + if t[k] != u[k] { + return t[k] < u[k] + } + } + return len(t) < len(u) + }) + + return printCountProfile(w, debug, p.name, stackProfile(all)) +} + +type stackProfile [][]uintptr + +func (x stackProfile) Len() int { return len(x) } +func (x stackProfile) Stack(i int) []uintptr { return x[i] } +func (x stackProfile) Label(i int) *labelMap { return nil } + +// A countProfile is a set of stack traces to be printed as counts +// grouped by stack trace. There are multiple implementations: +// all that matters is that we can find out how many traces there are +// and obtain each trace in turn. +type countProfile interface { + Len() int + Stack(i int) []uintptr + Label(i int) *labelMap +} + +// printCountCycleProfile outputs block profile records (for block or mutex profiles) +// as the pprof-proto format output. Translations from cycle count to time duration +// are done because The proto expects count and time (nanoseconds) instead of count +// and the number of cycles for block, contention profiles. +// Possible 'scaler' functions are scaleBlockProfile and scaleMutexProfile. +func printCountCycleProfile(w io.Writer, countName, cycleName string, scaler func(int64, float64) (int64, float64), records []runtime.BlockProfileRecord) error { + // Output profile in protobuf form. + b := newProfileBuilder(w) + b.pbValueType(tagProfile_PeriodType, countName, "count") + b.pb.int64Opt(tagProfile_Period, 1) + b.pbValueType(tagProfile_SampleType, countName, "count") + b.pbValueType(tagProfile_SampleType, cycleName, "nanoseconds") + + cpuGHz := float64(runtime_cyclesPerSecond()) / 1e9 + + values := []int64{0, 0} + var locs []uint64 + for _, r := range records { + count, nanosec := scaler(r.Count, float64(r.Cycles)/cpuGHz) + values[0] = count + values[1] = int64(nanosec) + // For count profiles, all stack addresses are + // return PCs, which is what appendLocsForStack expects. + locs = b.appendLocsForStack(locs[:0], r.Stack()) + b.pbSample(values, locs, nil) + } + b.build() + return nil +} + +// printCountProfile prints a countProfile at the specified debug level. +// The profile will be in compressed proto format unless debug is nonzero. +func printCountProfile(w io.Writer, debug int, name string, p countProfile) error { + // Build count of each stack. + var buf bytes.Buffer + key := func(stk []uintptr, lbls *labelMap) string { + buf.Reset() + fmt.Fprintf(&buf, "@") + for _, pc := range stk { + fmt.Fprintf(&buf, " %#x", pc) + } + if lbls != nil { + buf.WriteString("\n# labels: ") + buf.WriteString(lbls.String()) + } + return buf.String() + } + count := map[string]int{} + index := map[string]int{} + var keys []string + n := p.Len() + for i := 0; i < n; i++ { + k := key(p.Stack(i), p.Label(i)) + if count[k] == 0 { + index[k] = i + keys = append(keys, k) + } + count[k]++ + } + + sort.Sort(&keysByCount{keys, count}) + + if debug > 0 { + // Print debug profile in legacy format + tw := tabwriter.NewWriter(w, 1, 8, 1, '\t', 0) + fmt.Fprintf(tw, "%s profile: total %d\n", name, p.Len()) + for _, k := range keys { + fmt.Fprintf(tw, "%d %s\n", count[k], k) + printStackRecord(tw, p.Stack(index[k]), false) + } + return tw.Flush() + } + + // Output profile in protobuf form. + b := newProfileBuilder(w) + b.pbValueType(tagProfile_PeriodType, name, "count") + b.pb.int64Opt(tagProfile_Period, 1) + b.pbValueType(tagProfile_SampleType, name, "count") + + values := []int64{0} + var locs []uint64 + for _, k := range keys { + values[0] = int64(count[k]) + // For count profiles, all stack addresses are + // return PCs, which is what appendLocsForStack expects. + locs = b.appendLocsForStack(locs[:0], p.Stack(index[k])) + idx := index[k] + var labels func() + if p.Label(idx) != nil { + labels = func() { + for k, v := range *p.Label(idx) { + b.pbLabel(tagSample_Label, k, v, 0) + } + } + } + b.pbSample(values, locs, labels) + } + b.build() + return nil +} + +// keysByCount sorts keys with higher counts first, breaking ties by key string order. +type keysByCount struct { + keys []string + count map[string]int +} + +func (x *keysByCount) Len() int { return len(x.keys) } +func (x *keysByCount) Swap(i, j int) { x.keys[i], x.keys[j] = x.keys[j], x.keys[i] } +func (x *keysByCount) Less(i, j int) bool { + ki, kj := x.keys[i], x.keys[j] + ci, cj := x.count[ki], x.count[kj] + if ci != cj { + return ci > cj + } + return ki < kj +} + +// printStackRecord prints the function + source line information +// for a single stack trace. +func printStackRecord(w io.Writer, stk []uintptr, allFrames bool) { + show := allFrames + frames := runtime.CallersFrames(stk) + for { + frame, more := frames.Next() + name := frame.Function + if name == "" { + show = true + fmt.Fprintf(w, "#\t%#x\n", frame.PC) + } else if name != "runtime.goexit" && (show || !strings.HasPrefix(name, "runtime.")) { + // Hide runtime.goexit and any runtime functions at the beginning. + // This is useful mainly for allocation traces. + show = true + fmt.Fprintf(w, "#\t%#x\t%s+%#x\t%s:%d\n", frame.PC, name, frame.PC-frame.Entry, frame.File, frame.Line) + } + if !more { + break + } + } + if !show { + // We didn't print anything; do it again, + // and this time include runtime functions. + printStackRecord(w, stk, true) + return + } + fmt.Fprintf(w, "\n") +} + +// Interface to system profiles. + +// WriteHeapProfile is shorthand for Lookup("heap").WriteTo(w, 0). +// It is preserved for backwards compatibility. +func WriteHeapProfile(w io.Writer) error { + return writeHeap(w, 0) +} + +// countHeap returns the number of records in the heap profile. +func countHeap() int { + n, _ := runtime.MemProfile(nil, true) + return n +} + +// writeHeap writes the current runtime heap profile to w. +func writeHeap(w io.Writer, debug int) error { + return writeHeapInternal(w, debug, "") +} + +// writeAlloc writes the current runtime heap profile to w +// with the total allocation space as the default sample type. +func writeAlloc(w io.Writer, debug int) error { + return writeHeapInternal(w, debug, "alloc_space") +} + +func writeHeapInternal(w io.Writer, debug int, defaultSampleType string) error { + var memStats *runtime.MemStats + if debug != 0 { + // Read mem stats first, so that our other allocations + // do not appear in the statistics. + memStats = new(runtime.MemStats) + runtime.ReadMemStats(memStats) + } + + // Find out how many records there are (MemProfile(nil, true)), + // allocate that many records, and get the data. + // There's a race—more records might be added between + // the two calls—so allocate a few extra records for safety + // and also try again if we're very unlucky. + // The loop should only execute one iteration in the common case. + var p []runtime.MemProfileRecord + n, ok := runtime.MemProfile(nil, true) + for { + // Allocate room for a slightly bigger profile, + // in case a few more entries have been added + // since the call to MemProfile. + p = make([]runtime.MemProfileRecord, n+50) + n, ok = runtime.MemProfile(p, true) + if ok { + p = p[0:n] + break + } + // Profile grew; try again. + } + + if debug == 0 { + return writeHeapProto(w, p, int64(runtime.MemProfileRate), defaultSampleType) + } + + sort.Slice(p, func(i, j int) bool { return p[i].InUseBytes() > p[j].InUseBytes() }) + + b := bufio.NewWriter(w) + tw := tabwriter.NewWriter(b, 1, 8, 1, '\t', 0) + w = tw + + var total runtime.MemProfileRecord + for i := range p { + r := &p[i] + total.AllocBytes += r.AllocBytes + total.AllocObjects += r.AllocObjects + total.FreeBytes += r.FreeBytes + total.FreeObjects += r.FreeObjects + } + + // Technically the rate is MemProfileRate not 2*MemProfileRate, + // but early versions of the C++ heap profiler reported 2*MemProfileRate, + // so that's what pprof has come to expect. + fmt.Fprintf(w, "heap profile: %d: %d [%d: %d] @ heap/%d\n", + total.InUseObjects(), total.InUseBytes(), + total.AllocObjects, total.AllocBytes, + 2*runtime.MemProfileRate) + + for i := range p { + r := &p[i] + fmt.Fprintf(w, "%d: %d [%d: %d] @", + r.InUseObjects(), r.InUseBytes(), + r.AllocObjects, r.AllocBytes) + for _, pc := range r.Stack() { + fmt.Fprintf(w, " %#x", pc) + } + fmt.Fprintf(w, "\n") + printStackRecord(w, r.Stack(), false) + } + + // Print memstats information too. + // Pprof will ignore, but useful for people + s := memStats + fmt.Fprintf(w, "\n# runtime.MemStats\n") + fmt.Fprintf(w, "# Alloc = %d\n", s.Alloc) + fmt.Fprintf(w, "# TotalAlloc = %d\n", s.TotalAlloc) + fmt.Fprintf(w, "# Sys = %d\n", s.Sys) + fmt.Fprintf(w, "# Lookups = %d\n", s.Lookups) + fmt.Fprintf(w, "# Mallocs = %d\n", s.Mallocs) + fmt.Fprintf(w, "# Frees = %d\n", s.Frees) + + fmt.Fprintf(w, "# HeapAlloc = %d\n", s.HeapAlloc) + fmt.Fprintf(w, "# HeapSys = %d\n", s.HeapSys) + fmt.Fprintf(w, "# HeapIdle = %d\n", s.HeapIdle) + fmt.Fprintf(w, "# HeapInuse = %d\n", s.HeapInuse) + fmt.Fprintf(w, "# HeapReleased = %d\n", s.HeapReleased) + fmt.Fprintf(w, "# HeapObjects = %d\n", s.HeapObjects) + + fmt.Fprintf(w, "# Stack = %d / %d\n", s.StackInuse, s.StackSys) + fmt.Fprintf(w, "# MSpan = %d / %d\n", s.MSpanInuse, s.MSpanSys) + fmt.Fprintf(w, "# MCache = %d / %d\n", s.MCacheInuse, s.MCacheSys) + fmt.Fprintf(w, "# BuckHashSys = %d\n", s.BuckHashSys) + fmt.Fprintf(w, "# GCSys = %d\n", s.GCSys) + fmt.Fprintf(w, "# OtherSys = %d\n", s.OtherSys) + + fmt.Fprintf(w, "# NextGC = %d\n", s.NextGC) + fmt.Fprintf(w, "# LastGC = %d\n", s.LastGC) + fmt.Fprintf(w, "# PauseNs = %d\n", s.PauseNs) + fmt.Fprintf(w, "# PauseEnd = %d\n", s.PauseEnd) + fmt.Fprintf(w, "# NumGC = %d\n", s.NumGC) + fmt.Fprintf(w, "# NumForcedGC = %d\n", s.NumForcedGC) + fmt.Fprintf(w, "# GCCPUFraction = %v\n", s.GCCPUFraction) + fmt.Fprintf(w, "# DebugGC = %v\n", s.DebugGC) + + // Also flush out MaxRSS on supported platforms. + addMaxRSS(w) + + tw.Flush() + return b.Flush() +} + +// countThreadCreate returns the size of the current ThreadCreateProfile. +func countThreadCreate() int { + n, _ := runtime.ThreadCreateProfile(nil) + return n +} + +// writeThreadCreate writes the current runtime ThreadCreateProfile to w. +func writeThreadCreate(w io.Writer, debug int) error { + // Until https://golang.org/issues/6104 is addressed, wrap + // ThreadCreateProfile because there's no point in tracking labels when we + // don't get any stack-traces. + return writeRuntimeProfile(w, debug, "threadcreate", func(p []runtime.StackRecord, _ []unsafe.Pointer) (n int, ok bool) { + return runtime.ThreadCreateProfile(p) + }) +} + +// countGoroutine returns the number of goroutines. +func countGoroutine() int { + return runtime.NumGoroutine() +} + +// runtime_goroutineProfileWithLabels is defined in runtime/mprof.go +func runtime_goroutineProfileWithLabels(p []runtime.StackRecord, labels []unsafe.Pointer) (n int, ok bool) + +// writeGoroutine writes the current runtime GoroutineProfile to w. +func writeGoroutine(w io.Writer, debug int) error { + if debug >= 2 { + return writeGoroutineStacks(w) + } + return writeRuntimeProfile(w, debug, "goroutine", runtime_goroutineProfileWithLabels) +} + +func writeGoroutineStacks(w io.Writer) error { + // We don't know how big the buffer needs to be to collect + // all the goroutines. Start with 1 MB and try a few times, doubling each time. + // Give up and use a truncated trace if 64 MB is not enough. + buf := make([]byte, 1<<20) + for i := 0; ; i++ { + n := runtime.Stack(buf, true) + if n < len(buf) { + buf = buf[:n] + break + } + if len(buf) >= 64<<20 { + // Filled 64 MB - stop there. + break + } + buf = make([]byte, 2*len(buf)) + } + _, err := w.Write(buf) + return err +} + +func writeRuntimeProfile(w io.Writer, debug int, name string, fetch func([]runtime.StackRecord, []unsafe.Pointer) (int, bool)) error { + // Find out how many records there are (fetch(nil)), + // allocate that many records, and get the data. + // There's a race—more records might be added between + // the two calls—so allocate a few extra records for safety + // and also try again if we're very unlucky. + // The loop should only execute one iteration in the common case. + var p []runtime.StackRecord + var labels []unsafe.Pointer + n, ok := fetch(nil, nil) + for { + // Allocate room for a slightly bigger profile, + // in case a few more entries have been added + // since the call to ThreadProfile. + p = make([]runtime.StackRecord, n+10) + labels = make([]unsafe.Pointer, n+10) + n, ok = fetch(p, labels) + if ok { + p = p[0:n] + break + } + // Profile grew; try again. + } + + return printCountProfile(w, debug, name, &runtimeProfile{p, labels}) +} + +type runtimeProfile struct { + stk []runtime.StackRecord + labels []unsafe.Pointer +} + +func (p *runtimeProfile) Len() int { return len(p.stk) } +func (p *runtimeProfile) Stack(i int) []uintptr { return p.stk[i].Stack() } +func (p *runtimeProfile) Label(i int) *labelMap { return (*labelMap)(p.labels[i]) } + +var cpu struct { + sync.Mutex + profiling bool + done chan bool +} + +// StartCPUProfile enables CPU profiling for the current process. +// While profiling, the profile will be buffered and written to w. +// StartCPUProfile returns an error if profiling is already enabled. +// +// On Unix-like systems, StartCPUProfile does not work by default for +// Go code built with -buildmode=c-archive or -buildmode=c-shared. +// StartCPUProfile relies on the SIGPROF signal, but that signal will +// be delivered to the main program's SIGPROF signal handler (if any) +// not to the one used by Go. To make it work, call os/signal.Notify +// for syscall.SIGPROF, but note that doing so may break any profiling +// being done by the main program. +func StartCPUProfile(w io.Writer) error { + // The runtime routines allow a variable profiling rate, + // but in practice operating systems cannot trigger signals + // at more than about 500 Hz, and our processing of the + // signal is not cheap (mostly getting the stack trace). + // 100 Hz is a reasonable choice: it is frequent enough to + // produce useful data, rare enough not to bog down the + // system, and a nice round number to make it easy to + // convert sample counts to seconds. Instead of requiring + // each client to specify the frequency, we hard code it. + const hz = 100 + + cpu.Lock() + defer cpu.Unlock() + if cpu.done == nil { + cpu.done = make(chan bool) + } + // Double-check. + if cpu.profiling { + return fmt.Errorf("cpu profiling already in use") + } + cpu.profiling = true + runtime.SetCPUProfileRate(hz) + go profileWriter(w) + return nil +} + +// readProfile, provided by the runtime, returns the next chunk of +// binary CPU profiling stack trace data, blocking until data is available. +// If profiling is turned off and all the profile data accumulated while it was +// on has been returned, readProfile returns eof=true. +// The caller must save the returned data and tags before calling readProfile again. +func readProfile() (data []uint64, tags []unsafe.Pointer, eof bool) + +func profileWriter(w io.Writer) { + b := newProfileBuilder(w) + var err error + for { + time.Sleep(100 * time.Millisecond) + data, tags, eof := readProfile() + if e := b.addCPUData(data, tags); e != nil && err == nil { + err = e + } + if eof { + break + } + } + if err != nil { + // The runtime should never produce an invalid or truncated profile. + // It drops records that can't fit into its log buffers. + panic("runtime/pprof: converting profile: " + err.Error()) + } + b.build() + cpu.done <- true +} + +// StopCPUProfile stops the current CPU profile, if any. +// StopCPUProfile only returns after all the writes for the +// profile have completed. +func StopCPUProfile() { + cpu.Lock() + defer cpu.Unlock() + + if !cpu.profiling { + return + } + cpu.profiling = false + runtime.SetCPUProfileRate(0) + <-cpu.done +} + +// countBlock returns the number of records in the blocking profile. +func countBlock() int { + n, _ := runtime.BlockProfile(nil) + return n +} + +// countMutex returns the number of records in the mutex profile. +func countMutex() int { + n, _ := runtime.MutexProfile(nil) + return n +} + +// writeBlock writes the current blocking profile to w. +func writeBlock(w io.Writer, debug int) error { + var p []runtime.BlockProfileRecord + n, ok := runtime.BlockProfile(nil) + for { + p = make([]runtime.BlockProfileRecord, n+50) + n, ok = runtime.BlockProfile(p) + if ok { + p = p[:n] + break + } + } + + sort.Slice(p, func(i, j int) bool { return p[i].Cycles > p[j].Cycles }) + + if debug <= 0 { + return printCountCycleProfile(w, "contentions", "delay", scaleBlockProfile, p) + } + + b := bufio.NewWriter(w) + tw := tabwriter.NewWriter(w, 1, 8, 1, '\t', 0) + w = tw + + fmt.Fprintf(w, "--- contention:\n") + fmt.Fprintf(w, "cycles/second=%v\n", runtime_cyclesPerSecond()) + for i := range p { + r := &p[i] + fmt.Fprintf(w, "%v %v @", r.Cycles, r.Count) + for _, pc := range r.Stack() { + fmt.Fprintf(w, " %#x", pc) + } + fmt.Fprint(w, "\n") + if debug > 0 { + printStackRecord(w, r.Stack(), true) + } + } + + if tw != nil { + tw.Flush() + } + return b.Flush() +} + +func scaleBlockProfile(cnt int64, ns float64) (int64, float64) { + // Do nothing. + // The current way of block profile sampling makes it + // hard to compute the unsampled number. The legacy block + // profile parse doesn't attempt to scale or unsample. + return cnt, ns +} + +// writeMutex writes the current mutex profile to w. +func writeMutex(w io.Writer, debug int) error { + // TODO(pjw): too much common code with writeBlock. FIX! + var p []runtime.BlockProfileRecord + n, ok := runtime.MutexProfile(nil) + for { + p = make([]runtime.BlockProfileRecord, n+50) + n, ok = runtime.MutexProfile(p) + if ok { + p = p[:n] + break + } + } + + sort.Slice(p, func(i, j int) bool { return p[i].Cycles > p[j].Cycles }) + + if debug <= 0 { + return printCountCycleProfile(w, "contentions", "delay", scaleMutexProfile, p) + } + + b := bufio.NewWriter(w) + tw := tabwriter.NewWriter(w, 1, 8, 1, '\t', 0) + w = tw + + fmt.Fprintf(w, "--- mutex:\n") + fmt.Fprintf(w, "cycles/second=%v\n", runtime_cyclesPerSecond()) + fmt.Fprintf(w, "sampling period=%d\n", runtime.SetMutexProfileFraction(-1)) + for i := range p { + r := &p[i] + fmt.Fprintf(w, "%v %v @", r.Cycles, r.Count) + for _, pc := range r.Stack() { + fmt.Fprintf(w, " %#x", pc) + } + fmt.Fprint(w, "\n") + if debug > 0 { + printStackRecord(w, r.Stack(), true) + } + } + + if tw != nil { + tw.Flush() + } + return b.Flush() +} + +func scaleMutexProfile(cnt int64, ns float64) (int64, float64) { + period := runtime.SetMutexProfileFraction(-1) + return cnt * int64(period), ns * float64(period) +} + +func runtime_cyclesPerSecond() int64 |