summaryrefslogtreecommitdiffstats
path: root/src/runtime/proc.go
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/runtime/proc.go6336
1 files changed, 6336 insertions, 0 deletions
diff --git a/src/runtime/proc.go b/src/runtime/proc.go
new file mode 100644
index 0000000..32fe877
--- /dev/null
+++ b/src/runtime/proc.go
@@ -0,0 +1,6336 @@
+// Copyright 2014 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package runtime
+
+import (
+ "internal/bytealg"
+ "internal/cpu"
+ "runtime/internal/atomic"
+ "runtime/internal/sys"
+ "unsafe"
+)
+
+var buildVersion = sys.TheVersion
+
+// set using cmd/go/internal/modload.ModInfoProg
+var modinfo string
+
+// Goroutine scheduler
+// The scheduler's job is to distribute ready-to-run goroutines over worker threads.
+//
+// The main concepts are:
+// G - goroutine.
+// M - worker thread, or machine.
+// P - processor, a resource that is required to execute Go code.
+// M must have an associated P to execute Go code, however it can be
+// blocked or in a syscall w/o an associated P.
+//
+// Design doc at https://golang.org/s/go11sched.
+
+// Worker thread parking/unparking.
+// We need to balance between keeping enough running worker threads to utilize
+// available hardware parallelism and parking excessive running worker threads
+// to conserve CPU resources and power. This is not simple for two reasons:
+// (1) scheduler state is intentionally distributed (in particular, per-P work
+// queues), so it is not possible to compute global predicates on fast paths;
+// (2) for optimal thread management we would need to know the future (don't park
+// a worker thread when a new goroutine will be readied in near future).
+//
+// Three rejected approaches that would work badly:
+// 1. Centralize all scheduler state (would inhibit scalability).
+// 2. Direct goroutine handoff. That is, when we ready a new goroutine and there
+// is a spare P, unpark a thread and handoff it the thread and the goroutine.
+// This would lead to thread state thrashing, as the thread that readied the
+// goroutine can be out of work the very next moment, we will need to park it.
+// Also, it would destroy locality of computation as we want to preserve
+// dependent goroutines on the same thread; and introduce additional latency.
+// 3. Unpark an additional thread whenever we ready a goroutine and there is an
+// idle P, but don't do handoff. This would lead to excessive thread parking/
+// unparking as the additional threads will instantly park without discovering
+// any work to do.
+//
+// The current approach:
+// We unpark an additional thread when we ready a goroutine if (1) there is an
+// idle P and there are no "spinning" worker threads. A worker thread is considered
+// spinning if it is out of local work and did not find work in global run queue/
+// netpoller; the spinning state is denoted in m.spinning and in sched.nmspinning.
+// Threads unparked this way are also considered spinning; we don't do goroutine
+// handoff so such threads are out of work initially. Spinning threads do some
+// spinning looking for work in per-P run queues before parking. If a spinning
+// thread finds work it takes itself out of the spinning state and proceeds to
+// execution. If it does not find work it takes itself out of the spinning state
+// and then parks.
+// If there is at least one spinning thread (sched.nmspinning>1), we don't unpark
+// new threads when readying goroutines. To compensate for that, if the last spinning
+// thread finds work and stops spinning, it must unpark a new spinning thread.
+// This approach smooths out unjustified spikes of thread unparking,
+// but at the same time guarantees eventual maximal CPU parallelism utilization.
+//
+// The main implementation complication is that we need to be very careful during
+// spinning->non-spinning thread transition. This transition can race with submission
+// of a new goroutine, and either one part or another needs to unpark another worker
+// thread. If they both fail to do that, we can end up with semi-persistent CPU
+// underutilization. The general pattern for goroutine readying is: submit a goroutine
+// to local work queue, #StoreLoad-style memory barrier, check sched.nmspinning.
+// The general pattern for spinning->non-spinning transition is: decrement nmspinning,
+// #StoreLoad-style memory barrier, check all per-P work queues for new work.
+// Note that all this complexity does not apply to global run queue as we are not
+// sloppy about thread unparking when submitting to global queue. Also see comments
+// for nmspinning manipulation.
+
+var (
+ m0 m
+ g0 g
+ mcache0 *mcache
+ raceprocctx0 uintptr
+)
+
+//go:linkname runtime_inittask runtime..inittask
+var runtime_inittask initTask
+
+//go:linkname main_inittask main..inittask
+var main_inittask initTask
+
+// main_init_done is a signal used by cgocallbackg that initialization
+// has been completed. It is made before _cgo_notify_runtime_init_done,
+// so all cgo calls can rely on it existing. When main_init is complete,
+// it is closed, meaning cgocallbackg can reliably receive from it.
+var main_init_done chan bool
+
+//go:linkname main_main main.main
+func main_main()
+
+// mainStarted indicates that the main M has started.
+var mainStarted bool
+
+// runtimeInitTime is the nanotime() at which the runtime started.
+var runtimeInitTime int64
+
+// Value to use for signal mask for newly created M's.
+var initSigmask sigset
+
+// The main goroutine.
+func main() {
+ g := getg()
+
+ // Racectx of m0->g0 is used only as the parent of the main goroutine.
+ // It must not be used for anything else.
+ g.m.g0.racectx = 0
+
+ // Max stack size is 1 GB on 64-bit, 250 MB on 32-bit.
+ // Using decimal instead of binary GB and MB because
+ // they look nicer in the stack overflow failure message.
+ if sys.PtrSize == 8 {
+ maxstacksize = 1000000000
+ } else {
+ maxstacksize = 250000000
+ }
+
+ // An upper limit for max stack size. Used to avoid random crashes
+ // after calling SetMaxStack and trying to allocate a stack that is too big,
+ // since stackalloc works with 32-bit sizes.
+ maxstackceiling = 2 * maxstacksize
+
+ // Allow newproc to start new Ms.
+ mainStarted = true
+
+ if GOARCH != "wasm" { // no threads on wasm yet, so no sysmon
+ // For runtime_syscall_doAllThreadsSyscall, we
+ // register sysmon is not ready for the world to be
+ // stopped.
+ atomic.Store(&sched.sysmonStarting, 1)
+ systemstack(func() {
+ newm(sysmon, nil, -1)
+ })
+ }
+
+ // Lock the main goroutine onto this, the main OS thread,
+ // during initialization. Most programs won't care, but a few
+ // do require certain calls to be made by the main thread.
+ // Those can arrange for main.main to run in the main thread
+ // by calling runtime.LockOSThread during initialization
+ // to preserve the lock.
+ lockOSThread()
+
+ if g.m != &m0 {
+ throw("runtime.main not on m0")
+ }
+ m0.doesPark = true
+
+ // Record when the world started.
+ // Must be before doInit for tracing init.
+ runtimeInitTime = nanotime()
+ if runtimeInitTime == 0 {
+ throw("nanotime returning zero")
+ }
+
+ if debug.inittrace != 0 {
+ inittrace.id = getg().goid
+ inittrace.active = true
+ }
+
+ doInit(&runtime_inittask) // Must be before defer.
+
+ // Defer unlock so that runtime.Goexit during init does the unlock too.
+ needUnlock := true
+ defer func() {
+ if needUnlock {
+ unlockOSThread()
+ }
+ }()
+
+ gcenable()
+
+ main_init_done = make(chan bool)
+ if iscgo {
+ if _cgo_thread_start == nil {
+ throw("_cgo_thread_start missing")
+ }
+ if GOOS != "windows" {
+ if _cgo_setenv == nil {
+ throw("_cgo_setenv missing")
+ }
+ if _cgo_unsetenv == nil {
+ throw("_cgo_unsetenv missing")
+ }
+ }
+ if _cgo_notify_runtime_init_done == nil {
+ throw("_cgo_notify_runtime_init_done missing")
+ }
+ // Start the template thread in case we enter Go from
+ // a C-created thread and need to create a new thread.
+ startTemplateThread()
+ cgocall(_cgo_notify_runtime_init_done, nil)
+ }
+
+ doInit(&main_inittask)
+
+ // Disable init tracing after main init done to avoid overhead
+ // of collecting statistics in malloc and newproc
+ inittrace.active = false
+
+ close(main_init_done)
+
+ needUnlock = false
+ unlockOSThread()
+
+ if isarchive || islibrary {
+ // A program compiled with -buildmode=c-archive or c-shared
+ // has a main, but it is not executed.
+ return
+ }
+ fn := main_main // make an indirect call, as the linker doesn't know the address of the main package when laying down the runtime
+ fn()
+ if raceenabled {
+ racefini()
+ }
+
+ // Make racy client program work: if panicking on
+ // another goroutine at the same time as main returns,
+ // let the other goroutine finish printing the panic trace.
+ // Once it does, it will exit. See issues 3934 and 20018.
+ if atomic.Load(&runningPanicDefers) != 0 {
+ // Running deferred functions should not take long.
+ for c := 0; c < 1000; c++ {
+ if atomic.Load(&runningPanicDefers) == 0 {
+ break
+ }
+ Gosched()
+ }
+ }
+ if atomic.Load(&panicking) != 0 {
+ gopark(nil, nil, waitReasonPanicWait, traceEvGoStop, 1)
+ }
+
+ exit(0)
+ for {
+ var x *int32
+ *x = 0
+ }
+}
+
+// os_beforeExit is called from os.Exit(0).
+//go:linkname os_beforeExit os.runtime_beforeExit
+func os_beforeExit() {
+ if raceenabled {
+ racefini()
+ }
+}
+
+// start forcegc helper goroutine
+func init() {
+ go forcegchelper()
+}
+
+func forcegchelper() {
+ forcegc.g = getg()
+ lockInit(&forcegc.lock, lockRankForcegc)
+ for {
+ lock(&forcegc.lock)
+ if forcegc.idle != 0 {
+ throw("forcegc: phase error")
+ }
+ atomic.Store(&forcegc.idle, 1)
+ goparkunlock(&forcegc.lock, waitReasonForceGCIdle, traceEvGoBlock, 1)
+ // this goroutine is explicitly resumed by sysmon
+ if debug.gctrace > 0 {
+ println("GC forced")
+ }
+ // Time-triggered, fully concurrent.
+ gcStart(gcTrigger{kind: gcTriggerTime, now: nanotime()})
+ }
+}
+
+//go:nosplit
+
+// Gosched yields the processor, allowing other goroutines to run. It does not
+// suspend the current goroutine, so execution resumes automatically.
+func Gosched() {
+ checkTimeouts()
+ mcall(gosched_m)
+}
+
+// goschedguarded yields the processor like gosched, but also checks
+// for forbidden states and opts out of the yield in those cases.
+//go:nosplit
+func goschedguarded() {
+ mcall(goschedguarded_m)
+}
+
+// Puts the current goroutine into a waiting state and calls unlockf on the
+// system stack.
+//
+// If unlockf returns false, the goroutine is resumed.
+//
+// unlockf must not access this G's stack, as it may be moved between
+// the call to gopark and the call to unlockf.
+//
+// Note that because unlockf is called after putting the G into a waiting
+// state, the G may have already been readied by the time unlockf is called
+// unless there is external synchronization preventing the G from being
+// readied. If unlockf returns false, it must guarantee that the G cannot be
+// externally readied.
+//
+// Reason explains why the goroutine has been parked. It is displayed in stack
+// traces and heap dumps. Reasons should be unique and descriptive. Do not
+// re-use reasons, add new ones.
+func gopark(unlockf func(*g, unsafe.Pointer) bool, lock unsafe.Pointer, reason waitReason, traceEv byte, traceskip int) {
+ if reason != waitReasonSleep {
+ checkTimeouts() // timeouts may expire while two goroutines keep the scheduler busy
+ }
+ mp := acquirem()
+ gp := mp.curg
+ status := readgstatus(gp)
+ if status != _Grunning && status != _Gscanrunning {
+ throw("gopark: bad g status")
+ }
+ mp.waitlock = lock
+ mp.waitunlockf = unlockf
+ gp.waitreason = reason
+ mp.waittraceev = traceEv
+ mp.waittraceskip = traceskip
+ releasem(mp)
+ // can't do anything that might move the G between Ms here.
+ mcall(park_m)
+}
+
+// Puts the current goroutine into a waiting state and unlocks the lock.
+// The goroutine can be made runnable again by calling goready(gp).
+func goparkunlock(lock *mutex, reason waitReason, traceEv byte, traceskip int) {
+ gopark(parkunlock_c, unsafe.Pointer(lock), reason, traceEv, traceskip)
+}
+
+func goready(gp *g, traceskip int) {
+ systemstack(func() {
+ ready(gp, traceskip, true)
+ })
+}
+
+//go:nosplit
+func acquireSudog() *sudog {
+ // Delicate dance: the semaphore implementation calls
+ // acquireSudog, acquireSudog calls new(sudog),
+ // new calls malloc, malloc can call the garbage collector,
+ // and the garbage collector calls the semaphore implementation
+ // in stopTheWorld.
+ // Break the cycle by doing acquirem/releasem around new(sudog).
+ // The acquirem/releasem increments m.locks during new(sudog),
+ // which keeps the garbage collector from being invoked.
+ mp := acquirem()
+ pp := mp.p.ptr()
+ if len(pp.sudogcache) == 0 {
+ lock(&sched.sudoglock)
+ // First, try to grab a batch from central cache.
+ for len(pp.sudogcache) < cap(pp.sudogcache)/2 && sched.sudogcache != nil {
+ s := sched.sudogcache
+ sched.sudogcache = s.next
+ s.next = nil
+ pp.sudogcache = append(pp.sudogcache, s)
+ }
+ unlock(&sched.sudoglock)
+ // If the central cache is empty, allocate a new one.
+ if len(pp.sudogcache) == 0 {
+ pp.sudogcache = append(pp.sudogcache, new(sudog))
+ }
+ }
+ n := len(pp.sudogcache)
+ s := pp.sudogcache[n-1]
+ pp.sudogcache[n-1] = nil
+ pp.sudogcache = pp.sudogcache[:n-1]
+ if s.elem != nil {
+ throw("acquireSudog: found s.elem != nil in cache")
+ }
+ releasem(mp)
+ return s
+}
+
+//go:nosplit
+func releaseSudog(s *sudog) {
+ if s.elem != nil {
+ throw("runtime: sudog with non-nil elem")
+ }
+ if s.isSelect {
+ throw("runtime: sudog with non-false isSelect")
+ }
+ if s.next != nil {
+ throw("runtime: sudog with non-nil next")
+ }
+ if s.prev != nil {
+ throw("runtime: sudog with non-nil prev")
+ }
+ if s.waitlink != nil {
+ throw("runtime: sudog with non-nil waitlink")
+ }
+ if s.c != nil {
+ throw("runtime: sudog with non-nil c")
+ }
+ gp := getg()
+ if gp.param != nil {
+ throw("runtime: releaseSudog with non-nil gp.param")
+ }
+ mp := acquirem() // avoid rescheduling to another P
+ pp := mp.p.ptr()
+ if len(pp.sudogcache) == cap(pp.sudogcache) {
+ // Transfer half of local cache to the central cache.
+ var first, last *sudog
+ for len(pp.sudogcache) > cap(pp.sudogcache)/2 {
+ n := len(pp.sudogcache)
+ p := pp.sudogcache[n-1]
+ pp.sudogcache[n-1] = nil
+ pp.sudogcache = pp.sudogcache[:n-1]
+ if first == nil {
+ first = p
+ } else {
+ last.next = p
+ }
+ last = p
+ }
+ lock(&sched.sudoglock)
+ last.next = sched.sudogcache
+ sched.sudogcache = first
+ unlock(&sched.sudoglock)
+ }
+ pp.sudogcache = append(pp.sudogcache, s)
+ releasem(mp)
+}
+
+// funcPC returns the entry PC of the function f.
+// It assumes that f is a func value. Otherwise the behavior is undefined.
+// CAREFUL: In programs with plugins, funcPC can return different values
+// for the same function (because there are actually multiple copies of
+// the same function in the address space). To be safe, don't use the
+// results of this function in any == expression. It is only safe to
+// use the result as an address at which to start executing code.
+//go:nosplit
+func funcPC(f interface{}) uintptr {
+ return *(*uintptr)(efaceOf(&f).data)
+}
+
+// called from assembly
+func badmcall(fn func(*g)) {
+ throw("runtime: mcall called on m->g0 stack")
+}
+
+func badmcall2(fn func(*g)) {
+ throw("runtime: mcall function returned")
+}
+
+func badreflectcall() {
+ panic(plainError("arg size to reflect.call more than 1GB"))
+}
+
+var badmorestackg0Msg = "fatal: morestack on g0\n"
+
+//go:nosplit
+//go:nowritebarrierrec
+func badmorestackg0() {
+ sp := stringStructOf(&badmorestackg0Msg)
+ write(2, sp.str, int32(sp.len))
+}
+
+var badmorestackgsignalMsg = "fatal: morestack on gsignal\n"
+
+//go:nosplit
+//go:nowritebarrierrec
+func badmorestackgsignal() {
+ sp := stringStructOf(&badmorestackgsignalMsg)
+ write(2, sp.str, int32(sp.len))
+}
+
+//go:nosplit
+func badctxt() {
+ throw("ctxt != 0")
+}
+
+func lockedOSThread() bool {
+ gp := getg()
+ return gp.lockedm != 0 && gp.m.lockedg != 0
+}
+
+var (
+ // allgs contains all Gs ever created (including dead Gs), and thus
+ // never shrinks.
+ //
+ // Access via the slice is protected by allglock or stop-the-world.
+ // Readers that cannot take the lock may (carefully!) use the atomic
+ // variables below.
+ allglock mutex
+ allgs []*g
+
+ // allglen and allgptr are atomic variables that contain len(allg) and
+ // &allg[0] respectively. Proper ordering depends on totally-ordered
+ // loads and stores. Writes are protected by allglock.
+ //
+ // allgptr is updated before allglen. Readers should read allglen
+ // before allgptr to ensure that allglen is always <= len(allgptr). New
+ // Gs appended during the race can be missed. For a consistent view of
+ // all Gs, allglock must be held.
+ //
+ // allgptr copies should always be stored as a concrete type or
+ // unsafe.Pointer, not uintptr, to ensure that GC can still reach it
+ // even if it points to a stale array.
+ allglen uintptr
+ allgptr **g
+)
+
+func allgadd(gp *g) {
+ if readgstatus(gp) == _Gidle {
+ throw("allgadd: bad status Gidle")
+ }
+
+ lock(&allglock)
+ allgs = append(allgs, gp)
+ if &allgs[0] != allgptr {
+ atomicstorep(unsafe.Pointer(&allgptr), unsafe.Pointer(&allgs[0]))
+ }
+ atomic.Storeuintptr(&allglen, uintptr(len(allgs)))
+ unlock(&allglock)
+}
+
+// atomicAllG returns &allgs[0] and len(allgs) for use with atomicAllGIndex.
+func atomicAllG() (**g, uintptr) {
+ length := atomic.Loaduintptr(&allglen)
+ ptr := (**g)(atomic.Loadp(unsafe.Pointer(&allgptr)))
+ return ptr, length
+}
+
+// atomicAllGIndex returns ptr[i] with the allgptr returned from atomicAllG.
+func atomicAllGIndex(ptr **g, i uintptr) *g {
+ return *(**g)(add(unsafe.Pointer(ptr), i*sys.PtrSize))
+}
+
+const (
+ // Number of goroutine ids to grab from sched.goidgen to local per-P cache at once.
+ // 16 seems to provide enough amortization, but other than that it's mostly arbitrary number.
+ _GoidCacheBatch = 16
+)
+
+// cpuinit extracts the environment variable GODEBUG from the environment on
+// Unix-like operating systems and calls internal/cpu.Initialize.
+func cpuinit() {
+ const prefix = "GODEBUG="
+ var env string
+
+ switch GOOS {
+ case "aix", "darwin", "ios", "dragonfly", "freebsd", "netbsd", "openbsd", "illumos", "solaris", "linux":
+ cpu.DebugOptions = true
+
+ // Similar to goenv_unix but extracts the environment value for
+ // GODEBUG directly.
+ // TODO(moehrmann): remove when general goenvs() can be called before cpuinit()
+ n := int32(0)
+ for argv_index(argv, argc+1+n) != nil {
+ n++
+ }
+
+ for i := int32(0); i < n; i++ {
+ p := argv_index(argv, argc+1+i)
+ s := *(*string)(unsafe.Pointer(&stringStruct{unsafe.Pointer(p), findnull(p)}))
+
+ if hasPrefix(s, prefix) {
+ env = gostring(p)[len(prefix):]
+ break
+ }
+ }
+ }
+
+ cpu.Initialize(env)
+
+ // Support cpu feature variables are used in code generated by the compiler
+ // to guard execution of instructions that can not be assumed to be always supported.
+ x86HasPOPCNT = cpu.X86.HasPOPCNT
+ x86HasSSE41 = cpu.X86.HasSSE41
+ x86HasFMA = cpu.X86.HasFMA
+
+ armHasVFPv4 = cpu.ARM.HasVFPv4
+
+ arm64HasATOMICS = cpu.ARM64.HasATOMICS
+}
+
+// The bootstrap sequence is:
+//
+// call osinit
+// call schedinit
+// make & queue new G
+// call runtime·mstart
+//
+// The new G calls runtime·main.
+func schedinit() {
+ lockInit(&sched.lock, lockRankSched)
+ lockInit(&sched.sysmonlock, lockRankSysmon)
+ lockInit(&sched.deferlock, lockRankDefer)
+ lockInit(&sched.sudoglock, lockRankSudog)
+ lockInit(&deadlock, lockRankDeadlock)
+ lockInit(&paniclk, lockRankPanic)
+ lockInit(&allglock, lockRankAllg)
+ lockInit(&allpLock, lockRankAllp)
+ lockInit(&reflectOffs.lock, lockRankReflectOffs)
+ lockInit(&finlock, lockRankFin)
+ lockInit(&trace.bufLock, lockRankTraceBuf)
+ lockInit(&trace.stringsLock, lockRankTraceStrings)
+ lockInit(&trace.lock, lockRankTrace)
+ lockInit(&cpuprof.lock, lockRankCpuprof)
+ lockInit(&trace.stackTab.lock, lockRankTraceStackTab)
+ // Enforce that this lock is always a leaf lock.
+ // All of this lock's critical sections should be
+ // extremely short.
+ lockInit(&memstats.heapStats.noPLock, lockRankLeafRank)
+
+ // raceinit must be the first call to race detector.
+ // In particular, it must be done before mallocinit below calls racemapshadow.
+ _g_ := getg()
+ if raceenabled {
+ _g_.racectx, raceprocctx0 = raceinit()
+ }
+
+ sched.maxmcount = 10000
+
+ // The world starts stopped.
+ worldStopped()
+
+ moduledataverify()
+ stackinit()
+ mallocinit()
+ fastrandinit() // must run before mcommoninit
+ mcommoninit(_g_.m, -1)
+ cpuinit() // must run before alginit
+ alginit() // maps must not be used before this call
+ modulesinit() // provides activeModules
+ typelinksinit() // uses maps, activeModules
+ itabsinit() // uses activeModules
+
+ sigsave(&_g_.m.sigmask)
+ initSigmask = _g_.m.sigmask
+
+ goargs()
+ goenvs()
+ parsedebugvars()
+ gcinit()
+
+ lock(&sched.lock)
+ sched.lastpoll = uint64(nanotime())
+ procs := ncpu
+ if n, ok := atoi32(gogetenv("GOMAXPROCS")); ok && n > 0 {
+ procs = n
+ }
+ if procresize(procs) != nil {
+ throw("unknown runnable goroutine during bootstrap")
+ }
+ unlock(&sched.lock)
+
+ // World is effectively started now, as P's can run.
+ worldStarted()
+
+ // For cgocheck > 1, we turn on the write barrier at all times
+ // and check all pointer writes. We can't do this until after
+ // procresize because the write barrier needs a P.
+ if debug.cgocheck > 1 {
+ writeBarrier.cgo = true
+ writeBarrier.enabled = true
+ for _, p := range allp {
+ p.wbBuf.reset()
+ }
+ }
+
+ if buildVersion == "" {
+ // Condition should never trigger. This code just serves
+ // to ensure runtime·buildVersion is kept in the resulting binary.
+ buildVersion = "unknown"
+ }
+ if len(modinfo) == 1 {
+ // Condition should never trigger. This code just serves
+ // to ensure runtime·modinfo is kept in the resulting binary.
+ modinfo = ""
+ }
+}
+
+func dumpgstatus(gp *g) {
+ _g_ := getg()
+ print("runtime: gp: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n")
+ print("runtime: g: g=", _g_, ", goid=", _g_.goid, ", g->atomicstatus=", readgstatus(_g_), "\n")
+}
+
+// sched.lock must be held.
+func checkmcount() {
+ assertLockHeld(&sched.lock)
+
+ if mcount() > sched.maxmcount {
+ print("runtime: program exceeds ", sched.maxmcount, "-thread limit\n")
+ throw("thread exhaustion")
+ }
+}
+
+// mReserveID returns the next ID to use for a new m. This new m is immediately
+// considered 'running' by checkdead.
+//
+// sched.lock must be held.
+func mReserveID() int64 {
+ assertLockHeld(&sched.lock)
+
+ if sched.mnext+1 < sched.mnext {
+ throw("runtime: thread ID overflow")
+ }
+ id := sched.mnext
+ sched.mnext++
+ checkmcount()
+ return id
+}
+
+// Pre-allocated ID may be passed as 'id', or omitted by passing -1.
+func mcommoninit(mp *m, id int64) {
+ _g_ := getg()
+
+ // g0 stack won't make sense for user (and is not necessary unwindable).
+ if _g_ != _g_.m.g0 {
+ callers(1, mp.createstack[:])
+ }
+
+ lock(&sched.lock)
+
+ if id >= 0 {
+ mp.id = id
+ } else {
+ mp.id = mReserveID()
+ }
+
+ mp.fastrand[0] = uint32(int64Hash(uint64(mp.id), fastrandseed))
+ mp.fastrand[1] = uint32(int64Hash(uint64(cputicks()), ^fastrandseed))
+ if mp.fastrand[0]|mp.fastrand[1] == 0 {
+ mp.fastrand[1] = 1
+ }
+
+ mpreinit(mp)
+ if mp.gsignal != nil {
+ mp.gsignal.stackguard1 = mp.gsignal.stack.lo + _StackGuard
+ }
+
+ // Add to allm so garbage collector doesn't free g->m
+ // when it is just in a register or thread-local storage.
+ mp.alllink = allm
+
+ // NumCgoCall() iterates over allm w/o schedlock,
+ // so we need to publish it safely.
+ atomicstorep(unsafe.Pointer(&allm), unsafe.Pointer(mp))
+ unlock(&sched.lock)
+
+ // Allocate memory to hold a cgo traceback if the cgo call crashes.
+ if iscgo || GOOS == "solaris" || GOOS == "illumos" || GOOS == "windows" {
+ mp.cgoCallers = new(cgoCallers)
+ }
+}
+
+var fastrandseed uintptr
+
+func fastrandinit() {
+ s := (*[unsafe.Sizeof(fastrandseed)]byte)(unsafe.Pointer(&fastrandseed))[:]
+ getRandomData(s)
+}
+
+// Mark gp ready to run.
+func ready(gp *g, traceskip int, next bool) {
+ if trace.enabled {
+ traceGoUnpark(gp, traceskip)
+ }
+
+ status := readgstatus(gp)
+
+ // Mark runnable.
+ _g_ := getg()
+ mp := acquirem() // disable preemption because it can be holding p in a local var
+ if status&^_Gscan != _Gwaiting {
+ dumpgstatus(gp)
+ throw("bad g->status in ready")
+ }
+
+ // status is Gwaiting or Gscanwaiting, make Grunnable and put on runq
+ casgstatus(gp, _Gwaiting, _Grunnable)
+ runqput(_g_.m.p.ptr(), gp, next)
+ wakep()
+ releasem(mp)
+}
+
+// freezeStopWait is a large value that freezetheworld sets
+// sched.stopwait to in order to request that all Gs permanently stop.
+const freezeStopWait = 0x7fffffff
+
+// freezing is set to non-zero if the runtime is trying to freeze the
+// world.
+var freezing uint32
+
+// Similar to stopTheWorld but best-effort and can be called several times.
+// There is no reverse operation, used during crashing.
+// This function must not lock any mutexes.
+func freezetheworld() {
+ atomic.Store(&freezing, 1)
+ // stopwait and preemption requests can be lost
+ // due to races with concurrently executing threads,
+ // so try several times
+ for i := 0; i < 5; i++ {
+ // this should tell the scheduler to not start any new goroutines
+ sched.stopwait = freezeStopWait
+ atomic.Store(&sched.gcwaiting, 1)
+ // this should stop running goroutines
+ if !preemptall() {
+ break // no running goroutines
+ }
+ usleep(1000)
+ }
+ // to be sure
+ usleep(1000)
+ preemptall()
+ usleep(1000)
+}
+
+// All reads and writes of g's status go through readgstatus, casgstatus
+// castogscanstatus, casfrom_Gscanstatus.
+//go:nosplit
+func readgstatus(gp *g) uint32 {
+ return atomic.Load(&gp.atomicstatus)
+}
+
+// The Gscanstatuses are acting like locks and this releases them.
+// If it proves to be a performance hit we should be able to make these
+// simple atomic stores but for now we are going to throw if
+// we see an inconsistent state.
+func casfrom_Gscanstatus(gp *g, oldval, newval uint32) {
+ success := false
+
+ // Check that transition is valid.
+ switch oldval {
+ default:
+ print("runtime: casfrom_Gscanstatus bad oldval gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n")
+ dumpgstatus(gp)
+ throw("casfrom_Gscanstatus:top gp->status is not in scan state")
+ case _Gscanrunnable,
+ _Gscanwaiting,
+ _Gscanrunning,
+ _Gscansyscall,
+ _Gscanpreempted:
+ if newval == oldval&^_Gscan {
+ success = atomic.Cas(&gp.atomicstatus, oldval, newval)
+ }
+ }
+ if !success {
+ print("runtime: casfrom_Gscanstatus failed gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n")
+ dumpgstatus(gp)
+ throw("casfrom_Gscanstatus: gp->status is not in scan state")
+ }
+ releaseLockRank(lockRankGscan)
+}
+
+// This will return false if the gp is not in the expected status and the cas fails.
+// This acts like a lock acquire while the casfromgstatus acts like a lock release.
+func castogscanstatus(gp *g, oldval, newval uint32) bool {
+ switch oldval {
+ case _Grunnable,
+ _Grunning,
+ _Gwaiting,
+ _Gsyscall:
+ if newval == oldval|_Gscan {
+ r := atomic.Cas(&gp.atomicstatus, oldval, newval)
+ if r {
+ acquireLockRank(lockRankGscan)
+ }
+ return r
+
+ }
+ }
+ print("runtime: castogscanstatus oldval=", hex(oldval), " newval=", hex(newval), "\n")
+ throw("castogscanstatus")
+ panic("not reached")
+}
+
+// If asked to move to or from a Gscanstatus this will throw. Use the castogscanstatus
+// and casfrom_Gscanstatus instead.
+// casgstatus will loop if the g->atomicstatus is in a Gscan status until the routine that
+// put it in the Gscan state is finished.
+//go:nosplit
+func casgstatus(gp *g, oldval, newval uint32) {
+ if (oldval&_Gscan != 0) || (newval&_Gscan != 0) || oldval == newval {
+ systemstack(func() {
+ print("runtime: casgstatus: oldval=", hex(oldval), " newval=", hex(newval), "\n")
+ throw("casgstatus: bad incoming values")
+ })
+ }
+
+ acquireLockRank(lockRankGscan)
+ releaseLockRank(lockRankGscan)
+
+ // See https://golang.org/cl/21503 for justification of the yield delay.
+ const yieldDelay = 5 * 1000
+ var nextYield int64
+
+ // loop if gp->atomicstatus is in a scan state giving
+ // GC time to finish and change the state to oldval.
+ for i := 0; !atomic.Cas(&gp.atomicstatus, oldval, newval); i++ {
+ if oldval == _Gwaiting && gp.atomicstatus == _Grunnable {
+ throw("casgstatus: waiting for Gwaiting but is Grunnable")
+ }
+ if i == 0 {
+ nextYield = nanotime() + yieldDelay
+ }
+ if nanotime() < nextYield {
+ for x := 0; x < 10 && gp.atomicstatus != oldval; x++ {
+ procyield(1)
+ }
+ } else {
+ osyield()
+ nextYield = nanotime() + yieldDelay/2
+ }
+ }
+}
+
+// casgstatus(gp, oldstatus, Gcopystack), assuming oldstatus is Gwaiting or Grunnable.
+// Returns old status. Cannot call casgstatus directly, because we are racing with an
+// async wakeup that might come in from netpoll. If we see Gwaiting from the readgstatus,
+// it might have become Grunnable by the time we get to the cas. If we called casgstatus,
+// it would loop waiting for the status to go back to Gwaiting, which it never will.
+//go:nosplit
+func casgcopystack(gp *g) uint32 {
+ for {
+ oldstatus := readgstatus(gp) &^ _Gscan
+ if oldstatus != _Gwaiting && oldstatus != _Grunnable {
+ throw("copystack: bad status, not Gwaiting or Grunnable")
+ }
+ if atomic.Cas(&gp.atomicstatus, oldstatus, _Gcopystack) {
+ return oldstatus
+ }
+ }
+}
+
+// casGToPreemptScan transitions gp from _Grunning to _Gscan|_Gpreempted.
+//
+// TODO(austin): This is the only status operation that both changes
+// the status and locks the _Gscan bit. Rethink this.
+func casGToPreemptScan(gp *g, old, new uint32) {
+ if old != _Grunning || new != _Gscan|_Gpreempted {
+ throw("bad g transition")
+ }
+ acquireLockRank(lockRankGscan)
+ for !atomic.Cas(&gp.atomicstatus, _Grunning, _Gscan|_Gpreempted) {
+ }
+}
+
+// casGFromPreempted attempts to transition gp from _Gpreempted to
+// _Gwaiting. If successful, the caller is responsible for
+// re-scheduling gp.
+func casGFromPreempted(gp *g, old, new uint32) bool {
+ if old != _Gpreempted || new != _Gwaiting {
+ throw("bad g transition")
+ }
+ return atomic.Cas(&gp.atomicstatus, _Gpreempted, _Gwaiting)
+}
+
+// stopTheWorld stops all P's from executing goroutines, interrupting
+// all goroutines at GC safe points and records reason as the reason
+// for the stop. On return, only the current goroutine's P is running.
+// stopTheWorld must not be called from a system stack and the caller
+// must not hold worldsema. The caller must call startTheWorld when
+// other P's should resume execution.
+//
+// stopTheWorld is safe for multiple goroutines to call at the
+// same time. Each will execute its own stop, and the stops will
+// be serialized.
+//
+// This is also used by routines that do stack dumps. If the system is
+// in panic or being exited, this may not reliably stop all
+// goroutines.
+func stopTheWorld(reason string) {
+ semacquire(&worldsema)
+ gp := getg()
+ gp.m.preemptoff = reason
+ systemstack(func() {
+ // Mark the goroutine which called stopTheWorld preemptible so its
+ // stack may be scanned.
+ // This lets a mark worker scan us while we try to stop the world
+ // since otherwise we could get in a mutual preemption deadlock.
+ // We must not modify anything on the G stack because a stack shrink
+ // may occur. A stack shrink is otherwise OK though because in order
+ // to return from this function (and to leave the system stack) we
+ // must have preempted all goroutines, including any attempting
+ // to scan our stack, in which case, any stack shrinking will
+ // have already completed by the time we exit.
+ casgstatus(gp, _Grunning, _Gwaiting)
+ stopTheWorldWithSema()
+ casgstatus(gp, _Gwaiting, _Grunning)
+ })
+}
+
+// startTheWorld undoes the effects of stopTheWorld.
+func startTheWorld() {
+ systemstack(func() { startTheWorldWithSema(false) })
+
+ // worldsema must be held over startTheWorldWithSema to ensure
+ // gomaxprocs cannot change while worldsema is held.
+ //
+ // Release worldsema with direct handoff to the next waiter, but
+ // acquirem so that semrelease1 doesn't try to yield our time.
+ //
+ // Otherwise if e.g. ReadMemStats is being called in a loop,
+ // it might stomp on other attempts to stop the world, such as
+ // for starting or ending GC. The operation this blocks is
+ // so heavy-weight that we should just try to be as fair as
+ // possible here.
+ //
+ // We don't want to just allow us to get preempted between now
+ // and releasing the semaphore because then we keep everyone
+ // (including, for example, GCs) waiting longer.
+ mp := acquirem()
+ mp.preemptoff = ""
+ semrelease1(&worldsema, true, 0)
+ releasem(mp)
+}
+
+// stopTheWorldGC has the same effect as stopTheWorld, but blocks
+// until the GC is not running. It also blocks a GC from starting
+// until startTheWorldGC is called.
+func stopTheWorldGC(reason string) {
+ semacquire(&gcsema)
+ stopTheWorld(reason)
+}
+
+// startTheWorldGC undoes the effects of stopTheWorldGC.
+func startTheWorldGC() {
+ startTheWorld()
+ semrelease(&gcsema)
+}
+
+// Holding worldsema grants an M the right to try to stop the world.
+var worldsema uint32 = 1
+
+// Holding gcsema grants the M the right to block a GC, and blocks
+// until the current GC is done. In particular, it prevents gomaxprocs
+// from changing concurrently.
+//
+// TODO(mknyszek): Once gomaxprocs and the execution tracer can handle
+// being changed/enabled during a GC, remove this.
+var gcsema uint32 = 1
+
+// stopTheWorldWithSema is the core implementation of stopTheWorld.
+// The caller is responsible for acquiring worldsema and disabling
+// preemption first and then should stopTheWorldWithSema on the system
+// stack:
+//
+// semacquire(&worldsema, 0)
+// m.preemptoff = "reason"
+// systemstack(stopTheWorldWithSema)
+//
+// When finished, the caller must either call startTheWorld or undo
+// these three operations separately:
+//
+// m.preemptoff = ""
+// systemstack(startTheWorldWithSema)
+// semrelease(&worldsema)
+//
+// It is allowed to acquire worldsema once and then execute multiple
+// startTheWorldWithSema/stopTheWorldWithSema pairs.
+// Other P's are able to execute between successive calls to
+// startTheWorldWithSema and stopTheWorldWithSema.
+// Holding worldsema causes any other goroutines invoking
+// stopTheWorld to block.
+func stopTheWorldWithSema() {
+ _g_ := getg()
+
+ // If we hold a lock, then we won't be able to stop another M
+ // that is blocked trying to acquire the lock.
+ if _g_.m.locks > 0 {
+ throw("stopTheWorld: holding locks")
+ }
+
+ lock(&sched.lock)
+ sched.stopwait = gomaxprocs
+ atomic.Store(&sched.gcwaiting, 1)
+ preemptall()
+ // stop current P
+ _g_.m.p.ptr().status = _Pgcstop // Pgcstop is only diagnostic.
+ sched.stopwait--
+ // try to retake all P's in Psyscall status
+ for _, p := range allp {
+ s := p.status
+ if s == _Psyscall && atomic.Cas(&p.status, s, _Pgcstop) {
+ if trace.enabled {
+ traceGoSysBlock(p)
+ traceProcStop(p)
+ }
+ p.syscalltick++
+ sched.stopwait--
+ }
+ }
+ // stop idle P's
+ for {
+ p := pidleget()
+ if p == nil {
+ break
+ }
+ p.status = _Pgcstop
+ sched.stopwait--
+ }
+ wait := sched.stopwait > 0
+ unlock(&sched.lock)
+
+ // wait for remaining P's to stop voluntarily
+ if wait {
+ for {
+ // wait for 100us, then try to re-preempt in case of any races
+ if notetsleep(&sched.stopnote, 100*1000) {
+ noteclear(&sched.stopnote)
+ break
+ }
+ preemptall()
+ }
+ }
+
+ // sanity checks
+ bad := ""
+ if sched.stopwait != 0 {
+ bad = "stopTheWorld: not stopped (stopwait != 0)"
+ } else {
+ for _, p := range allp {
+ if p.status != _Pgcstop {
+ bad = "stopTheWorld: not stopped (status != _Pgcstop)"
+ }
+ }
+ }
+ if atomic.Load(&freezing) != 0 {
+ // Some other thread is panicking. This can cause the
+ // sanity checks above to fail if the panic happens in
+ // the signal handler on a stopped thread. Either way,
+ // we should halt this thread.
+ lock(&deadlock)
+ lock(&deadlock)
+ }
+ if bad != "" {
+ throw(bad)
+ }
+
+ worldStopped()
+}
+
+func startTheWorldWithSema(emitTraceEvent bool) int64 {
+ assertWorldStopped()
+
+ mp := acquirem() // disable preemption because it can be holding p in a local var
+ if netpollinited() {
+ list := netpoll(0) // non-blocking
+ injectglist(&list)
+ }
+ lock(&sched.lock)
+
+ procs := gomaxprocs
+ if newprocs != 0 {
+ procs = newprocs
+ newprocs = 0
+ }
+ p1 := procresize(procs)
+ sched.gcwaiting = 0
+ if sched.sysmonwait != 0 {
+ sched.sysmonwait = 0
+ notewakeup(&sched.sysmonnote)
+ }
+ unlock(&sched.lock)
+
+ worldStarted()
+
+ for p1 != nil {
+ p := p1
+ p1 = p1.link.ptr()
+ if p.m != 0 {
+ mp := p.m.ptr()
+ p.m = 0
+ if mp.nextp != 0 {
+ throw("startTheWorld: inconsistent mp->nextp")
+ }
+ mp.nextp.set(p)
+ notewakeup(&mp.park)
+ } else {
+ // Start M to run P. Do not start another M below.
+ newm(nil, p, -1)
+ }
+ }
+
+ // Capture start-the-world time before doing clean-up tasks.
+ startTime := nanotime()
+ if emitTraceEvent {
+ traceGCSTWDone()
+ }
+
+ // Wakeup an additional proc in case we have excessive runnable goroutines
+ // in local queues or in the global queue. If we don't, the proc will park itself.
+ // If we have lots of excessive work, resetspinning will unpark additional procs as necessary.
+ wakep()
+
+ releasem(mp)
+
+ return startTime
+}
+
+// usesLibcall indicates whether this runtime performs system calls
+// via libcall.
+func usesLibcall() bool {
+ switch GOOS {
+ case "aix", "darwin", "illumos", "ios", "solaris", "windows":
+ return true
+ case "openbsd":
+ return GOARCH == "amd64" || GOARCH == "arm64"
+ }
+ return false
+}
+
+// mStackIsSystemAllocated indicates whether this runtime starts on a
+// system-allocated stack.
+func mStackIsSystemAllocated() bool {
+ switch GOOS {
+ case "aix", "darwin", "plan9", "illumos", "ios", "solaris", "windows":
+ return true
+ case "openbsd":
+ switch GOARCH {
+ case "amd64", "arm64":
+ return true
+ }
+ }
+ return false
+}
+
+// mstart is the entry-point for new Ms.
+//
+// This must not split the stack because we may not even have stack
+// bounds set up yet.
+//
+// May run during STW (because it doesn't have a P yet), so write
+// barriers are not allowed.
+//
+//go:nosplit
+//go:nowritebarrierrec
+func mstart() {
+ _g_ := getg()
+
+ osStack := _g_.stack.lo == 0
+ if osStack {
+ // Initialize stack bounds from system stack.
+ // Cgo may have left stack size in stack.hi.
+ // minit may update the stack bounds.
+ //
+ // Note: these bounds may not be very accurate.
+ // We set hi to &size, but there are things above
+ // it. The 1024 is supposed to compensate this,
+ // but is somewhat arbitrary.
+ size := _g_.stack.hi
+ if size == 0 {
+ size = 8192 * sys.StackGuardMultiplier
+ }
+ _g_.stack.hi = uintptr(noescape(unsafe.Pointer(&size)))
+ _g_.stack.lo = _g_.stack.hi - size + 1024
+ }
+ // Initialize stack guard so that we can start calling regular
+ // Go code.
+ _g_.stackguard0 = _g_.stack.lo + _StackGuard
+ // This is the g0, so we can also call go:systemstack
+ // functions, which check stackguard1.
+ _g_.stackguard1 = _g_.stackguard0
+ mstart1()
+
+ // Exit this thread.
+ if mStackIsSystemAllocated() {
+ // Windows, Solaris, illumos, Darwin, AIX and Plan 9 always system-allocate
+ // the stack, but put it in _g_.stack before mstart,
+ // so the logic above hasn't set osStack yet.
+ osStack = true
+ }
+ mexit(osStack)
+}
+
+func mstart1() {
+ _g_ := getg()
+
+ if _g_ != _g_.m.g0 {
+ throw("bad runtime·mstart")
+ }
+
+ // Record the caller for use as the top of stack in mcall and
+ // for terminating the thread.
+ // We're never coming back to mstart1 after we call schedule,
+ // so other calls can reuse the current frame.
+ save(getcallerpc(), getcallersp())
+ asminit()
+ minit()
+
+ // Install signal handlers; after minit so that minit can
+ // prepare the thread to be able to handle the signals.
+ if _g_.m == &m0 {
+ mstartm0()
+ }
+
+ if fn := _g_.m.mstartfn; fn != nil {
+ fn()
+ }
+
+ if _g_.m != &m0 {
+ acquirep(_g_.m.nextp.ptr())
+ _g_.m.nextp = 0
+ }
+ schedule()
+}
+
+// mstartm0 implements part of mstart1 that only runs on the m0.
+//
+// Write barriers are allowed here because we know the GC can't be
+// running yet, so they'll be no-ops.
+//
+//go:yeswritebarrierrec
+func mstartm0() {
+ // Create an extra M for callbacks on threads not created by Go.
+ // An extra M is also needed on Windows for callbacks created by
+ // syscall.NewCallback. See issue #6751 for details.
+ if (iscgo || GOOS == "windows") && !cgoHasExtraM {
+ cgoHasExtraM = true
+ newextram()
+ }
+ initsig(false)
+}
+
+// mPark causes a thread to park itself - temporarily waking for
+// fixups but otherwise waiting to be fully woken. This is the
+// only way that m's should park themselves.
+//go:nosplit
+func mPark() {
+ g := getg()
+ for {
+ notesleep(&g.m.park)
+ // Note, because of signal handling by this parked m,
+ // a preemptive mDoFixup() may actually occur via
+ // mDoFixupAndOSYield(). (See golang.org/issue/44193)
+ noteclear(&g.m.park)
+ if !mDoFixup() {
+ return
+ }
+ }
+}
+
+// mexit tears down and exits the current thread.
+//
+// Don't call this directly to exit the thread, since it must run at
+// the top of the thread stack. Instead, use gogo(&_g_.m.g0.sched) to
+// unwind the stack to the point that exits the thread.
+//
+// It is entered with m.p != nil, so write barriers are allowed. It
+// will release the P before exiting.
+//
+//go:yeswritebarrierrec
+func mexit(osStack bool) {
+ g := getg()
+ m := g.m
+
+ if m == &m0 {
+ // This is the main thread. Just wedge it.
+ //
+ // On Linux, exiting the main thread puts the process
+ // into a non-waitable zombie state. On Plan 9,
+ // exiting the main thread unblocks wait even though
+ // other threads are still running. On Solaris we can
+ // neither exitThread nor return from mstart. Other
+ // bad things probably happen on other platforms.
+ //
+ // We could try to clean up this M more before wedging
+ // it, but that complicates signal handling.
+ handoffp(releasep())
+ lock(&sched.lock)
+ sched.nmfreed++
+ checkdead()
+ unlock(&sched.lock)
+ mPark()
+ throw("locked m0 woke up")
+ }
+
+ sigblock(true)
+ unminit()
+
+ // Free the gsignal stack.
+ if m.gsignal != nil {
+ stackfree(m.gsignal.stack)
+ // On some platforms, when calling into VDSO (e.g. nanotime)
+ // we store our g on the gsignal stack, if there is one.
+ // Now the stack is freed, unlink it from the m, so we
+ // won't write to it when calling VDSO code.
+ m.gsignal = nil
+ }
+
+ // Remove m from allm.
+ lock(&sched.lock)
+ for pprev := &allm; *pprev != nil; pprev = &(*pprev).alllink {
+ if *pprev == m {
+ *pprev = m.alllink
+ goto found
+ }
+ }
+ throw("m not found in allm")
+found:
+ if !osStack {
+ // Delay reaping m until it's done with the stack.
+ //
+ // If this is using an OS stack, the OS will free it
+ // so there's no need for reaping.
+ atomic.Store(&m.freeWait, 1)
+ // Put m on the free list, though it will not be reaped until
+ // freeWait is 0. Note that the free list must not be linked
+ // through alllink because some functions walk allm without
+ // locking, so may be using alllink.
+ m.freelink = sched.freem
+ sched.freem = m
+ }
+ unlock(&sched.lock)
+
+ // Release the P.
+ handoffp(releasep())
+ // After this point we must not have write barriers.
+
+ // Invoke the deadlock detector. This must happen after
+ // handoffp because it may have started a new M to take our
+ // P's work.
+ lock(&sched.lock)
+ sched.nmfreed++
+ checkdead()
+ unlock(&sched.lock)
+
+ if GOOS == "darwin" || GOOS == "ios" {
+ // Make sure pendingPreemptSignals is correct when an M exits.
+ // For #41702.
+ if atomic.Load(&m.signalPending) != 0 {
+ atomic.Xadd(&pendingPreemptSignals, -1)
+ }
+ }
+
+ // Destroy all allocated resources. After this is called, we may no
+ // longer take any locks.
+ mdestroy(m)
+
+ if osStack {
+ // Return from mstart and let the system thread
+ // library free the g0 stack and terminate the thread.
+ return
+ }
+
+ // mstart is the thread's entry point, so there's nothing to
+ // return to. Exit the thread directly. exitThread will clear
+ // m.freeWait when it's done with the stack and the m can be
+ // reaped.
+ exitThread(&m.freeWait)
+}
+
+// forEachP calls fn(p) for every P p when p reaches a GC safe point.
+// If a P is currently executing code, this will bring the P to a GC
+// safe point and execute fn on that P. If the P is not executing code
+// (it is idle or in a syscall), this will call fn(p) directly while
+// preventing the P from exiting its state. This does not ensure that
+// fn will run on every CPU executing Go code, but it acts as a global
+// memory barrier. GC uses this as a "ragged barrier."
+//
+// The caller must hold worldsema.
+//
+//go:systemstack
+func forEachP(fn func(*p)) {
+ mp := acquirem()
+ _p_ := getg().m.p.ptr()
+
+ lock(&sched.lock)
+ if sched.safePointWait != 0 {
+ throw("forEachP: sched.safePointWait != 0")
+ }
+ sched.safePointWait = gomaxprocs - 1
+ sched.safePointFn = fn
+
+ // Ask all Ps to run the safe point function.
+ for _, p := range allp {
+ if p != _p_ {
+ atomic.Store(&p.runSafePointFn, 1)
+ }
+ }
+ preemptall()
+
+ // Any P entering _Pidle or _Psyscall from now on will observe
+ // p.runSafePointFn == 1 and will call runSafePointFn when
+ // changing its status to _Pidle/_Psyscall.
+
+ // Run safe point function for all idle Ps. sched.pidle will
+ // not change because we hold sched.lock.
+ for p := sched.pidle.ptr(); p != nil; p = p.link.ptr() {
+ if atomic.Cas(&p.runSafePointFn, 1, 0) {
+ fn(p)
+ sched.safePointWait--
+ }
+ }
+
+ wait := sched.safePointWait > 0
+ unlock(&sched.lock)
+
+ // Run fn for the current P.
+ fn(_p_)
+
+ // Force Ps currently in _Psyscall into _Pidle and hand them
+ // off to induce safe point function execution.
+ for _, p := range allp {
+ s := p.status
+ if s == _Psyscall && p.runSafePointFn == 1 && atomic.Cas(&p.status, s, _Pidle) {
+ if trace.enabled {
+ traceGoSysBlock(p)
+ traceProcStop(p)
+ }
+ p.syscalltick++
+ handoffp(p)
+ }
+ }
+
+ // Wait for remaining Ps to run fn.
+ if wait {
+ for {
+ // Wait for 100us, then try to re-preempt in
+ // case of any races.
+ //
+ // Requires system stack.
+ if notetsleep(&sched.safePointNote, 100*1000) {
+ noteclear(&sched.safePointNote)
+ break
+ }
+ preemptall()
+ }
+ }
+ if sched.safePointWait != 0 {
+ throw("forEachP: not done")
+ }
+ for _, p := range allp {
+ if p.runSafePointFn != 0 {
+ throw("forEachP: P did not run fn")
+ }
+ }
+
+ lock(&sched.lock)
+ sched.safePointFn = nil
+ unlock(&sched.lock)
+ releasem(mp)
+}
+
+// syscall_runtime_doAllThreadsSyscall serializes Go execution and
+// executes a specified fn() call on all m's.
+//
+// The boolean argument to fn() indicates whether the function's
+// return value will be consulted or not. That is, fn(true) should
+// return true if fn() succeeds, and fn(true) should return false if
+// it failed. When fn(false) is called, its return status will be
+// ignored.
+//
+// syscall_runtime_doAllThreadsSyscall first invokes fn(true) on a
+// single, coordinating, m, and only if it returns true does it go on
+// to invoke fn(false) on all of the other m's known to the process.
+//
+//go:linkname syscall_runtime_doAllThreadsSyscall syscall.runtime_doAllThreadsSyscall
+func syscall_runtime_doAllThreadsSyscall(fn func(bool) bool) {
+ if iscgo {
+ panic("doAllThreadsSyscall not supported with cgo enabled")
+ }
+ if fn == nil {
+ return
+ }
+ for atomic.Load(&sched.sysmonStarting) != 0 {
+ osyield()
+ }
+
+ // We don't want this thread to handle signals for the
+ // duration of this critical section. The underlying issue
+ // being that this locked coordinating m is the one monitoring
+ // for fn() execution by all the other m's of the runtime,
+ // while no regular go code execution is permitted (the world
+ // is stopped). If this present m were to get distracted to
+ // run signal handling code, and find itself waiting for a
+ // second thread to execute go code before being able to
+ // return from that signal handling, a deadlock will result.
+ // (See golang.org/issue/44193.)
+ lockOSThread()
+ var sigmask sigset
+ sigsave(&sigmask)
+ sigblock(false)
+
+ stopTheWorldGC("doAllThreadsSyscall")
+ if atomic.Load(&newmHandoff.haveTemplateThread) != 0 {
+ // Ensure that there are no in-flight thread
+ // creations: don't want to race with allm.
+ lock(&newmHandoff.lock)
+ for !newmHandoff.waiting {
+ unlock(&newmHandoff.lock)
+ osyield()
+ lock(&newmHandoff.lock)
+ }
+ unlock(&newmHandoff.lock)
+ }
+ if netpollinited() {
+ netpollBreak()
+ }
+ sigRecvPrepareForFixup()
+ _g_ := getg()
+ if raceenabled {
+ // For m's running without racectx, we loan out the
+ // racectx of this call.
+ lock(&mFixupRace.lock)
+ mFixupRace.ctx = _g_.racectx
+ unlock(&mFixupRace.lock)
+ }
+ if ok := fn(true); ok {
+ tid := _g_.m.procid
+ for mp := allm; mp != nil; mp = mp.alllink {
+ if mp.procid == tid {
+ // This m has already completed fn()
+ // call.
+ continue
+ }
+ // Be wary of mp's without procid values if
+ // they are known not to park. If they are
+ // marked as parking with a zero procid, then
+ // they will be racing with this code to be
+ // allocated a procid and we will annotate
+ // them with the need to execute the fn when
+ // they acquire a procid to run it.
+ if mp.procid == 0 && !mp.doesPark {
+ // Reaching here, we are either
+ // running Windows, or cgo linked
+ // code. Neither of which are
+ // currently supported by this API.
+ throw("unsupported runtime environment")
+ }
+ // stopTheWorldGC() doesn't guarantee stopping
+ // all the threads, so we lock here to avoid
+ // the possibility of racing with mp.
+ lock(&mp.mFixup.lock)
+ mp.mFixup.fn = fn
+ atomic.Store(&mp.mFixup.used, 1)
+ if mp.doesPark {
+ // For non-service threads this will
+ // cause the wakeup to be short lived
+ // (once the mutex is unlocked). The
+ // next real wakeup will occur after
+ // startTheWorldGC() is called.
+ notewakeup(&mp.park)
+ }
+ unlock(&mp.mFixup.lock)
+ }
+ for {
+ done := true
+ for mp := allm; done && mp != nil; mp = mp.alllink {
+ if mp.procid == tid {
+ continue
+ }
+ done = atomic.Load(&mp.mFixup.used) == 0
+ }
+ if done {
+ break
+ }
+ // if needed force sysmon and/or newmHandoff to wakeup.
+ lock(&sched.lock)
+ if atomic.Load(&sched.sysmonwait) != 0 {
+ atomic.Store(&sched.sysmonwait, 0)
+ notewakeup(&sched.sysmonnote)
+ }
+ unlock(&sched.lock)
+ lock(&newmHandoff.lock)
+ if newmHandoff.waiting {
+ newmHandoff.waiting = false
+ notewakeup(&newmHandoff.wake)
+ }
+ unlock(&newmHandoff.lock)
+ osyield()
+ }
+ }
+ if raceenabled {
+ lock(&mFixupRace.lock)
+ mFixupRace.ctx = 0
+ unlock(&mFixupRace.lock)
+ }
+ startTheWorldGC()
+ msigrestore(sigmask)
+ unlockOSThread()
+}
+
+// runSafePointFn runs the safe point function, if any, for this P.
+// This should be called like
+//
+// if getg().m.p.runSafePointFn != 0 {
+// runSafePointFn()
+// }
+//
+// runSafePointFn must be checked on any transition in to _Pidle or
+// _Psyscall to avoid a race where forEachP sees that the P is running
+// just before the P goes into _Pidle/_Psyscall and neither forEachP
+// nor the P run the safe-point function.
+func runSafePointFn() {
+ p := getg().m.p.ptr()
+ // Resolve the race between forEachP running the safe-point
+ // function on this P's behalf and this P running the
+ // safe-point function directly.
+ if !atomic.Cas(&p.runSafePointFn, 1, 0) {
+ return
+ }
+ sched.safePointFn(p)
+ lock(&sched.lock)
+ sched.safePointWait--
+ if sched.safePointWait == 0 {
+ notewakeup(&sched.safePointNote)
+ }
+ unlock(&sched.lock)
+}
+
+// When running with cgo, we call _cgo_thread_start
+// to start threads for us so that we can play nicely with
+// foreign code.
+var cgoThreadStart unsafe.Pointer
+
+type cgothreadstart struct {
+ g guintptr
+ tls *uint64
+ fn unsafe.Pointer
+}
+
+// Allocate a new m unassociated with any thread.
+// Can use p for allocation context if needed.
+// fn is recorded as the new m's m.mstartfn.
+// id is optional pre-allocated m ID. Omit by passing -1.
+//
+// This function is allowed to have write barriers even if the caller
+// isn't because it borrows _p_.
+//
+//go:yeswritebarrierrec
+func allocm(_p_ *p, fn func(), id int64) *m {
+ _g_ := getg()
+ acquirem() // disable GC because it can be called from sysmon
+ if _g_.m.p == 0 {
+ acquirep(_p_) // temporarily borrow p for mallocs in this function
+ }
+
+ // Release the free M list. We need to do this somewhere and
+ // this may free up a stack we can use.
+ if sched.freem != nil {
+ lock(&sched.lock)
+ var newList *m
+ for freem := sched.freem; freem != nil; {
+ if freem.freeWait != 0 {
+ next := freem.freelink
+ freem.freelink = newList
+ newList = freem
+ freem = next
+ continue
+ }
+ // stackfree must be on the system stack, but allocm is
+ // reachable off the system stack transitively from
+ // startm.
+ systemstack(func() {
+ stackfree(freem.g0.stack)
+ })
+ freem = freem.freelink
+ }
+ sched.freem = newList
+ unlock(&sched.lock)
+ }
+
+ mp := new(m)
+ mp.mstartfn = fn
+ mcommoninit(mp, id)
+
+ // In case of cgo or Solaris or illumos or Darwin, pthread_create will make us a stack.
+ // Windows and Plan 9 will layout sched stack on OS stack.
+ if iscgo || mStackIsSystemAllocated() {
+ mp.g0 = malg(-1)
+ } else {
+ mp.g0 = malg(8192 * sys.StackGuardMultiplier)
+ }
+ mp.g0.m = mp
+
+ if _p_ == _g_.m.p.ptr() {
+ releasep()
+ }
+ releasem(_g_.m)
+
+ return mp
+}
+
+// needm is called when a cgo callback happens on a
+// thread without an m (a thread not created by Go).
+// In this case, needm is expected to find an m to use
+// and return with m, g initialized correctly.
+// Since m and g are not set now (likely nil, but see below)
+// needm is limited in what routines it can call. In particular
+// it can only call nosplit functions (textflag 7) and cannot
+// do any scheduling that requires an m.
+//
+// In order to avoid needing heavy lifting here, we adopt
+// the following strategy: there is a stack of available m's
+// that can be stolen. Using compare-and-swap
+// to pop from the stack has ABA races, so we simulate
+// a lock by doing an exchange (via Casuintptr) to steal the stack
+// head and replace the top pointer with MLOCKED (1).
+// This serves as a simple spin lock that we can use even
+// without an m. The thread that locks the stack in this way
+// unlocks the stack by storing a valid stack head pointer.
+//
+// In order to make sure that there is always an m structure
+// available to be stolen, we maintain the invariant that there
+// is always one more than needed. At the beginning of the
+// program (if cgo is in use) the list is seeded with a single m.
+// If needm finds that it has taken the last m off the list, its job
+// is - once it has installed its own m so that it can do things like
+// allocate memory - to create a spare m and put it on the list.
+//
+// Each of these extra m's also has a g0 and a curg that are
+// pressed into service as the scheduling stack and current
+// goroutine for the duration of the cgo callback.
+//
+// When the callback is done with the m, it calls dropm to
+// put the m back on the list.
+//go:nosplit
+func needm() {
+ if (iscgo || GOOS == "windows") && !cgoHasExtraM {
+ // Can happen if C/C++ code calls Go from a global ctor.
+ // Can also happen on Windows if a global ctor uses a
+ // callback created by syscall.NewCallback. See issue #6751
+ // for details.
+ //
+ // Can not throw, because scheduler is not initialized yet.
+ write(2, unsafe.Pointer(&earlycgocallback[0]), int32(len(earlycgocallback)))
+ exit(1)
+ }
+
+ // Save and block signals before getting an M.
+ // The signal handler may call needm itself,
+ // and we must avoid a deadlock. Also, once g is installed,
+ // any incoming signals will try to execute,
+ // but we won't have the sigaltstack settings and other data
+ // set up appropriately until the end of minit, which will
+ // unblock the signals. This is the same dance as when
+ // starting a new m to run Go code via newosproc.
+ var sigmask sigset
+ sigsave(&sigmask)
+ sigblock(false)
+
+ // Lock extra list, take head, unlock popped list.
+ // nilokay=false is safe here because of the invariant above,
+ // that the extra list always contains or will soon contain
+ // at least one m.
+ mp := lockextra(false)
+
+ // Set needextram when we've just emptied the list,
+ // so that the eventual call into cgocallbackg will
+ // allocate a new m for the extra list. We delay the
+ // allocation until then so that it can be done
+ // after exitsyscall makes sure it is okay to be
+ // running at all (that is, there's no garbage collection
+ // running right now).
+ mp.needextram = mp.schedlink == 0
+ extraMCount--
+ unlockextra(mp.schedlink.ptr())
+
+ // Store the original signal mask for use by minit.
+ mp.sigmask = sigmask
+
+ // Install g (= m->g0) and set the stack bounds
+ // to match the current stack. We don't actually know
+ // how big the stack is, like we don't know how big any
+ // scheduling stack is, but we assume there's at least 32 kB,
+ // which is more than enough for us.
+ setg(mp.g0)
+ _g_ := getg()
+ _g_.stack.hi = getcallersp() + 1024
+ _g_.stack.lo = getcallersp() - 32*1024
+ _g_.stackguard0 = _g_.stack.lo + _StackGuard
+
+ // Initialize this thread to use the m.
+ asminit()
+ minit()
+
+ // mp.curg is now a real goroutine.
+ casgstatus(mp.curg, _Gdead, _Gsyscall)
+ atomic.Xadd(&sched.ngsys, -1)
+}
+
+var earlycgocallback = []byte("fatal error: cgo callback before cgo call\n")
+
+// newextram allocates m's and puts them on the extra list.
+// It is called with a working local m, so that it can do things
+// like call schedlock and allocate.
+func newextram() {
+ c := atomic.Xchg(&extraMWaiters, 0)
+ if c > 0 {
+ for i := uint32(0); i < c; i++ {
+ oneNewExtraM()
+ }
+ } else {
+ // Make sure there is at least one extra M.
+ mp := lockextra(true)
+ unlockextra(mp)
+ if mp == nil {
+ oneNewExtraM()
+ }
+ }
+}
+
+// oneNewExtraM allocates an m and puts it on the extra list.
+func oneNewExtraM() {
+ // Create extra goroutine locked to extra m.
+ // The goroutine is the context in which the cgo callback will run.
+ // The sched.pc will never be returned to, but setting it to
+ // goexit makes clear to the traceback routines where
+ // the goroutine stack ends.
+ mp := allocm(nil, nil, -1)
+ gp := malg(4096)
+ gp.sched.pc = funcPC(goexit) + sys.PCQuantum
+ gp.sched.sp = gp.stack.hi
+ gp.sched.sp -= 4 * sys.RegSize // extra space in case of reads slightly beyond frame
+ gp.sched.lr = 0
+ gp.sched.g = guintptr(unsafe.Pointer(gp))
+ gp.syscallpc = gp.sched.pc
+ gp.syscallsp = gp.sched.sp
+ gp.stktopsp = gp.sched.sp
+ // malg returns status as _Gidle. Change to _Gdead before
+ // adding to allg where GC can see it. We use _Gdead to hide
+ // this from tracebacks and stack scans since it isn't a
+ // "real" goroutine until needm grabs it.
+ casgstatus(gp, _Gidle, _Gdead)
+ gp.m = mp
+ mp.curg = gp
+ mp.lockedInt++
+ mp.lockedg.set(gp)
+ gp.lockedm.set(mp)
+ gp.goid = int64(atomic.Xadd64(&sched.goidgen, 1))
+ if raceenabled {
+ gp.racectx = racegostart(funcPC(newextram) + sys.PCQuantum)
+ }
+ // put on allg for garbage collector
+ allgadd(gp)
+
+ // gp is now on the allg list, but we don't want it to be
+ // counted by gcount. It would be more "proper" to increment
+ // sched.ngfree, but that requires locking. Incrementing ngsys
+ // has the same effect.
+ atomic.Xadd(&sched.ngsys, +1)
+
+ // Add m to the extra list.
+ mnext := lockextra(true)
+ mp.schedlink.set(mnext)
+ extraMCount++
+ unlockextra(mp)
+}
+
+// dropm is called when a cgo callback has called needm but is now
+// done with the callback and returning back into the non-Go thread.
+// It puts the current m back onto the extra list.
+//
+// The main expense here is the call to signalstack to release the
+// m's signal stack, and then the call to needm on the next callback
+// from this thread. It is tempting to try to save the m for next time,
+// which would eliminate both these costs, but there might not be
+// a next time: the current thread (which Go does not control) might exit.
+// If we saved the m for that thread, there would be an m leak each time
+// such a thread exited. Instead, we acquire and release an m on each
+// call. These should typically not be scheduling operations, just a few
+// atomics, so the cost should be small.
+//
+// TODO(rsc): An alternative would be to allocate a dummy pthread per-thread
+// variable using pthread_key_create. Unlike the pthread keys we already use
+// on OS X, this dummy key would never be read by Go code. It would exist
+// only so that we could register at thread-exit-time destructor.
+// That destructor would put the m back onto the extra list.
+// This is purely a performance optimization. The current version,
+// in which dropm happens on each cgo call, is still correct too.
+// We may have to keep the current version on systems with cgo
+// but without pthreads, like Windows.
+func dropm() {
+ // Clear m and g, and return m to the extra list.
+ // After the call to setg we can only call nosplit functions
+ // with no pointer manipulation.
+ mp := getg().m
+
+ // Return mp.curg to dead state.
+ casgstatus(mp.curg, _Gsyscall, _Gdead)
+ mp.curg.preemptStop = false
+ atomic.Xadd(&sched.ngsys, +1)
+
+ // Block signals before unminit.
+ // Unminit unregisters the signal handling stack (but needs g on some systems).
+ // Setg(nil) clears g, which is the signal handler's cue not to run Go handlers.
+ // It's important not to try to handle a signal between those two steps.
+ sigmask := mp.sigmask
+ sigblock(false)
+ unminit()
+
+ mnext := lockextra(true)
+ extraMCount++
+ mp.schedlink.set(mnext)
+
+ setg(nil)
+
+ // Commit the release of mp.
+ unlockextra(mp)
+
+ msigrestore(sigmask)
+}
+
+// A helper function for EnsureDropM.
+func getm() uintptr {
+ return uintptr(unsafe.Pointer(getg().m))
+}
+
+var extram uintptr
+var extraMCount uint32 // Protected by lockextra
+var extraMWaiters uint32
+
+// lockextra locks the extra list and returns the list head.
+// The caller must unlock the list by storing a new list head
+// to extram. If nilokay is true, then lockextra will
+// return a nil list head if that's what it finds. If nilokay is false,
+// lockextra will keep waiting until the list head is no longer nil.
+//go:nosplit
+func lockextra(nilokay bool) *m {
+ const locked = 1
+
+ incr := false
+ for {
+ old := atomic.Loaduintptr(&extram)
+ if old == locked {
+ osyield()
+ continue
+ }
+ if old == 0 && !nilokay {
+ if !incr {
+ // Add 1 to the number of threads
+ // waiting for an M.
+ // This is cleared by newextram.
+ atomic.Xadd(&extraMWaiters, 1)
+ incr = true
+ }
+ usleep(1)
+ continue
+ }
+ if atomic.Casuintptr(&extram, old, locked) {
+ return (*m)(unsafe.Pointer(old))
+ }
+ osyield()
+ continue
+ }
+}
+
+//go:nosplit
+func unlockextra(mp *m) {
+ atomic.Storeuintptr(&extram, uintptr(unsafe.Pointer(mp)))
+}
+
+// execLock serializes exec and clone to avoid bugs or unspecified behaviour
+// around exec'ing while creating/destroying threads. See issue #19546.
+var execLock rwmutex
+
+// newmHandoff contains a list of m structures that need new OS threads.
+// This is used by newm in situations where newm itself can't safely
+// start an OS thread.
+var newmHandoff struct {
+ lock mutex
+
+ // newm points to a list of M structures that need new OS
+ // threads. The list is linked through m.schedlink.
+ newm muintptr
+
+ // waiting indicates that wake needs to be notified when an m
+ // is put on the list.
+ waiting bool
+ wake note
+
+ // haveTemplateThread indicates that the templateThread has
+ // been started. This is not protected by lock. Use cas to set
+ // to 1.
+ haveTemplateThread uint32
+}
+
+// Create a new m. It will start off with a call to fn, or else the scheduler.
+// fn needs to be static and not a heap allocated closure.
+// May run with m.p==nil, so write barriers are not allowed.
+//
+// id is optional pre-allocated m ID. Omit by passing -1.
+//go:nowritebarrierrec
+func newm(fn func(), _p_ *p, id int64) {
+ mp := allocm(_p_, fn, id)
+ mp.doesPark = (_p_ != nil)
+ mp.nextp.set(_p_)
+ mp.sigmask = initSigmask
+ if gp := getg(); gp != nil && gp.m != nil && (gp.m.lockedExt != 0 || gp.m.incgo) && GOOS != "plan9" {
+ // We're on a locked M or a thread that may have been
+ // started by C. The kernel state of this thread may
+ // be strange (the user may have locked it for that
+ // purpose). We don't want to clone that into another
+ // thread. Instead, ask a known-good thread to create
+ // the thread for us.
+ //
+ // This is disabled on Plan 9. See golang.org/issue/22227.
+ //
+ // TODO: This may be unnecessary on Windows, which
+ // doesn't model thread creation off fork.
+ lock(&newmHandoff.lock)
+ if newmHandoff.haveTemplateThread == 0 {
+ throw("on a locked thread with no template thread")
+ }
+ mp.schedlink = newmHandoff.newm
+ newmHandoff.newm.set(mp)
+ if newmHandoff.waiting {
+ newmHandoff.waiting = false
+ notewakeup(&newmHandoff.wake)
+ }
+ unlock(&newmHandoff.lock)
+ return
+ }
+ newm1(mp)
+}
+
+func newm1(mp *m) {
+ if iscgo {
+ var ts cgothreadstart
+ if _cgo_thread_start == nil {
+ throw("_cgo_thread_start missing")
+ }
+ ts.g.set(mp.g0)
+ ts.tls = (*uint64)(unsafe.Pointer(&mp.tls[0]))
+ ts.fn = unsafe.Pointer(funcPC(mstart))
+ if msanenabled {
+ msanwrite(unsafe.Pointer(&ts), unsafe.Sizeof(ts))
+ }
+ execLock.rlock() // Prevent process clone.
+ asmcgocall(_cgo_thread_start, unsafe.Pointer(&ts))
+ execLock.runlock()
+ return
+ }
+ execLock.rlock() // Prevent process clone.
+ newosproc(mp)
+ execLock.runlock()
+}
+
+// startTemplateThread starts the template thread if it is not already
+// running.
+//
+// The calling thread must itself be in a known-good state.
+func startTemplateThread() {
+ if GOARCH == "wasm" { // no threads on wasm yet
+ return
+ }
+
+ // Disable preemption to guarantee that the template thread will be
+ // created before a park once haveTemplateThread is set.
+ mp := acquirem()
+ if !atomic.Cas(&newmHandoff.haveTemplateThread, 0, 1) {
+ releasem(mp)
+ return
+ }
+ newm(templateThread, nil, -1)
+ releasem(mp)
+}
+
+// mFixupRace is used to temporarily borrow the race context from the
+// coordinating m during a syscall_runtime_doAllThreadsSyscall and
+// loan it out to each of the m's of the runtime so they can execute a
+// mFixup.fn in that context.
+var mFixupRace struct {
+ lock mutex
+ ctx uintptr
+}
+
+// mDoFixup runs any outstanding fixup function for the running m.
+// Returns true if a fixup was outstanding and actually executed.
+//
+// Note: to avoid deadlocks, and the need for the fixup function
+// itself to be async safe, signals are blocked for the working m
+// while it holds the mFixup lock. (See golang.org/issue/44193)
+//
+//go:nosplit
+func mDoFixup() bool {
+ _g_ := getg()
+ if used := atomic.Load(&_g_.m.mFixup.used); used == 0 {
+ return false
+ }
+
+ // slow path - if fixup fn is used, block signals and lock.
+ var sigmask sigset
+ sigsave(&sigmask)
+ sigblock(false)
+ lock(&_g_.m.mFixup.lock)
+ fn := _g_.m.mFixup.fn
+ if fn != nil {
+ if gcphase != _GCoff {
+ // We can't have a write barrier in this
+ // context since we may not have a P, but we
+ // clear fn to signal that we've executed the
+ // fixup. As long as fn is kept alive
+ // elsewhere, technically we should have no
+ // issues with the GC, but fn is likely
+ // generated in a different package altogether
+ // that may change independently. Just assert
+ // the GC is off so this lack of write barrier
+ // is more obviously safe.
+ throw("GC must be disabled to protect validity of fn value")
+ }
+ if _g_.racectx != 0 || !raceenabled {
+ fn(false)
+ } else {
+ // temporarily acquire the context of the
+ // originator of the
+ // syscall_runtime_doAllThreadsSyscall and
+ // block others from using it for the duration
+ // of the fixup call.
+ lock(&mFixupRace.lock)
+ _g_.racectx = mFixupRace.ctx
+ fn(false)
+ _g_.racectx = 0
+ unlock(&mFixupRace.lock)
+ }
+ *(*uintptr)(unsafe.Pointer(&_g_.m.mFixup.fn)) = 0
+ atomic.Store(&_g_.m.mFixup.used, 0)
+ }
+ unlock(&_g_.m.mFixup.lock)
+ msigrestore(sigmask)
+ return fn != nil
+}
+
+// mDoFixupAndOSYield is called when an m is unable to send a signal
+// because the allThreadsSyscall mechanism is in progress. That is, an
+// mPark() has been interrupted with this signal handler so we need to
+// ensure the fixup is executed from this context.
+//go:nosplit
+func mDoFixupAndOSYield() {
+ mDoFixup()
+ osyield()
+}
+
+// templateThread is a thread in a known-good state that exists solely
+// to start new threads in known-good states when the calling thread
+// may not be in a good state.
+//
+// Many programs never need this, so templateThread is started lazily
+// when we first enter a state that might lead to running on a thread
+// in an unknown state.
+//
+// templateThread runs on an M without a P, so it must not have write
+// barriers.
+//
+//go:nowritebarrierrec
+func templateThread() {
+ lock(&sched.lock)
+ sched.nmsys++
+ checkdead()
+ unlock(&sched.lock)
+
+ for {
+ lock(&newmHandoff.lock)
+ for newmHandoff.newm != 0 {
+ newm := newmHandoff.newm.ptr()
+ newmHandoff.newm = 0
+ unlock(&newmHandoff.lock)
+ for newm != nil {
+ next := newm.schedlink.ptr()
+ newm.schedlink = 0
+ newm1(newm)
+ newm = next
+ }
+ lock(&newmHandoff.lock)
+ }
+ newmHandoff.waiting = true
+ noteclear(&newmHandoff.wake)
+ unlock(&newmHandoff.lock)
+ notesleep(&newmHandoff.wake)
+ mDoFixup()
+ }
+}
+
+// Stops execution of the current m until new work is available.
+// Returns with acquired P.
+func stopm() {
+ _g_ := getg()
+
+ if _g_.m.locks != 0 {
+ throw("stopm holding locks")
+ }
+ if _g_.m.p != 0 {
+ throw("stopm holding p")
+ }
+ if _g_.m.spinning {
+ throw("stopm spinning")
+ }
+
+ lock(&sched.lock)
+ mput(_g_.m)
+ unlock(&sched.lock)
+ mPark()
+ acquirep(_g_.m.nextp.ptr())
+ _g_.m.nextp = 0
+}
+
+func mspinning() {
+ // startm's caller incremented nmspinning. Set the new M's spinning.
+ getg().m.spinning = true
+}
+
+// Schedules some M to run the p (creates an M if necessary).
+// If p==nil, tries to get an idle P, if no idle P's does nothing.
+// May run with m.p==nil, so write barriers are not allowed.
+// If spinning is set, the caller has incremented nmspinning and startm will
+// either decrement nmspinning or set m.spinning in the newly started M.
+//
+// Callers passing a non-nil P must call from a non-preemptible context. See
+// comment on acquirem below.
+//
+// Must not have write barriers because this may be called without a P.
+//go:nowritebarrierrec
+func startm(_p_ *p, spinning bool) {
+ // Disable preemption.
+ //
+ // Every owned P must have an owner that will eventually stop it in the
+ // event of a GC stop request. startm takes transient ownership of a P
+ // (either from argument or pidleget below) and transfers ownership to
+ // a started M, which will be responsible for performing the stop.
+ //
+ // Preemption must be disabled during this transient ownership,
+ // otherwise the P this is running on may enter GC stop while still
+ // holding the transient P, leaving that P in limbo and deadlocking the
+ // STW.
+ //
+ // Callers passing a non-nil P must already be in non-preemptible
+ // context, otherwise such preemption could occur on function entry to
+ // startm. Callers passing a nil P may be preemptible, so we must
+ // disable preemption before acquiring a P from pidleget below.
+ mp := acquirem()
+ lock(&sched.lock)
+ if _p_ == nil {
+ _p_ = pidleget()
+ if _p_ == nil {
+ unlock(&sched.lock)
+ if spinning {
+ // The caller incremented nmspinning, but there are no idle Ps,
+ // so it's okay to just undo the increment and give up.
+ if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 {
+ throw("startm: negative nmspinning")
+ }
+ }
+ releasem(mp)
+ return
+ }
+ }
+ nmp := mget()
+ if nmp == nil {
+ // No M is available, we must drop sched.lock and call newm.
+ // However, we already own a P to assign to the M.
+ //
+ // Once sched.lock is released, another G (e.g., in a syscall),
+ // could find no idle P while checkdead finds a runnable G but
+ // no running M's because this new M hasn't started yet, thus
+ // throwing in an apparent deadlock.
+ //
+ // Avoid this situation by pre-allocating the ID for the new M,
+ // thus marking it as 'running' before we drop sched.lock. This
+ // new M will eventually run the scheduler to execute any
+ // queued G's.
+ id := mReserveID()
+ unlock(&sched.lock)
+
+ var fn func()
+ if spinning {
+ // The caller incremented nmspinning, so set m.spinning in the new M.
+ fn = mspinning
+ }
+ newm(fn, _p_, id)
+ // Ownership transfer of _p_ committed by start in newm.
+ // Preemption is now safe.
+ releasem(mp)
+ return
+ }
+ unlock(&sched.lock)
+ if nmp.spinning {
+ throw("startm: m is spinning")
+ }
+ if nmp.nextp != 0 {
+ throw("startm: m has p")
+ }
+ if spinning && !runqempty(_p_) {
+ throw("startm: p has runnable gs")
+ }
+ // The caller incremented nmspinning, so set m.spinning in the new M.
+ nmp.spinning = spinning
+ nmp.nextp.set(_p_)
+ notewakeup(&nmp.park)
+ // Ownership transfer of _p_ committed by wakeup. Preemption is now
+ // safe.
+ releasem(mp)
+}
+
+// Hands off P from syscall or locked M.
+// Always runs without a P, so write barriers are not allowed.
+//go:nowritebarrierrec
+func handoffp(_p_ *p) {
+ // handoffp must start an M in any situation where
+ // findrunnable would return a G to run on _p_.
+
+ // if it has local work, start it straight away
+ if !runqempty(_p_) || sched.runqsize != 0 {
+ startm(_p_, false)
+ return
+ }
+ // if it has GC work, start it straight away
+ if gcBlackenEnabled != 0 && gcMarkWorkAvailable(_p_) {
+ startm(_p_, false)
+ return
+ }
+ // no local work, check that there are no spinning/idle M's,
+ // otherwise our help is not required
+ if atomic.Load(&sched.nmspinning)+atomic.Load(&sched.npidle) == 0 && atomic.Cas(&sched.nmspinning, 0, 1) { // TODO: fast atomic
+ startm(_p_, true)
+ return
+ }
+ lock(&sched.lock)
+ if sched.gcwaiting != 0 {
+ _p_.status = _Pgcstop
+ sched.stopwait--
+ if sched.stopwait == 0 {
+ notewakeup(&sched.stopnote)
+ }
+ unlock(&sched.lock)
+ return
+ }
+ if _p_.runSafePointFn != 0 && atomic.Cas(&_p_.runSafePointFn, 1, 0) {
+ sched.safePointFn(_p_)
+ sched.safePointWait--
+ if sched.safePointWait == 0 {
+ notewakeup(&sched.safePointNote)
+ }
+ }
+ if sched.runqsize != 0 {
+ unlock(&sched.lock)
+ startm(_p_, false)
+ return
+ }
+ // If this is the last running P and nobody is polling network,
+ // need to wakeup another M to poll network.
+ if sched.npidle == uint32(gomaxprocs-1) && atomic.Load64(&sched.lastpoll) != 0 {
+ unlock(&sched.lock)
+ startm(_p_, false)
+ return
+ }
+
+ // The scheduler lock cannot be held when calling wakeNetPoller below
+ // because wakeNetPoller may call wakep which may call startm.
+ when := nobarrierWakeTime(_p_)
+ pidleput(_p_)
+ unlock(&sched.lock)
+
+ if when != 0 {
+ wakeNetPoller(when)
+ }
+}
+
+// Tries to add one more P to execute G's.
+// Called when a G is made runnable (newproc, ready).
+func wakep() {
+ if atomic.Load(&sched.npidle) == 0 {
+ return
+ }
+ // be conservative about spinning threads
+ if atomic.Load(&sched.nmspinning) != 0 || !atomic.Cas(&sched.nmspinning, 0, 1) {
+ return
+ }
+ startm(nil, true)
+}
+
+// Stops execution of the current m that is locked to a g until the g is runnable again.
+// Returns with acquired P.
+func stoplockedm() {
+ _g_ := getg()
+
+ if _g_.m.lockedg == 0 || _g_.m.lockedg.ptr().lockedm.ptr() != _g_.m {
+ throw("stoplockedm: inconsistent locking")
+ }
+ if _g_.m.p != 0 {
+ // Schedule another M to run this p.
+ _p_ := releasep()
+ handoffp(_p_)
+ }
+ incidlelocked(1)
+ // Wait until another thread schedules lockedg again.
+ mPark()
+ status := readgstatus(_g_.m.lockedg.ptr())
+ if status&^_Gscan != _Grunnable {
+ print("runtime:stoplockedm: lockedg (atomicstatus=", status, ") is not Grunnable or Gscanrunnable\n")
+ dumpgstatus(_g_.m.lockedg.ptr())
+ throw("stoplockedm: not runnable")
+ }
+ acquirep(_g_.m.nextp.ptr())
+ _g_.m.nextp = 0
+}
+
+// Schedules the locked m to run the locked gp.
+// May run during STW, so write barriers are not allowed.
+//go:nowritebarrierrec
+func startlockedm(gp *g) {
+ _g_ := getg()
+
+ mp := gp.lockedm.ptr()
+ if mp == _g_.m {
+ throw("startlockedm: locked to me")
+ }
+ if mp.nextp != 0 {
+ throw("startlockedm: m has p")
+ }
+ // directly handoff current P to the locked m
+ incidlelocked(-1)
+ _p_ := releasep()
+ mp.nextp.set(_p_)
+ notewakeup(&mp.park)
+ stopm()
+}
+
+// Stops the current m for stopTheWorld.
+// Returns when the world is restarted.
+func gcstopm() {
+ _g_ := getg()
+
+ if sched.gcwaiting == 0 {
+ throw("gcstopm: not waiting for gc")
+ }
+ if _g_.m.spinning {
+ _g_.m.spinning = false
+ // OK to just drop nmspinning here,
+ // startTheWorld will unpark threads as necessary.
+ if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 {
+ throw("gcstopm: negative nmspinning")
+ }
+ }
+ _p_ := releasep()
+ lock(&sched.lock)
+ _p_.status = _Pgcstop
+ sched.stopwait--
+ if sched.stopwait == 0 {
+ notewakeup(&sched.stopnote)
+ }
+ unlock(&sched.lock)
+ stopm()
+}
+
+// Schedules gp to run on the current M.
+// If inheritTime is true, gp inherits the remaining time in the
+// current time slice. Otherwise, it starts a new time slice.
+// Never returns.
+//
+// Write barriers are allowed because this is called immediately after
+// acquiring a P in several places.
+//
+//go:yeswritebarrierrec
+func execute(gp *g, inheritTime bool) {
+ _g_ := getg()
+
+ // Assign gp.m before entering _Grunning so running Gs have an
+ // M.
+ _g_.m.curg = gp
+ gp.m = _g_.m
+ casgstatus(gp, _Grunnable, _Grunning)
+ gp.waitsince = 0
+ gp.preempt = false
+ gp.stackguard0 = gp.stack.lo + _StackGuard
+ if !inheritTime {
+ _g_.m.p.ptr().schedtick++
+ }
+
+ // Check whether the profiler needs to be turned on or off.
+ hz := sched.profilehz
+ if _g_.m.profilehz != hz {
+ setThreadCPUProfiler(hz)
+ }
+
+ if trace.enabled {
+ // GoSysExit has to happen when we have a P, but before GoStart.
+ // So we emit it here.
+ if gp.syscallsp != 0 && gp.sysblocktraced {
+ traceGoSysExit(gp.sysexitticks)
+ }
+ traceGoStart()
+ }
+
+ gogo(&gp.sched)
+}
+
+// Finds a runnable goroutine to execute.
+// Tries to steal from other P's, get g from local or global queue, poll network.
+func findrunnable() (gp *g, inheritTime bool) {
+ _g_ := getg()
+
+ // The conditions here and in handoffp must agree: if
+ // findrunnable would return a G to run, handoffp must start
+ // an M.
+
+top:
+ _p_ := _g_.m.p.ptr()
+ if sched.gcwaiting != 0 {
+ gcstopm()
+ goto top
+ }
+ if _p_.runSafePointFn != 0 {
+ runSafePointFn()
+ }
+
+ now, pollUntil, _ := checkTimers(_p_, 0)
+
+ if fingwait && fingwake {
+ if gp := wakefing(); gp != nil {
+ ready(gp, 0, true)
+ }
+ }
+ if *cgo_yield != nil {
+ asmcgocall(*cgo_yield, nil)
+ }
+
+ // local runq
+ if gp, inheritTime := runqget(_p_); gp != nil {
+ return gp, inheritTime
+ }
+
+ // global runq
+ if sched.runqsize != 0 {
+ lock(&sched.lock)
+ gp := globrunqget(_p_, 0)
+ unlock(&sched.lock)
+ if gp != nil {
+ return gp, false
+ }
+ }
+
+ // Poll network.
+ // This netpoll is only an optimization before we resort to stealing.
+ // We can safely skip it if there are no waiters or a thread is blocked
+ // in netpoll already. If there is any kind of logical race with that
+ // blocked thread (e.g. it has already returned from netpoll, but does
+ // not set lastpoll yet), this thread will do blocking netpoll below
+ // anyway.
+ if netpollinited() && atomic.Load(&netpollWaiters) > 0 && atomic.Load64(&sched.lastpoll) != 0 {
+ if list := netpoll(0); !list.empty() { // non-blocking
+ gp := list.pop()
+ injectglist(&list)
+ casgstatus(gp, _Gwaiting, _Grunnable)
+ if trace.enabled {
+ traceGoUnpark(gp, 0)
+ }
+ return gp, false
+ }
+ }
+
+ // Steal work from other P's.
+ procs := uint32(gomaxprocs)
+ ranTimer := false
+ // If number of spinning M's >= number of busy P's, block.
+ // This is necessary to prevent excessive CPU consumption
+ // when GOMAXPROCS>>1 but the program parallelism is low.
+ if !_g_.m.spinning && 2*atomic.Load(&sched.nmspinning) >= procs-atomic.Load(&sched.npidle) {
+ goto stop
+ }
+ if !_g_.m.spinning {
+ _g_.m.spinning = true
+ atomic.Xadd(&sched.nmspinning, 1)
+ }
+ const stealTries = 4
+ for i := 0; i < stealTries; i++ {
+ stealTimersOrRunNextG := i == stealTries-1
+
+ for enum := stealOrder.start(fastrand()); !enum.done(); enum.next() {
+ if sched.gcwaiting != 0 {
+ goto top
+ }
+ p2 := allp[enum.position()]
+ if _p_ == p2 {
+ continue
+ }
+
+ // Steal timers from p2. This call to checkTimers is the only place
+ // where we might hold a lock on a different P's timers. We do this
+ // once on the last pass before checking runnext because stealing
+ // from the other P's runnext should be the last resort, so if there
+ // are timers to steal do that first.
+ //
+ // We only check timers on one of the stealing iterations because
+ // the time stored in now doesn't change in this loop and checking
+ // the timers for each P more than once with the same value of now
+ // is probably a waste of time.
+ //
+ // timerpMask tells us whether the P may have timers at all. If it
+ // can't, no need to check at all.
+ if stealTimersOrRunNextG && timerpMask.read(enum.position()) {
+ tnow, w, ran := checkTimers(p2, now)
+ now = tnow
+ if w != 0 && (pollUntil == 0 || w < pollUntil) {
+ pollUntil = w
+ }
+ if ran {
+ // Running the timers may have
+ // made an arbitrary number of G's
+ // ready and added them to this P's
+ // local run queue. That invalidates
+ // the assumption of runqsteal
+ // that is always has room to add
+ // stolen G's. So check now if there
+ // is a local G to run.
+ if gp, inheritTime := runqget(_p_); gp != nil {
+ return gp, inheritTime
+ }
+ ranTimer = true
+ }
+ }
+
+ // Don't bother to attempt to steal if p2 is idle.
+ if !idlepMask.read(enum.position()) {
+ if gp := runqsteal(_p_, p2, stealTimersOrRunNextG); gp != nil {
+ return gp, false
+ }
+ }
+ }
+ }
+ if ranTimer {
+ // Running a timer may have made some goroutine ready.
+ goto top
+ }
+
+stop:
+
+ // We have nothing to do. If we're in the GC mark phase, can
+ // safely scan and blacken objects, and have work to do, run
+ // idle-time marking rather than give up the P.
+ if gcBlackenEnabled != 0 && gcMarkWorkAvailable(_p_) {
+ node := (*gcBgMarkWorkerNode)(gcBgMarkWorkerPool.pop())
+ if node != nil {
+ _p_.gcMarkWorkerMode = gcMarkWorkerIdleMode
+ gp := node.gp.ptr()
+ casgstatus(gp, _Gwaiting, _Grunnable)
+ if trace.enabled {
+ traceGoUnpark(gp, 0)
+ }
+ return gp, false
+ }
+ }
+
+ delta := int64(-1)
+ if pollUntil != 0 {
+ // checkTimers ensures that polluntil > now.
+ delta = pollUntil - now
+ }
+
+ // wasm only:
+ // If a callback returned and no other goroutine is awake,
+ // then wake event handler goroutine which pauses execution
+ // until a callback was triggered.
+ gp, otherReady := beforeIdle(delta)
+ if gp != nil {
+ casgstatus(gp, _Gwaiting, _Grunnable)
+ if trace.enabled {
+ traceGoUnpark(gp, 0)
+ }
+ return gp, false
+ }
+ if otherReady {
+ goto top
+ }
+
+ // Before we drop our P, make a snapshot of the allp slice,
+ // which can change underfoot once we no longer block
+ // safe-points. We don't need to snapshot the contents because
+ // everything up to cap(allp) is immutable.
+ allpSnapshot := allp
+ // Also snapshot masks. Value changes are OK, but we can't allow
+ // len to change out from under us.
+ idlepMaskSnapshot := idlepMask
+ timerpMaskSnapshot := timerpMask
+
+ // return P and block
+ lock(&sched.lock)
+ if sched.gcwaiting != 0 || _p_.runSafePointFn != 0 {
+ unlock(&sched.lock)
+ goto top
+ }
+ if sched.runqsize != 0 {
+ gp := globrunqget(_p_, 0)
+ unlock(&sched.lock)
+ return gp, false
+ }
+ if releasep() != _p_ {
+ throw("findrunnable: wrong p")
+ }
+ pidleput(_p_)
+ unlock(&sched.lock)
+
+ // Delicate dance: thread transitions from spinning to non-spinning state,
+ // potentially concurrently with submission of new goroutines. We must
+ // drop nmspinning first and then check all per-P queues again (with
+ // #StoreLoad memory barrier in between). If we do it the other way around,
+ // another thread can submit a goroutine after we've checked all run queues
+ // but before we drop nmspinning; as a result nobody will unpark a thread
+ // to run the goroutine.
+ // If we discover new work below, we need to restore m.spinning as a signal
+ // for resetspinning to unpark a new worker thread (because there can be more
+ // than one starving goroutine). However, if after discovering new work
+ // we also observe no idle Ps, it is OK to just park the current thread:
+ // the system is fully loaded so no spinning threads are required.
+ // Also see "Worker thread parking/unparking" comment at the top of the file.
+ wasSpinning := _g_.m.spinning
+ if _g_.m.spinning {
+ _g_.m.spinning = false
+ if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 {
+ throw("findrunnable: negative nmspinning")
+ }
+ }
+
+ // check all runqueues once again
+ for id, _p_ := range allpSnapshot {
+ if !idlepMaskSnapshot.read(uint32(id)) && !runqempty(_p_) {
+ lock(&sched.lock)
+ _p_ = pidleget()
+ unlock(&sched.lock)
+ if _p_ != nil {
+ acquirep(_p_)
+ if wasSpinning {
+ _g_.m.spinning = true
+ atomic.Xadd(&sched.nmspinning, 1)
+ }
+ goto top
+ }
+ break
+ }
+ }
+
+ // Similar to above, check for timer creation or expiry concurrently with
+ // transitioning from spinning to non-spinning. Note that we cannot use
+ // checkTimers here because it calls adjusttimers which may need to allocate
+ // memory, and that isn't allowed when we don't have an active P.
+ for id, _p_ := range allpSnapshot {
+ if timerpMaskSnapshot.read(uint32(id)) {
+ w := nobarrierWakeTime(_p_)
+ if w != 0 && (pollUntil == 0 || w < pollUntil) {
+ pollUntil = w
+ }
+ }
+ }
+ if pollUntil != 0 {
+ if now == 0 {
+ now = nanotime()
+ }
+ delta = pollUntil - now
+ if delta < 0 {
+ delta = 0
+ }
+ }
+
+ // Check for idle-priority GC work again.
+ //
+ // N.B. Since we have no P, gcBlackenEnabled may change at any time; we
+ // must check again after acquiring a P.
+ if atomic.Load(&gcBlackenEnabled) != 0 && gcMarkWorkAvailable(nil) {
+ // Work is available; we can start an idle GC worker only if
+ // there is an available P and available worker G.
+ //
+ // We can attempt to acquire these in either order. Workers are
+ // almost always available (see comment in findRunnableGCWorker
+ // for the one case there may be none). Since we're slightly
+ // less likely to find a P, check for that first.
+ lock(&sched.lock)
+ var node *gcBgMarkWorkerNode
+ _p_ = pidleget()
+ if _p_ != nil {
+ // Now that we own a P, gcBlackenEnabled can't change
+ // (as it requires STW).
+ if gcBlackenEnabled != 0 {
+ node = (*gcBgMarkWorkerNode)(gcBgMarkWorkerPool.pop())
+ if node == nil {
+ pidleput(_p_)
+ _p_ = nil
+ }
+ } else {
+ pidleput(_p_)
+ _p_ = nil
+ }
+ }
+ unlock(&sched.lock)
+ if _p_ != nil {
+ acquirep(_p_)
+ if wasSpinning {
+ _g_.m.spinning = true
+ atomic.Xadd(&sched.nmspinning, 1)
+ }
+
+ // Run the idle worker.
+ _p_.gcMarkWorkerMode = gcMarkWorkerIdleMode
+ gp := node.gp.ptr()
+ casgstatus(gp, _Gwaiting, _Grunnable)
+ if trace.enabled {
+ traceGoUnpark(gp, 0)
+ }
+ return gp, false
+ }
+ }
+
+ // poll network
+ if netpollinited() && (atomic.Load(&netpollWaiters) > 0 || pollUntil != 0) && atomic.Xchg64(&sched.lastpoll, 0) != 0 {
+ atomic.Store64(&sched.pollUntil, uint64(pollUntil))
+ if _g_.m.p != 0 {
+ throw("findrunnable: netpoll with p")
+ }
+ if _g_.m.spinning {
+ throw("findrunnable: netpoll with spinning")
+ }
+ if faketime != 0 {
+ // When using fake time, just poll.
+ delta = 0
+ }
+ list := netpoll(delta) // block until new work is available
+ atomic.Store64(&sched.pollUntil, 0)
+ atomic.Store64(&sched.lastpoll, uint64(nanotime()))
+ if faketime != 0 && list.empty() {
+ // Using fake time and nothing is ready; stop M.
+ // When all M's stop, checkdead will call timejump.
+ stopm()
+ goto top
+ }
+ lock(&sched.lock)
+ _p_ = pidleget()
+ unlock(&sched.lock)
+ if _p_ == nil {
+ injectglist(&list)
+ } else {
+ acquirep(_p_)
+ if !list.empty() {
+ gp := list.pop()
+ injectglist(&list)
+ casgstatus(gp, _Gwaiting, _Grunnable)
+ if trace.enabled {
+ traceGoUnpark(gp, 0)
+ }
+ return gp, false
+ }
+ if wasSpinning {
+ _g_.m.spinning = true
+ atomic.Xadd(&sched.nmspinning, 1)
+ }
+ goto top
+ }
+ } else if pollUntil != 0 && netpollinited() {
+ pollerPollUntil := int64(atomic.Load64(&sched.pollUntil))
+ if pollerPollUntil == 0 || pollerPollUntil > pollUntil {
+ netpollBreak()
+ }
+ }
+ stopm()
+ goto top
+}
+
+// pollWork reports whether there is non-background work this P could
+// be doing. This is a fairly lightweight check to be used for
+// background work loops, like idle GC. It checks a subset of the
+// conditions checked by the actual scheduler.
+func pollWork() bool {
+ if sched.runqsize != 0 {
+ return true
+ }
+ p := getg().m.p.ptr()
+ if !runqempty(p) {
+ return true
+ }
+ if netpollinited() && atomic.Load(&netpollWaiters) > 0 && sched.lastpoll != 0 {
+ if list := netpoll(0); !list.empty() {
+ injectglist(&list)
+ return true
+ }
+ }
+ return false
+}
+
+// wakeNetPoller wakes up the thread sleeping in the network poller if it isn't
+// going to wake up before the when argument; or it wakes an idle P to service
+// timers and the network poller if there isn't one already.
+func wakeNetPoller(when int64) {
+ if atomic.Load64(&sched.lastpoll) == 0 {
+ // In findrunnable we ensure that when polling the pollUntil
+ // field is either zero or the time to which the current
+ // poll is expected to run. This can have a spurious wakeup
+ // but should never miss a wakeup.
+ pollerPollUntil := int64(atomic.Load64(&sched.pollUntil))
+ if pollerPollUntil == 0 || pollerPollUntil > when {
+ netpollBreak()
+ }
+ } else {
+ // There are no threads in the network poller, try to get
+ // one there so it can handle new timers.
+ if GOOS != "plan9" { // Temporary workaround - see issue #42303.
+ wakep()
+ }
+ }
+}
+
+func resetspinning() {
+ _g_ := getg()
+ if !_g_.m.spinning {
+ throw("resetspinning: not a spinning m")
+ }
+ _g_.m.spinning = false
+ nmspinning := atomic.Xadd(&sched.nmspinning, -1)
+ if int32(nmspinning) < 0 {
+ throw("findrunnable: negative nmspinning")
+ }
+ // M wakeup policy is deliberately somewhat conservative, so check if we
+ // need to wakeup another P here. See "Worker thread parking/unparking"
+ // comment at the top of the file for details.
+ wakep()
+}
+
+// injectglist adds each runnable G on the list to some run queue,
+// and clears glist. If there is no current P, they are added to the
+// global queue, and up to npidle M's are started to run them.
+// Otherwise, for each idle P, this adds a G to the global queue
+// and starts an M. Any remaining G's are added to the current P's
+// local run queue.
+// This may temporarily acquire sched.lock.
+// Can run concurrently with GC.
+func injectglist(glist *gList) {
+ if glist.empty() {
+ return
+ }
+ if trace.enabled {
+ for gp := glist.head.ptr(); gp != nil; gp = gp.schedlink.ptr() {
+ traceGoUnpark(gp, 0)
+ }
+ }
+
+ // Mark all the goroutines as runnable before we put them
+ // on the run queues.
+ head := glist.head.ptr()
+ var tail *g
+ qsize := 0
+ for gp := head; gp != nil; gp = gp.schedlink.ptr() {
+ tail = gp
+ qsize++
+ casgstatus(gp, _Gwaiting, _Grunnable)
+ }
+
+ // Turn the gList into a gQueue.
+ var q gQueue
+ q.head.set(head)
+ q.tail.set(tail)
+ *glist = gList{}
+
+ startIdle := func(n int) {
+ for ; n != 0 && sched.npidle != 0; n-- {
+ startm(nil, false)
+ }
+ }
+
+ pp := getg().m.p.ptr()
+ if pp == nil {
+ lock(&sched.lock)
+ globrunqputbatch(&q, int32(qsize))
+ unlock(&sched.lock)
+ startIdle(qsize)
+ return
+ }
+
+ npidle := int(atomic.Load(&sched.npidle))
+ var globq gQueue
+ var n int
+ for n = 0; n < npidle && !q.empty(); n++ {
+ g := q.pop()
+ globq.pushBack(g)
+ }
+ if n > 0 {
+ lock(&sched.lock)
+ globrunqputbatch(&globq, int32(n))
+ unlock(&sched.lock)
+ startIdle(n)
+ qsize -= n
+ }
+
+ if !q.empty() {
+ runqputbatch(pp, &q, qsize)
+ }
+}
+
+// One round of scheduler: find a runnable goroutine and execute it.
+// Never returns.
+func schedule() {
+ _g_ := getg()
+
+ if _g_.m.locks != 0 {
+ throw("schedule: holding locks")
+ }
+
+ if _g_.m.lockedg != 0 {
+ stoplockedm()
+ execute(_g_.m.lockedg.ptr(), false) // Never returns.
+ }
+
+ // We should not schedule away from a g that is executing a cgo call,
+ // since the cgo call is using the m's g0 stack.
+ if _g_.m.incgo {
+ throw("schedule: in cgo")
+ }
+
+top:
+ pp := _g_.m.p.ptr()
+ pp.preempt = false
+
+ if sched.gcwaiting != 0 {
+ gcstopm()
+ goto top
+ }
+ if pp.runSafePointFn != 0 {
+ runSafePointFn()
+ }
+
+ // Sanity check: if we are spinning, the run queue should be empty.
+ // Check this before calling checkTimers, as that might call
+ // goready to put a ready goroutine on the local run queue.
+ if _g_.m.spinning && (pp.runnext != 0 || pp.runqhead != pp.runqtail) {
+ throw("schedule: spinning with local work")
+ }
+
+ checkTimers(pp, 0)
+
+ var gp *g
+ var inheritTime bool
+
+ // Normal goroutines will check for need to wakeP in ready,
+ // but GCworkers and tracereaders will not, so the check must
+ // be done here instead.
+ tryWakeP := false
+ if trace.enabled || trace.shutdown {
+ gp = traceReader()
+ if gp != nil {
+ casgstatus(gp, _Gwaiting, _Grunnable)
+ traceGoUnpark(gp, 0)
+ tryWakeP = true
+ }
+ }
+ if gp == nil && gcBlackenEnabled != 0 {
+ gp = gcController.findRunnableGCWorker(_g_.m.p.ptr())
+ tryWakeP = tryWakeP || gp != nil
+ }
+ if gp == nil {
+ // Check the global runnable queue once in a while to ensure fairness.
+ // Otherwise two goroutines can completely occupy the local runqueue
+ // by constantly respawning each other.
+ if _g_.m.p.ptr().schedtick%61 == 0 && sched.runqsize > 0 {
+ lock(&sched.lock)
+ gp = globrunqget(_g_.m.p.ptr(), 1)
+ unlock(&sched.lock)
+ }
+ }
+ if gp == nil {
+ gp, inheritTime = runqget(_g_.m.p.ptr())
+ // We can see gp != nil here even if the M is spinning,
+ // if checkTimers added a local goroutine via goready.
+ }
+ if gp == nil {
+ gp, inheritTime = findrunnable() // blocks until work is available
+ }
+
+ // This thread is going to run a goroutine and is not spinning anymore,
+ // so if it was marked as spinning we need to reset it now and potentially
+ // start a new spinning M.
+ if _g_.m.spinning {
+ resetspinning()
+ }
+
+ if sched.disable.user && !schedEnabled(gp) {
+ // Scheduling of this goroutine is disabled. Put it on
+ // the list of pending runnable goroutines for when we
+ // re-enable user scheduling and look again.
+ lock(&sched.lock)
+ if schedEnabled(gp) {
+ // Something re-enabled scheduling while we
+ // were acquiring the lock.
+ unlock(&sched.lock)
+ } else {
+ sched.disable.runnable.pushBack(gp)
+ sched.disable.n++
+ unlock(&sched.lock)
+ goto top
+ }
+ }
+
+ // If about to schedule a not-normal goroutine (a GCworker or tracereader),
+ // wake a P if there is one.
+ if tryWakeP {
+ wakep()
+ }
+ if gp.lockedm != 0 {
+ // Hands off own p to the locked m,
+ // then blocks waiting for a new p.
+ startlockedm(gp)
+ goto top
+ }
+
+ execute(gp, inheritTime)
+}
+
+// dropg removes the association between m and the current goroutine m->curg (gp for short).
+// Typically a caller sets gp's status away from Grunning and then
+// immediately calls dropg to finish the job. The caller is also responsible
+// for arranging that gp will be restarted using ready at an
+// appropriate time. After calling dropg and arranging for gp to be
+// readied later, the caller can do other work but eventually should
+// call schedule to restart the scheduling of goroutines on this m.
+func dropg() {
+ _g_ := getg()
+
+ setMNoWB(&_g_.m.curg.m, nil)
+ setGNoWB(&_g_.m.curg, nil)
+}
+
+// checkTimers runs any timers for the P that are ready.
+// If now is not 0 it is the current time.
+// It returns the current time or 0 if it is not known,
+// and the time when the next timer should run or 0 if there is no next timer,
+// and reports whether it ran any timers.
+// If the time when the next timer should run is not 0,
+// it is always larger than the returned time.
+// We pass now in and out to avoid extra calls of nanotime.
+//go:yeswritebarrierrec
+func checkTimers(pp *p, now int64) (rnow, pollUntil int64, ran bool) {
+ // If it's not yet time for the first timer, or the first adjusted
+ // timer, then there is nothing to do.
+ next := int64(atomic.Load64(&pp.timer0When))
+ nextAdj := int64(atomic.Load64(&pp.timerModifiedEarliest))
+ if next == 0 || (nextAdj != 0 && nextAdj < next) {
+ next = nextAdj
+ }
+
+ if next == 0 {
+ // No timers to run or adjust.
+ return now, 0, false
+ }
+
+ if now == 0 {
+ now = nanotime()
+ }
+ if now < next {
+ // Next timer is not ready to run, but keep going
+ // if we would clear deleted timers.
+ // This corresponds to the condition below where
+ // we decide whether to call clearDeletedTimers.
+ if pp != getg().m.p.ptr() || int(atomic.Load(&pp.deletedTimers)) <= int(atomic.Load(&pp.numTimers)/4) {
+ return now, next, false
+ }
+ }
+
+ lock(&pp.timersLock)
+
+ if len(pp.timers) > 0 {
+ adjusttimers(pp, now)
+ for len(pp.timers) > 0 {
+ // Note that runtimer may temporarily unlock
+ // pp.timersLock.
+ if tw := runtimer(pp, now); tw != 0 {
+ if tw > 0 {
+ pollUntil = tw
+ }
+ break
+ }
+ ran = true
+ }
+ }
+
+ // If this is the local P, and there are a lot of deleted timers,
+ // clear them out. We only do this for the local P to reduce
+ // lock contention on timersLock.
+ if pp == getg().m.p.ptr() && int(atomic.Load(&pp.deletedTimers)) > len(pp.timers)/4 {
+ clearDeletedTimers(pp)
+ }
+
+ unlock(&pp.timersLock)
+
+ return now, pollUntil, ran
+}
+
+func parkunlock_c(gp *g, lock unsafe.Pointer) bool {
+ unlock((*mutex)(lock))
+ return true
+}
+
+// park continuation on g0.
+func park_m(gp *g) {
+ _g_ := getg()
+
+ if trace.enabled {
+ traceGoPark(_g_.m.waittraceev, _g_.m.waittraceskip)
+ }
+
+ casgstatus(gp, _Grunning, _Gwaiting)
+ dropg()
+
+ if fn := _g_.m.waitunlockf; fn != nil {
+ ok := fn(gp, _g_.m.waitlock)
+ _g_.m.waitunlockf = nil
+ _g_.m.waitlock = nil
+ if !ok {
+ if trace.enabled {
+ traceGoUnpark(gp, 2)
+ }
+ casgstatus(gp, _Gwaiting, _Grunnable)
+ execute(gp, true) // Schedule it back, never returns.
+ }
+ }
+ schedule()
+}
+
+func goschedImpl(gp *g) {
+ status := readgstatus(gp)
+ if status&^_Gscan != _Grunning {
+ dumpgstatus(gp)
+ throw("bad g status")
+ }
+ casgstatus(gp, _Grunning, _Grunnable)
+ dropg()
+ lock(&sched.lock)
+ globrunqput(gp)
+ unlock(&sched.lock)
+
+ schedule()
+}
+
+// Gosched continuation on g0.
+func gosched_m(gp *g) {
+ if trace.enabled {
+ traceGoSched()
+ }
+ goschedImpl(gp)
+}
+
+// goschedguarded is a forbidden-states-avoided version of gosched_m
+func goschedguarded_m(gp *g) {
+
+ if !canPreemptM(gp.m) {
+ gogo(&gp.sched) // never return
+ }
+
+ if trace.enabled {
+ traceGoSched()
+ }
+ goschedImpl(gp)
+}
+
+func gopreempt_m(gp *g) {
+ if trace.enabled {
+ traceGoPreempt()
+ }
+ goschedImpl(gp)
+}
+
+// preemptPark parks gp and puts it in _Gpreempted.
+//
+//go:systemstack
+func preemptPark(gp *g) {
+ if trace.enabled {
+ traceGoPark(traceEvGoBlock, 0)
+ }
+ status := readgstatus(gp)
+ if status&^_Gscan != _Grunning {
+ dumpgstatus(gp)
+ throw("bad g status")
+ }
+ gp.waitreason = waitReasonPreempted
+ // Transition from _Grunning to _Gscan|_Gpreempted. We can't
+ // be in _Grunning when we dropg because then we'd be running
+ // without an M, but the moment we're in _Gpreempted,
+ // something could claim this G before we've fully cleaned it
+ // up. Hence, we set the scan bit to lock down further
+ // transitions until we can dropg.
+ casGToPreemptScan(gp, _Grunning, _Gscan|_Gpreempted)
+ dropg()
+ casfrom_Gscanstatus(gp, _Gscan|_Gpreempted, _Gpreempted)
+ schedule()
+}
+
+// goyield is like Gosched, but it:
+// - emits a GoPreempt trace event instead of a GoSched trace event
+// - puts the current G on the runq of the current P instead of the globrunq
+func goyield() {
+ checkTimeouts()
+ mcall(goyield_m)
+}
+
+func goyield_m(gp *g) {
+ if trace.enabled {
+ traceGoPreempt()
+ }
+ pp := gp.m.p.ptr()
+ casgstatus(gp, _Grunning, _Grunnable)
+ dropg()
+ runqput(pp, gp, false)
+ schedule()
+}
+
+// Finishes execution of the current goroutine.
+func goexit1() {
+ if raceenabled {
+ racegoend()
+ }
+ if trace.enabled {
+ traceGoEnd()
+ }
+ mcall(goexit0)
+}
+
+// goexit continuation on g0.
+func goexit0(gp *g) {
+ _g_ := getg()
+
+ casgstatus(gp, _Grunning, _Gdead)
+ if isSystemGoroutine(gp, false) {
+ atomic.Xadd(&sched.ngsys, -1)
+ }
+ gp.m = nil
+ locked := gp.lockedm != 0
+ gp.lockedm = 0
+ _g_.m.lockedg = 0
+ gp.preemptStop = false
+ gp.paniconfault = false
+ gp._defer = nil // should be true already but just in case.
+ gp._panic = nil // non-nil for Goexit during panic. points at stack-allocated data.
+ gp.writebuf = nil
+ gp.waitreason = 0
+ gp.param = nil
+ gp.labels = nil
+ gp.timer = nil
+
+ if gcBlackenEnabled != 0 && gp.gcAssistBytes > 0 {
+ // Flush assist credit to the global pool. This gives
+ // better information to pacing if the application is
+ // rapidly creating an exiting goroutines.
+ assistWorkPerByte := float64frombits(atomic.Load64(&gcController.assistWorkPerByte))
+ scanCredit := int64(assistWorkPerByte * float64(gp.gcAssistBytes))
+ atomic.Xaddint64(&gcController.bgScanCredit, scanCredit)
+ gp.gcAssistBytes = 0
+ }
+
+ dropg()
+
+ if GOARCH == "wasm" { // no threads yet on wasm
+ gfput(_g_.m.p.ptr(), gp)
+ schedule() // never returns
+ }
+
+ if _g_.m.lockedInt != 0 {
+ print("invalid m->lockedInt = ", _g_.m.lockedInt, "\n")
+ throw("internal lockOSThread error")
+ }
+ gfput(_g_.m.p.ptr(), gp)
+ if locked {
+ // The goroutine may have locked this thread because
+ // it put it in an unusual kernel state. Kill it
+ // rather than returning it to the thread pool.
+
+ // Return to mstart, which will release the P and exit
+ // the thread.
+ if GOOS != "plan9" { // See golang.org/issue/22227.
+ gogo(&_g_.m.g0.sched)
+ } else {
+ // Clear lockedExt on plan9 since we may end up re-using
+ // this thread.
+ _g_.m.lockedExt = 0
+ }
+ }
+ schedule()
+}
+
+// save updates getg().sched to refer to pc and sp so that a following
+// gogo will restore pc and sp.
+//
+// save must not have write barriers because invoking a write barrier
+// can clobber getg().sched.
+//
+//go:nosplit
+//go:nowritebarrierrec
+func save(pc, sp uintptr) {
+ _g_ := getg()
+
+ _g_.sched.pc = pc
+ _g_.sched.sp = sp
+ _g_.sched.lr = 0
+ _g_.sched.ret = 0
+ _g_.sched.g = guintptr(unsafe.Pointer(_g_))
+ // We need to ensure ctxt is zero, but can't have a write
+ // barrier here. However, it should always already be zero.
+ // Assert that.
+ if _g_.sched.ctxt != nil {
+ badctxt()
+ }
+}
+
+// The goroutine g is about to enter a system call.
+// Record that it's not using the cpu anymore.
+// This is called only from the go syscall library and cgocall,
+// not from the low-level system calls used by the runtime.
+//
+// Entersyscall cannot split the stack: the gosave must
+// make g->sched refer to the caller's stack segment, because
+// entersyscall is going to return immediately after.
+//
+// Nothing entersyscall calls can split the stack either.
+// We cannot safely move the stack during an active call to syscall,
+// because we do not know which of the uintptr arguments are
+// really pointers (back into the stack).
+// In practice, this means that we make the fast path run through
+// entersyscall doing no-split things, and the slow path has to use systemstack
+// to run bigger things on the system stack.
+//
+// reentersyscall is the entry point used by cgo callbacks, where explicitly
+// saved SP and PC are restored. This is needed when exitsyscall will be called
+// from a function further up in the call stack than the parent, as g->syscallsp
+// must always point to a valid stack frame. entersyscall below is the normal
+// entry point for syscalls, which obtains the SP and PC from the caller.
+//
+// Syscall tracing:
+// At the start of a syscall we emit traceGoSysCall to capture the stack trace.
+// If the syscall does not block, that is it, we do not emit any other events.
+// If the syscall blocks (that is, P is retaken), retaker emits traceGoSysBlock;
+// when syscall returns we emit traceGoSysExit and when the goroutine starts running
+// (potentially instantly, if exitsyscallfast returns true) we emit traceGoStart.
+// To ensure that traceGoSysExit is emitted strictly after traceGoSysBlock,
+// we remember current value of syscalltick in m (_g_.m.syscalltick = _g_.m.p.ptr().syscalltick),
+// whoever emits traceGoSysBlock increments p.syscalltick afterwards;
+// and we wait for the increment before emitting traceGoSysExit.
+// Note that the increment is done even if tracing is not enabled,
+// because tracing can be enabled in the middle of syscall. We don't want the wait to hang.
+//
+//go:nosplit
+func reentersyscall(pc, sp uintptr) {
+ _g_ := getg()
+
+ // Disable preemption because during this function g is in Gsyscall status,
+ // but can have inconsistent g->sched, do not let GC observe it.
+ _g_.m.locks++
+
+ // Entersyscall must not call any function that might split/grow the stack.
+ // (See details in comment above.)
+ // Catch calls that might, by replacing the stack guard with something that
+ // will trip any stack check and leaving a flag to tell newstack to die.
+ _g_.stackguard0 = stackPreempt
+ _g_.throwsplit = true
+
+ // Leave SP around for GC and traceback.
+ save(pc, sp)
+ _g_.syscallsp = sp
+ _g_.syscallpc = pc
+ casgstatus(_g_, _Grunning, _Gsyscall)
+ if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp {
+ systemstack(func() {
+ print("entersyscall inconsistent ", hex(_g_.syscallsp), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n")
+ throw("entersyscall")
+ })
+ }
+
+ if trace.enabled {
+ systemstack(traceGoSysCall)
+ // systemstack itself clobbers g.sched.{pc,sp} and we might
+ // need them later when the G is genuinely blocked in a
+ // syscall
+ save(pc, sp)
+ }
+
+ if atomic.Load(&sched.sysmonwait) != 0 {
+ systemstack(entersyscall_sysmon)
+ save(pc, sp)
+ }
+
+ if _g_.m.p.ptr().runSafePointFn != 0 {
+ // runSafePointFn may stack split if run on this stack
+ systemstack(runSafePointFn)
+ save(pc, sp)
+ }
+
+ _g_.m.syscalltick = _g_.m.p.ptr().syscalltick
+ _g_.sysblocktraced = true
+ pp := _g_.m.p.ptr()
+ pp.m = 0
+ _g_.m.oldp.set(pp)
+ _g_.m.p = 0
+ atomic.Store(&pp.status, _Psyscall)
+ if sched.gcwaiting != 0 {
+ systemstack(entersyscall_gcwait)
+ save(pc, sp)
+ }
+
+ _g_.m.locks--
+}
+
+// Standard syscall entry used by the go syscall library and normal cgo calls.
+//
+// This is exported via linkname to assembly in the syscall package.
+//
+//go:nosplit
+//go:linkname entersyscall
+func entersyscall() {
+ reentersyscall(getcallerpc(), getcallersp())
+}
+
+func entersyscall_sysmon() {
+ lock(&sched.lock)
+ if atomic.Load(&sched.sysmonwait) != 0 {
+ atomic.Store(&sched.sysmonwait, 0)
+ notewakeup(&sched.sysmonnote)
+ }
+ unlock(&sched.lock)
+}
+
+func entersyscall_gcwait() {
+ _g_ := getg()
+ _p_ := _g_.m.oldp.ptr()
+
+ lock(&sched.lock)
+ if sched.stopwait > 0 && atomic.Cas(&_p_.status, _Psyscall, _Pgcstop) {
+ if trace.enabled {
+ traceGoSysBlock(_p_)
+ traceProcStop(_p_)
+ }
+ _p_.syscalltick++
+ if sched.stopwait--; sched.stopwait == 0 {
+ notewakeup(&sched.stopnote)
+ }
+ }
+ unlock(&sched.lock)
+}
+
+// The same as entersyscall(), but with a hint that the syscall is blocking.
+//go:nosplit
+func entersyscallblock() {
+ _g_ := getg()
+
+ _g_.m.locks++ // see comment in entersyscall
+ _g_.throwsplit = true
+ _g_.stackguard0 = stackPreempt // see comment in entersyscall
+ _g_.m.syscalltick = _g_.m.p.ptr().syscalltick
+ _g_.sysblocktraced = true
+ _g_.m.p.ptr().syscalltick++
+
+ // Leave SP around for GC and traceback.
+ pc := getcallerpc()
+ sp := getcallersp()
+ save(pc, sp)
+ _g_.syscallsp = _g_.sched.sp
+ _g_.syscallpc = _g_.sched.pc
+ if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp {
+ sp1 := sp
+ sp2 := _g_.sched.sp
+ sp3 := _g_.syscallsp
+ systemstack(func() {
+ print("entersyscallblock inconsistent ", hex(sp1), " ", hex(sp2), " ", hex(sp3), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n")
+ throw("entersyscallblock")
+ })
+ }
+ casgstatus(_g_, _Grunning, _Gsyscall)
+ if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp {
+ systemstack(func() {
+ print("entersyscallblock inconsistent ", hex(sp), " ", hex(_g_.sched.sp), " ", hex(_g_.syscallsp), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n")
+ throw("entersyscallblock")
+ })
+ }
+
+ systemstack(entersyscallblock_handoff)
+
+ // Resave for traceback during blocked call.
+ save(getcallerpc(), getcallersp())
+
+ _g_.m.locks--
+}
+
+func entersyscallblock_handoff() {
+ if trace.enabled {
+ traceGoSysCall()
+ traceGoSysBlock(getg().m.p.ptr())
+ }
+ handoffp(releasep())
+}
+
+// The goroutine g exited its system call.
+// Arrange for it to run on a cpu again.
+// This is called only from the go syscall library, not
+// from the low-level system calls used by the runtime.
+//
+// Write barriers are not allowed because our P may have been stolen.
+//
+// This is exported via linkname to assembly in the syscall package.
+//
+//go:nosplit
+//go:nowritebarrierrec
+//go:linkname exitsyscall
+func exitsyscall() {
+ _g_ := getg()
+
+ _g_.m.locks++ // see comment in entersyscall
+ if getcallersp() > _g_.syscallsp {
+ throw("exitsyscall: syscall frame is no longer valid")
+ }
+
+ _g_.waitsince = 0
+ oldp := _g_.m.oldp.ptr()
+ _g_.m.oldp = 0
+ if exitsyscallfast(oldp) {
+ if trace.enabled {
+ if oldp != _g_.m.p.ptr() || _g_.m.syscalltick != _g_.m.p.ptr().syscalltick {
+ systemstack(traceGoStart)
+ }
+ }
+ // There's a cpu for us, so we can run.
+ _g_.m.p.ptr().syscalltick++
+ // We need to cas the status and scan before resuming...
+ casgstatus(_g_, _Gsyscall, _Grunning)
+
+ // Garbage collector isn't running (since we are),
+ // so okay to clear syscallsp.
+ _g_.syscallsp = 0
+ _g_.m.locks--
+ if _g_.preempt {
+ // restore the preemption request in case we've cleared it in newstack
+ _g_.stackguard0 = stackPreempt
+ } else {
+ // otherwise restore the real _StackGuard, we've spoiled it in entersyscall/entersyscallblock
+ _g_.stackguard0 = _g_.stack.lo + _StackGuard
+ }
+ _g_.throwsplit = false
+
+ if sched.disable.user && !schedEnabled(_g_) {
+ // Scheduling of this goroutine is disabled.
+ Gosched()
+ }
+
+ return
+ }
+
+ _g_.sysexitticks = 0
+ if trace.enabled {
+ // Wait till traceGoSysBlock event is emitted.
+ // This ensures consistency of the trace (the goroutine is started after it is blocked).
+ for oldp != nil && oldp.syscalltick == _g_.m.syscalltick {
+ osyield()
+ }
+ // We can't trace syscall exit right now because we don't have a P.
+ // Tracing code can invoke write barriers that cannot run without a P.
+ // So instead we remember the syscall exit time and emit the event
+ // in execute when we have a P.
+ _g_.sysexitticks = cputicks()
+ }
+
+ _g_.m.locks--
+
+ // Call the scheduler.
+ mcall(exitsyscall0)
+
+ // Scheduler returned, so we're allowed to run now.
+ // Delete the syscallsp information that we left for
+ // the garbage collector during the system call.
+ // Must wait until now because until gosched returns
+ // we don't know for sure that the garbage collector
+ // is not running.
+ _g_.syscallsp = 0
+ _g_.m.p.ptr().syscalltick++
+ _g_.throwsplit = false
+}
+
+//go:nosplit
+func exitsyscallfast(oldp *p) bool {
+ _g_ := getg()
+
+ // Freezetheworld sets stopwait but does not retake P's.
+ if sched.stopwait == freezeStopWait {
+ return false
+ }
+
+ // Try to re-acquire the last P.
+ if oldp != nil && oldp.status == _Psyscall && atomic.Cas(&oldp.status, _Psyscall, _Pidle) {
+ // There's a cpu for us, so we can run.
+ wirep(oldp)
+ exitsyscallfast_reacquired()
+ return true
+ }
+
+ // Try to get any other idle P.
+ if sched.pidle != 0 {
+ var ok bool
+ systemstack(func() {
+ ok = exitsyscallfast_pidle()
+ if ok && trace.enabled {
+ if oldp != nil {
+ // Wait till traceGoSysBlock event is emitted.
+ // This ensures consistency of the trace (the goroutine is started after it is blocked).
+ for oldp.syscalltick == _g_.m.syscalltick {
+ osyield()
+ }
+ }
+ traceGoSysExit(0)
+ }
+ })
+ if ok {
+ return true
+ }
+ }
+ return false
+}
+
+// exitsyscallfast_reacquired is the exitsyscall path on which this G
+// has successfully reacquired the P it was running on before the
+// syscall.
+//
+//go:nosplit
+func exitsyscallfast_reacquired() {
+ _g_ := getg()
+ if _g_.m.syscalltick != _g_.m.p.ptr().syscalltick {
+ if trace.enabled {
+ // The p was retaken and then enter into syscall again (since _g_.m.syscalltick has changed).
+ // traceGoSysBlock for this syscall was already emitted,
+ // but here we effectively retake the p from the new syscall running on the same p.
+ systemstack(func() {
+ // Denote blocking of the new syscall.
+ traceGoSysBlock(_g_.m.p.ptr())
+ // Denote completion of the current syscall.
+ traceGoSysExit(0)
+ })
+ }
+ _g_.m.p.ptr().syscalltick++
+ }
+}
+
+func exitsyscallfast_pidle() bool {
+ lock(&sched.lock)
+ _p_ := pidleget()
+ if _p_ != nil && atomic.Load(&sched.sysmonwait) != 0 {
+ atomic.Store(&sched.sysmonwait, 0)
+ notewakeup(&sched.sysmonnote)
+ }
+ unlock(&sched.lock)
+ if _p_ != nil {
+ acquirep(_p_)
+ return true
+ }
+ return false
+}
+
+// exitsyscall slow path on g0.
+// Failed to acquire P, enqueue gp as runnable.
+//
+//go:nowritebarrierrec
+func exitsyscall0(gp *g) {
+ _g_ := getg()
+
+ casgstatus(gp, _Gsyscall, _Grunnable)
+ dropg()
+ lock(&sched.lock)
+ var _p_ *p
+ if schedEnabled(_g_) {
+ _p_ = pidleget()
+ }
+ if _p_ == nil {
+ globrunqput(gp)
+ } else if atomic.Load(&sched.sysmonwait) != 0 {
+ atomic.Store(&sched.sysmonwait, 0)
+ notewakeup(&sched.sysmonnote)
+ }
+ unlock(&sched.lock)
+ if _p_ != nil {
+ acquirep(_p_)
+ execute(gp, false) // Never returns.
+ }
+ if _g_.m.lockedg != 0 {
+ // Wait until another thread schedules gp and so m again.
+ stoplockedm()
+ execute(gp, false) // Never returns.
+ }
+ stopm()
+ schedule() // Never returns.
+}
+
+func beforefork() {
+ gp := getg().m.curg
+
+ // Block signals during a fork, so that the child does not run
+ // a signal handler before exec if a signal is sent to the process
+ // group. See issue #18600.
+ gp.m.locks++
+ sigsave(&gp.m.sigmask)
+ sigblock(false)
+
+ // This function is called before fork in syscall package.
+ // Code between fork and exec must not allocate memory nor even try to grow stack.
+ // Here we spoil g->_StackGuard to reliably detect any attempts to grow stack.
+ // runtime_AfterFork will undo this in parent process, but not in child.
+ gp.stackguard0 = stackFork
+}
+
+// Called from syscall package before fork.
+//go:linkname syscall_runtime_BeforeFork syscall.runtime_BeforeFork
+//go:nosplit
+func syscall_runtime_BeforeFork() {
+ systemstack(beforefork)
+}
+
+func afterfork() {
+ gp := getg().m.curg
+
+ // See the comments in beforefork.
+ gp.stackguard0 = gp.stack.lo + _StackGuard
+
+ msigrestore(gp.m.sigmask)
+
+ gp.m.locks--
+}
+
+// Called from syscall package after fork in parent.
+//go:linkname syscall_runtime_AfterFork syscall.runtime_AfterFork
+//go:nosplit
+func syscall_runtime_AfterFork() {
+ systemstack(afterfork)
+}
+
+// inForkedChild is true while manipulating signals in the child process.
+// This is used to avoid calling libc functions in case we are using vfork.
+var inForkedChild bool
+
+// Called from syscall package after fork in child.
+// It resets non-sigignored signals to the default handler, and
+// restores the signal mask in preparation for the exec.
+//
+// Because this might be called during a vfork, and therefore may be
+// temporarily sharing address space with the parent process, this must
+// not change any global variables or calling into C code that may do so.
+//
+//go:linkname syscall_runtime_AfterForkInChild syscall.runtime_AfterForkInChild
+//go:nosplit
+//go:nowritebarrierrec
+func syscall_runtime_AfterForkInChild() {
+ // It's OK to change the global variable inForkedChild here
+ // because we are going to change it back. There is no race here,
+ // because if we are sharing address space with the parent process,
+ // then the parent process can not be running concurrently.
+ inForkedChild = true
+
+ clearSignalHandlers()
+
+ // When we are the child we are the only thread running,
+ // so we know that nothing else has changed gp.m.sigmask.
+ msigrestore(getg().m.sigmask)
+
+ inForkedChild = false
+}
+
+// pendingPreemptSignals is the number of preemption signals
+// that have been sent but not received. This is only used on Darwin.
+// For #41702.
+var pendingPreemptSignals uint32
+
+// Called from syscall package before Exec.
+//go:linkname syscall_runtime_BeforeExec syscall.runtime_BeforeExec
+func syscall_runtime_BeforeExec() {
+ // Prevent thread creation during exec.
+ execLock.lock()
+
+ // On Darwin, wait for all pending preemption signals to
+ // be received. See issue #41702.
+ if GOOS == "darwin" || GOOS == "ios" {
+ for int32(atomic.Load(&pendingPreemptSignals)) > 0 {
+ osyield()
+ }
+ }
+}
+
+// Called from syscall package after Exec.
+//go:linkname syscall_runtime_AfterExec syscall.runtime_AfterExec
+func syscall_runtime_AfterExec() {
+ execLock.unlock()
+}
+
+// Allocate a new g, with a stack big enough for stacksize bytes.
+func malg(stacksize int32) *g {
+ newg := new(g)
+ if stacksize >= 0 {
+ stacksize = round2(_StackSystem + stacksize)
+ systemstack(func() {
+ newg.stack = stackalloc(uint32(stacksize))
+ })
+ newg.stackguard0 = newg.stack.lo + _StackGuard
+ newg.stackguard1 = ^uintptr(0)
+ // Clear the bottom word of the stack. We record g
+ // there on gsignal stack during VDSO on ARM and ARM64.
+ *(*uintptr)(unsafe.Pointer(newg.stack.lo)) = 0
+ }
+ return newg
+}
+
+// Create a new g running fn with siz bytes of arguments.
+// Put it on the queue of g's waiting to run.
+// The compiler turns a go statement into a call to this.
+//
+// The stack layout of this call is unusual: it assumes that the
+// arguments to pass to fn are on the stack sequentially immediately
+// after &fn. Hence, they are logically part of newproc's argument
+// frame, even though they don't appear in its signature (and can't
+// because their types differ between call sites).
+//
+// This must be nosplit because this stack layout means there are
+// untyped arguments in newproc's argument frame. Stack copies won't
+// be able to adjust them and stack splits won't be able to copy them.
+//
+//go:nosplit
+func newproc(siz int32, fn *funcval) {
+ argp := add(unsafe.Pointer(&fn), sys.PtrSize)
+ gp := getg()
+ pc := getcallerpc()
+ systemstack(func() {
+ newg := newproc1(fn, argp, siz, gp, pc)
+
+ _p_ := getg().m.p.ptr()
+ runqput(_p_, newg, true)
+
+ if mainStarted {
+ wakep()
+ }
+ })
+}
+
+// Create a new g in state _Grunnable, starting at fn, with narg bytes
+// of arguments starting at argp. callerpc is the address of the go
+// statement that created this. The caller is responsible for adding
+// the new g to the scheduler.
+//
+// This must run on the system stack because it's the continuation of
+// newproc, which cannot split the stack.
+//
+//go:systemstack
+func newproc1(fn *funcval, argp unsafe.Pointer, narg int32, callergp *g, callerpc uintptr) *g {
+ _g_ := getg()
+
+ if fn == nil {
+ _g_.m.throwing = -1 // do not dump full stacks
+ throw("go of nil func value")
+ }
+ acquirem() // disable preemption because it can be holding p in a local var
+ siz := narg
+ siz = (siz + 7) &^ 7
+
+ // We could allocate a larger initial stack if necessary.
+ // Not worth it: this is almost always an error.
+ // 4*sizeof(uintreg): extra space added below
+ // sizeof(uintreg): caller's LR (arm) or return address (x86, in gostartcall).
+ if siz >= _StackMin-4*sys.RegSize-sys.RegSize {
+ throw("newproc: function arguments too large for new goroutine")
+ }
+
+ _p_ := _g_.m.p.ptr()
+ newg := gfget(_p_)
+ if newg == nil {
+ newg = malg(_StackMin)
+ casgstatus(newg, _Gidle, _Gdead)
+ allgadd(newg) // publishes with a g->status of Gdead so GC scanner doesn't look at uninitialized stack.
+ }
+ if newg.stack.hi == 0 {
+ throw("newproc1: newg missing stack")
+ }
+
+ if readgstatus(newg) != _Gdead {
+ throw("newproc1: new g is not Gdead")
+ }
+
+ totalSize := 4*sys.RegSize + uintptr(siz) + sys.MinFrameSize // extra space in case of reads slightly beyond frame
+ totalSize += -totalSize & (sys.SpAlign - 1) // align to spAlign
+ sp := newg.stack.hi - totalSize
+ spArg := sp
+ if usesLR {
+ // caller's LR
+ *(*uintptr)(unsafe.Pointer(sp)) = 0
+ prepGoExitFrame(sp)
+ spArg += sys.MinFrameSize
+ }
+ if narg > 0 {
+ memmove(unsafe.Pointer(spArg), argp, uintptr(narg))
+ // This is a stack-to-stack copy. If write barriers
+ // are enabled and the source stack is grey (the
+ // destination is always black), then perform a
+ // barrier copy. We do this *after* the memmove
+ // because the destination stack may have garbage on
+ // it.
+ if writeBarrier.needed && !_g_.m.curg.gcscandone {
+ f := findfunc(fn.fn)
+ stkmap := (*stackmap)(funcdata(f, _FUNCDATA_ArgsPointerMaps))
+ if stkmap.nbit > 0 {
+ // We're in the prologue, so it's always stack map index 0.
+ bv := stackmapdata(stkmap, 0)
+ bulkBarrierBitmap(spArg, spArg, uintptr(bv.n)*sys.PtrSize, 0, bv.bytedata)
+ }
+ }
+ }
+
+ memclrNoHeapPointers(unsafe.Pointer(&newg.sched), unsafe.Sizeof(newg.sched))
+ newg.sched.sp = sp
+ newg.stktopsp = sp
+ newg.sched.pc = funcPC(goexit) + sys.PCQuantum // +PCQuantum so that previous instruction is in same function
+ newg.sched.g = guintptr(unsafe.Pointer(newg))
+ gostartcallfn(&newg.sched, fn)
+ newg.gopc = callerpc
+ newg.ancestors = saveAncestors(callergp)
+ newg.startpc = fn.fn
+ if _g_.m.curg != nil {
+ newg.labels = _g_.m.curg.labels
+ }
+ if isSystemGoroutine(newg, false) {
+ atomic.Xadd(&sched.ngsys, +1)
+ }
+ casgstatus(newg, _Gdead, _Grunnable)
+
+ if _p_.goidcache == _p_.goidcacheend {
+ // Sched.goidgen is the last allocated id,
+ // this batch must be [sched.goidgen+1, sched.goidgen+GoidCacheBatch].
+ // At startup sched.goidgen=0, so main goroutine receives goid=1.
+ _p_.goidcache = atomic.Xadd64(&sched.goidgen, _GoidCacheBatch)
+ _p_.goidcache -= _GoidCacheBatch - 1
+ _p_.goidcacheend = _p_.goidcache + _GoidCacheBatch
+ }
+ newg.goid = int64(_p_.goidcache)
+ _p_.goidcache++
+ if raceenabled {
+ newg.racectx = racegostart(callerpc)
+ }
+ if trace.enabled {
+ traceGoCreate(newg, newg.startpc)
+ }
+ releasem(_g_.m)
+
+ return newg
+}
+
+// saveAncestors copies previous ancestors of the given caller g and
+// includes infor for the current caller into a new set of tracebacks for
+// a g being created.
+func saveAncestors(callergp *g) *[]ancestorInfo {
+ // Copy all prior info, except for the root goroutine (goid 0).
+ if debug.tracebackancestors <= 0 || callergp.goid == 0 {
+ return nil
+ }
+ var callerAncestors []ancestorInfo
+ if callergp.ancestors != nil {
+ callerAncestors = *callergp.ancestors
+ }
+ n := int32(len(callerAncestors)) + 1
+ if n > debug.tracebackancestors {
+ n = debug.tracebackancestors
+ }
+ ancestors := make([]ancestorInfo, n)
+ copy(ancestors[1:], callerAncestors)
+
+ var pcs [_TracebackMaxFrames]uintptr
+ npcs := gcallers(callergp, 0, pcs[:])
+ ipcs := make([]uintptr, npcs)
+ copy(ipcs, pcs[:])
+ ancestors[0] = ancestorInfo{
+ pcs: ipcs,
+ goid: callergp.goid,
+ gopc: callergp.gopc,
+ }
+
+ ancestorsp := new([]ancestorInfo)
+ *ancestorsp = ancestors
+ return ancestorsp
+}
+
+// Put on gfree list.
+// If local list is too long, transfer a batch to the global list.
+func gfput(_p_ *p, gp *g) {
+ if readgstatus(gp) != _Gdead {
+ throw("gfput: bad status (not Gdead)")
+ }
+
+ stksize := gp.stack.hi - gp.stack.lo
+
+ if stksize != _FixedStack {
+ // non-standard stack size - free it.
+ stackfree(gp.stack)
+ gp.stack.lo = 0
+ gp.stack.hi = 0
+ gp.stackguard0 = 0
+ }
+
+ _p_.gFree.push(gp)
+ _p_.gFree.n++
+ if _p_.gFree.n >= 64 {
+ lock(&sched.gFree.lock)
+ for _p_.gFree.n >= 32 {
+ _p_.gFree.n--
+ gp = _p_.gFree.pop()
+ if gp.stack.lo == 0 {
+ sched.gFree.noStack.push(gp)
+ } else {
+ sched.gFree.stack.push(gp)
+ }
+ sched.gFree.n++
+ }
+ unlock(&sched.gFree.lock)
+ }
+}
+
+// Get from gfree list.
+// If local list is empty, grab a batch from global list.
+func gfget(_p_ *p) *g {
+retry:
+ if _p_.gFree.empty() && (!sched.gFree.stack.empty() || !sched.gFree.noStack.empty()) {
+ lock(&sched.gFree.lock)
+ // Move a batch of free Gs to the P.
+ for _p_.gFree.n < 32 {
+ // Prefer Gs with stacks.
+ gp := sched.gFree.stack.pop()
+ if gp == nil {
+ gp = sched.gFree.noStack.pop()
+ if gp == nil {
+ break
+ }
+ }
+ sched.gFree.n--
+ _p_.gFree.push(gp)
+ _p_.gFree.n++
+ }
+ unlock(&sched.gFree.lock)
+ goto retry
+ }
+ gp := _p_.gFree.pop()
+ if gp == nil {
+ return nil
+ }
+ _p_.gFree.n--
+ if gp.stack.lo == 0 {
+ // Stack was deallocated in gfput. Allocate a new one.
+ systemstack(func() {
+ gp.stack = stackalloc(_FixedStack)
+ })
+ gp.stackguard0 = gp.stack.lo + _StackGuard
+ } else {
+ if raceenabled {
+ racemalloc(unsafe.Pointer(gp.stack.lo), gp.stack.hi-gp.stack.lo)
+ }
+ if msanenabled {
+ msanmalloc(unsafe.Pointer(gp.stack.lo), gp.stack.hi-gp.stack.lo)
+ }
+ }
+ return gp
+}
+
+// Purge all cached G's from gfree list to the global list.
+func gfpurge(_p_ *p) {
+ lock(&sched.gFree.lock)
+ for !_p_.gFree.empty() {
+ gp := _p_.gFree.pop()
+ _p_.gFree.n--
+ if gp.stack.lo == 0 {
+ sched.gFree.noStack.push(gp)
+ } else {
+ sched.gFree.stack.push(gp)
+ }
+ sched.gFree.n++
+ }
+ unlock(&sched.gFree.lock)
+}
+
+// Breakpoint executes a breakpoint trap.
+func Breakpoint() {
+ breakpoint()
+}
+
+// dolockOSThread is called by LockOSThread and lockOSThread below
+// after they modify m.locked. Do not allow preemption during this call,
+// or else the m might be different in this function than in the caller.
+//go:nosplit
+func dolockOSThread() {
+ if GOARCH == "wasm" {
+ return // no threads on wasm yet
+ }
+ _g_ := getg()
+ _g_.m.lockedg.set(_g_)
+ _g_.lockedm.set(_g_.m)
+}
+
+//go:nosplit
+
+// LockOSThread wires the calling goroutine to its current operating system thread.
+// The calling goroutine will always execute in that thread,
+// and no other goroutine will execute in it,
+// until the calling goroutine has made as many calls to
+// UnlockOSThread as to LockOSThread.
+// If the calling goroutine exits without unlocking the thread,
+// the thread will be terminated.
+//
+// All init functions are run on the startup thread. Calling LockOSThread
+// from an init function will cause the main function to be invoked on
+// that thread.
+//
+// A goroutine should call LockOSThread before calling OS services or
+// non-Go library functions that depend on per-thread state.
+func LockOSThread() {
+ if atomic.Load(&newmHandoff.haveTemplateThread) == 0 && GOOS != "plan9" {
+ // If we need to start a new thread from the locked
+ // thread, we need the template thread. Start it now
+ // while we're in a known-good state.
+ startTemplateThread()
+ }
+ _g_ := getg()
+ _g_.m.lockedExt++
+ if _g_.m.lockedExt == 0 {
+ _g_.m.lockedExt--
+ panic("LockOSThread nesting overflow")
+ }
+ dolockOSThread()
+}
+
+//go:nosplit
+func lockOSThread() {
+ getg().m.lockedInt++
+ dolockOSThread()
+}
+
+// dounlockOSThread is called by UnlockOSThread and unlockOSThread below
+// after they update m->locked. Do not allow preemption during this call,
+// or else the m might be in different in this function than in the caller.
+//go:nosplit
+func dounlockOSThread() {
+ if GOARCH == "wasm" {
+ return // no threads on wasm yet
+ }
+ _g_ := getg()
+ if _g_.m.lockedInt != 0 || _g_.m.lockedExt != 0 {
+ return
+ }
+ _g_.m.lockedg = 0
+ _g_.lockedm = 0
+}
+
+//go:nosplit
+
+// UnlockOSThread undoes an earlier call to LockOSThread.
+// If this drops the number of active LockOSThread calls on the
+// calling goroutine to zero, it unwires the calling goroutine from
+// its fixed operating system thread.
+// If there are no active LockOSThread calls, this is a no-op.
+//
+// Before calling UnlockOSThread, the caller must ensure that the OS
+// thread is suitable for running other goroutines. If the caller made
+// any permanent changes to the state of the thread that would affect
+// other goroutines, it should not call this function and thus leave
+// the goroutine locked to the OS thread until the goroutine (and
+// hence the thread) exits.
+func UnlockOSThread() {
+ _g_ := getg()
+ if _g_.m.lockedExt == 0 {
+ return
+ }
+ _g_.m.lockedExt--
+ dounlockOSThread()
+}
+
+//go:nosplit
+func unlockOSThread() {
+ _g_ := getg()
+ if _g_.m.lockedInt == 0 {
+ systemstack(badunlockosthread)
+ }
+ _g_.m.lockedInt--
+ dounlockOSThread()
+}
+
+func badunlockosthread() {
+ throw("runtime: internal error: misuse of lockOSThread/unlockOSThread")
+}
+
+func gcount() int32 {
+ n := int32(atomic.Loaduintptr(&allglen)) - sched.gFree.n - int32(atomic.Load(&sched.ngsys))
+ for _, _p_ := range allp {
+ n -= _p_.gFree.n
+ }
+
+ // All these variables can be changed concurrently, so the result can be inconsistent.
+ // But at least the current goroutine is running.
+ if n < 1 {
+ n = 1
+ }
+ return n
+}
+
+func mcount() int32 {
+ return int32(sched.mnext - sched.nmfreed)
+}
+
+var prof struct {
+ signalLock uint32
+ hz int32
+}
+
+func _System() { _System() }
+func _ExternalCode() { _ExternalCode() }
+func _LostExternalCode() { _LostExternalCode() }
+func _GC() { _GC() }
+func _LostSIGPROFDuringAtomic64() { _LostSIGPROFDuringAtomic64() }
+func _VDSO() { _VDSO() }
+
+// Called if we receive a SIGPROF signal.
+// Called by the signal handler, may run during STW.
+//go:nowritebarrierrec
+func sigprof(pc, sp, lr uintptr, gp *g, mp *m) {
+ if prof.hz == 0 {
+ return
+ }
+
+ // If mp.profilehz is 0, then profiling is not enabled for this thread.
+ // We must check this to avoid a deadlock between setcpuprofilerate
+ // and the call to cpuprof.add, below.
+ if mp != nil && mp.profilehz == 0 {
+ return
+ }
+
+ // On mips{,le}/arm, 64bit atomics are emulated with spinlocks, in
+ // runtime/internal/atomic. If SIGPROF arrives while the program is inside
+ // the critical section, it creates a deadlock (when writing the sample).
+ // As a workaround, create a counter of SIGPROFs while in critical section
+ // to store the count, and pass it to sigprof.add() later when SIGPROF is
+ // received from somewhere else (with _LostSIGPROFDuringAtomic64 as pc).
+ if GOARCH == "mips" || GOARCH == "mipsle" || GOARCH == "arm" {
+ if f := findfunc(pc); f.valid() {
+ if hasPrefix(funcname(f), "runtime/internal/atomic") {
+ cpuprof.lostAtomic++
+ return
+ }
+ }
+ if GOARCH == "arm" && goarm < 7 && GOOS == "linux" && pc&0xffff0000 == 0xffff0000 {
+ // runtime/internal/atomic functions call into kernel
+ // helpers on arm < 7. See
+ // runtime/internal/atomic/sys_linux_arm.s.
+ cpuprof.lostAtomic++
+ return
+ }
+ }
+
+ // Profiling runs concurrently with GC, so it must not allocate.
+ // Set a trap in case the code does allocate.
+ // Note that on windows, one thread takes profiles of all the
+ // other threads, so mp is usually not getg().m.
+ // In fact mp may not even be stopped.
+ // See golang.org/issue/17165.
+ getg().m.mallocing++
+
+ // Define that a "user g" is a user-created goroutine, and a "system g"
+ // is one that is m->g0 or m->gsignal.
+ //
+ // We might be interrupted for profiling halfway through a
+ // goroutine switch. The switch involves updating three (or four) values:
+ // g, PC, SP, and (on arm) LR. The PC must be the last to be updated,
+ // because once it gets updated the new g is running.
+ //
+ // When switching from a user g to a system g, LR is not considered live,
+ // so the update only affects g, SP, and PC. Since PC must be last, there
+ // the possible partial transitions in ordinary execution are (1) g alone is updated,
+ // (2) both g and SP are updated, and (3) SP alone is updated.
+ // If SP or g alone is updated, we can detect the partial transition by checking
+ // whether the SP is within g's stack bounds. (We could also require that SP
+ // be changed only after g, but the stack bounds check is needed by other
+ // cases, so there is no need to impose an additional requirement.)
+ //
+ // There is one exceptional transition to a system g, not in ordinary execution.
+ // When a signal arrives, the operating system starts the signal handler running
+ // with an updated PC and SP. The g is updated last, at the beginning of the
+ // handler. There are two reasons this is okay. First, until g is updated the
+ // g and SP do not match, so the stack bounds check detects the partial transition.
+ // Second, signal handlers currently run with signals disabled, so a profiling
+ // signal cannot arrive during the handler.
+ //
+ // When switching from a system g to a user g, there are three possibilities.
+ //
+ // First, it may be that the g switch has no PC update, because the SP
+ // either corresponds to a user g throughout (as in asmcgocall)
+ // or because it has been arranged to look like a user g frame
+ // (as in cgocallback). In this case, since the entire
+ // transition is a g+SP update, a partial transition updating just one of
+ // those will be detected by the stack bounds check.
+ //
+ // Second, when returning from a signal handler, the PC and SP updates
+ // are performed by the operating system in an atomic update, so the g
+ // update must be done before them. The stack bounds check detects
+ // the partial transition here, and (again) signal handlers run with signals
+ // disabled, so a profiling signal cannot arrive then anyway.
+ //
+ // Third, the common case: it may be that the switch updates g, SP, and PC
+ // separately. If the PC is within any of the functions that does this,
+ // we don't ask for a traceback. C.F. the function setsSP for more about this.
+ //
+ // There is another apparently viable approach, recorded here in case
+ // the "PC within setsSP function" check turns out not to be usable.
+ // It would be possible to delay the update of either g or SP until immediately
+ // before the PC update instruction. Then, because of the stack bounds check,
+ // the only problematic interrupt point is just before that PC update instruction,
+ // and the sigprof handler can detect that instruction and simulate stepping past
+ // it in order to reach a consistent state. On ARM, the update of g must be made
+ // in two places (in R10 and also in a TLS slot), so the delayed update would
+ // need to be the SP update. The sigprof handler must read the instruction at
+ // the current PC and if it was the known instruction (for example, JMP BX or
+ // MOV R2, PC), use that other register in place of the PC value.
+ // The biggest drawback to this solution is that it requires that we can tell
+ // whether it's safe to read from the memory pointed at by PC.
+ // In a correct program, we can test PC == nil and otherwise read,
+ // but if a profiling signal happens at the instant that a program executes
+ // a bad jump (before the program manages to handle the resulting fault)
+ // the profiling handler could fault trying to read nonexistent memory.
+ //
+ // To recap, there are no constraints on the assembly being used for the
+ // transition. We simply require that g and SP match and that the PC is not
+ // in gogo.
+ traceback := true
+ if gp == nil || sp < gp.stack.lo || gp.stack.hi < sp || setsSP(pc) || (mp != nil && mp.vdsoSP != 0) {
+ traceback = false
+ }
+ var stk [maxCPUProfStack]uintptr
+ n := 0
+ if mp.ncgo > 0 && mp.curg != nil && mp.curg.syscallpc != 0 && mp.curg.syscallsp != 0 {
+ cgoOff := 0
+ // Check cgoCallersUse to make sure that we are not
+ // interrupting other code that is fiddling with
+ // cgoCallers. We are running in a signal handler
+ // with all signals blocked, so we don't have to worry
+ // about any other code interrupting us.
+ if atomic.Load(&mp.cgoCallersUse) == 0 && mp.cgoCallers != nil && mp.cgoCallers[0] != 0 {
+ for cgoOff < len(mp.cgoCallers) && mp.cgoCallers[cgoOff] != 0 {
+ cgoOff++
+ }
+ copy(stk[:], mp.cgoCallers[:cgoOff])
+ mp.cgoCallers[0] = 0
+ }
+
+ // Collect Go stack that leads to the cgo call.
+ n = gentraceback(mp.curg.syscallpc, mp.curg.syscallsp, 0, mp.curg, 0, &stk[cgoOff], len(stk)-cgoOff, nil, nil, 0)
+ if n > 0 {
+ n += cgoOff
+ }
+ } else if traceback {
+ n = gentraceback(pc, sp, lr, gp, 0, &stk[0], len(stk), nil, nil, _TraceTrap|_TraceJumpStack)
+ }
+
+ if n <= 0 {
+ // Normal traceback is impossible or has failed.
+ // See if it falls into several common cases.
+ n = 0
+ if usesLibcall() && mp.libcallg != 0 && mp.libcallpc != 0 && mp.libcallsp != 0 {
+ // Libcall, i.e. runtime syscall on windows.
+ // Collect Go stack that leads to the call.
+ n = gentraceback(mp.libcallpc, mp.libcallsp, 0, mp.libcallg.ptr(), 0, &stk[0], len(stk), nil, nil, 0)
+ }
+ if n == 0 && mp != nil && mp.vdsoSP != 0 {
+ n = gentraceback(mp.vdsoPC, mp.vdsoSP, 0, gp, 0, &stk[0], len(stk), nil, nil, _TraceTrap|_TraceJumpStack)
+ }
+ if n == 0 {
+ // If all of the above has failed, account it against abstract "System" or "GC".
+ n = 2
+ if inVDSOPage(pc) {
+ pc = funcPC(_VDSO) + sys.PCQuantum
+ } else if pc > firstmoduledata.etext {
+ // "ExternalCode" is better than "etext".
+ pc = funcPC(_ExternalCode) + sys.PCQuantum
+ }
+ stk[0] = pc
+ if mp.preemptoff != "" {
+ stk[1] = funcPC(_GC) + sys.PCQuantum
+ } else {
+ stk[1] = funcPC(_System) + sys.PCQuantum
+ }
+ }
+ }
+
+ if prof.hz != 0 {
+ cpuprof.add(gp, stk[:n])
+ }
+ getg().m.mallocing--
+}
+
+// If the signal handler receives a SIGPROF signal on a non-Go thread,
+// it tries to collect a traceback into sigprofCallers.
+// sigprofCallersUse is set to non-zero while sigprofCallers holds a traceback.
+var sigprofCallers cgoCallers
+var sigprofCallersUse uint32
+
+// sigprofNonGo is called if we receive a SIGPROF signal on a non-Go thread,
+// and the signal handler collected a stack trace in sigprofCallers.
+// When this is called, sigprofCallersUse will be non-zero.
+// g is nil, and what we can do is very limited.
+//go:nosplit
+//go:nowritebarrierrec
+func sigprofNonGo() {
+ if prof.hz != 0 {
+ n := 0
+ for n < len(sigprofCallers) && sigprofCallers[n] != 0 {
+ n++
+ }
+ cpuprof.addNonGo(sigprofCallers[:n])
+ }
+
+ atomic.Store(&sigprofCallersUse, 0)
+}
+
+// sigprofNonGoPC is called when a profiling signal arrived on a
+// non-Go thread and we have a single PC value, not a stack trace.
+// g is nil, and what we can do is very limited.
+//go:nosplit
+//go:nowritebarrierrec
+func sigprofNonGoPC(pc uintptr) {
+ if prof.hz != 0 {
+ stk := []uintptr{
+ pc,
+ funcPC(_ExternalCode) + sys.PCQuantum,
+ }
+ cpuprof.addNonGo(stk)
+ }
+}
+
+// Reports whether a function will set the SP
+// to an absolute value. Important that
+// we don't traceback when these are at the bottom
+// of the stack since we can't be sure that we will
+// find the caller.
+//
+// If the function is not on the bottom of the stack
+// we assume that it will have set it up so that traceback will be consistent,
+// either by being a traceback terminating function
+// or putting one on the stack at the right offset.
+func setsSP(pc uintptr) bool {
+ f := findfunc(pc)
+ if !f.valid() {
+ // couldn't find the function for this PC,
+ // so assume the worst and stop traceback
+ return true
+ }
+ switch f.funcID {
+ case funcID_gogo, funcID_systemstack, funcID_mcall, funcID_morestack:
+ return true
+ }
+ return false
+}
+
+// setcpuprofilerate sets the CPU profiling rate to hz times per second.
+// If hz <= 0, setcpuprofilerate turns off CPU profiling.
+func setcpuprofilerate(hz int32) {
+ // Force sane arguments.
+ if hz < 0 {
+ hz = 0
+ }
+
+ // Disable preemption, otherwise we can be rescheduled to another thread
+ // that has profiling enabled.
+ _g_ := getg()
+ _g_.m.locks++
+
+ // Stop profiler on this thread so that it is safe to lock prof.
+ // if a profiling signal came in while we had prof locked,
+ // it would deadlock.
+ setThreadCPUProfiler(0)
+
+ for !atomic.Cas(&prof.signalLock, 0, 1) {
+ osyield()
+ }
+ if prof.hz != hz {
+ setProcessCPUProfiler(hz)
+ prof.hz = hz
+ }
+ atomic.Store(&prof.signalLock, 0)
+
+ lock(&sched.lock)
+ sched.profilehz = hz
+ unlock(&sched.lock)
+
+ if hz != 0 {
+ setThreadCPUProfiler(hz)
+ }
+
+ _g_.m.locks--
+}
+
+// init initializes pp, which may be a freshly allocated p or a
+// previously destroyed p, and transitions it to status _Pgcstop.
+func (pp *p) init(id int32) {
+ pp.id = id
+ pp.status = _Pgcstop
+ pp.sudogcache = pp.sudogbuf[:0]
+ for i := range pp.deferpool {
+ pp.deferpool[i] = pp.deferpoolbuf[i][:0]
+ }
+ pp.wbBuf.reset()
+ if pp.mcache == nil {
+ if id == 0 {
+ if mcache0 == nil {
+ throw("missing mcache?")
+ }
+ // Use the bootstrap mcache0. Only one P will get
+ // mcache0: the one with ID 0.
+ pp.mcache = mcache0
+ } else {
+ pp.mcache = allocmcache()
+ }
+ }
+ if raceenabled && pp.raceprocctx == 0 {
+ if id == 0 {
+ pp.raceprocctx = raceprocctx0
+ raceprocctx0 = 0 // bootstrap
+ } else {
+ pp.raceprocctx = raceproccreate()
+ }
+ }
+ lockInit(&pp.timersLock, lockRankTimers)
+
+ // This P may get timers when it starts running. Set the mask here
+ // since the P may not go through pidleget (notably P 0 on startup).
+ timerpMask.set(id)
+ // Similarly, we may not go through pidleget before this P starts
+ // running if it is P 0 on startup.
+ idlepMask.clear(id)
+}
+
+// destroy releases all of the resources associated with pp and
+// transitions it to status _Pdead.
+//
+// sched.lock must be held and the world must be stopped.
+func (pp *p) destroy() {
+ assertLockHeld(&sched.lock)
+ assertWorldStopped()
+
+ // Move all runnable goroutines to the global queue
+ for pp.runqhead != pp.runqtail {
+ // Pop from tail of local queue
+ pp.runqtail--
+ gp := pp.runq[pp.runqtail%uint32(len(pp.runq))].ptr()
+ // Push onto head of global queue
+ globrunqputhead(gp)
+ }
+ if pp.runnext != 0 {
+ globrunqputhead(pp.runnext.ptr())
+ pp.runnext = 0
+ }
+ if len(pp.timers) > 0 {
+ plocal := getg().m.p.ptr()
+ // The world is stopped, but we acquire timersLock to
+ // protect against sysmon calling timeSleepUntil.
+ // This is the only case where we hold the timersLock of
+ // more than one P, so there are no deadlock concerns.
+ lock(&plocal.timersLock)
+ lock(&pp.timersLock)
+ moveTimers(plocal, pp.timers)
+ pp.timers = nil
+ pp.numTimers = 0
+ pp.deletedTimers = 0
+ atomic.Store64(&pp.timer0When, 0)
+ unlock(&pp.timersLock)
+ unlock(&plocal.timersLock)
+ }
+ // Flush p's write barrier buffer.
+ if gcphase != _GCoff {
+ wbBufFlush1(pp)
+ pp.gcw.dispose()
+ }
+ for i := range pp.sudogbuf {
+ pp.sudogbuf[i] = nil
+ }
+ pp.sudogcache = pp.sudogbuf[:0]
+ for i := range pp.deferpool {
+ for j := range pp.deferpoolbuf[i] {
+ pp.deferpoolbuf[i][j] = nil
+ }
+ pp.deferpool[i] = pp.deferpoolbuf[i][:0]
+ }
+ systemstack(func() {
+ for i := 0; i < pp.mspancache.len; i++ {
+ // Safe to call since the world is stopped.
+ mheap_.spanalloc.free(unsafe.Pointer(pp.mspancache.buf[i]))
+ }
+ pp.mspancache.len = 0
+ lock(&mheap_.lock)
+ pp.pcache.flush(&mheap_.pages)
+ unlock(&mheap_.lock)
+ })
+ freemcache(pp.mcache)
+ pp.mcache = nil
+ gfpurge(pp)
+ traceProcFree(pp)
+ if raceenabled {
+ if pp.timerRaceCtx != 0 {
+ // The race detector code uses a callback to fetch
+ // the proc context, so arrange for that callback
+ // to see the right thing.
+ // This hack only works because we are the only
+ // thread running.
+ mp := getg().m
+ phold := mp.p.ptr()
+ mp.p.set(pp)
+
+ racectxend(pp.timerRaceCtx)
+ pp.timerRaceCtx = 0
+
+ mp.p.set(phold)
+ }
+ raceprocdestroy(pp.raceprocctx)
+ pp.raceprocctx = 0
+ }
+ pp.gcAssistTime = 0
+ pp.status = _Pdead
+}
+
+// Change number of processors.
+//
+// sched.lock must be held, and the world must be stopped.
+//
+// gcworkbufs must not be being modified by either the GC or the write barrier
+// code, so the GC must not be running if the number of Ps actually changes.
+//
+// Returns list of Ps with local work, they need to be scheduled by the caller.
+func procresize(nprocs int32) *p {
+ assertLockHeld(&sched.lock)
+ assertWorldStopped()
+
+ old := gomaxprocs
+ if old < 0 || nprocs <= 0 {
+ throw("procresize: invalid arg")
+ }
+ if trace.enabled {
+ traceGomaxprocs(nprocs)
+ }
+
+ // update statistics
+ now := nanotime()
+ if sched.procresizetime != 0 {
+ sched.totaltime += int64(old) * (now - sched.procresizetime)
+ }
+ sched.procresizetime = now
+
+ maskWords := (nprocs + 31) / 32
+
+ // Grow allp if necessary.
+ if nprocs > int32(len(allp)) {
+ // Synchronize with retake, which could be running
+ // concurrently since it doesn't run on a P.
+ lock(&allpLock)
+ if nprocs <= int32(cap(allp)) {
+ allp = allp[:nprocs]
+ } else {
+ nallp := make([]*p, nprocs)
+ // Copy everything up to allp's cap so we
+ // never lose old allocated Ps.
+ copy(nallp, allp[:cap(allp)])
+ allp = nallp
+ }
+
+ if maskWords <= int32(cap(idlepMask)) {
+ idlepMask = idlepMask[:maskWords]
+ timerpMask = timerpMask[:maskWords]
+ } else {
+ nidlepMask := make([]uint32, maskWords)
+ // No need to copy beyond len, old Ps are irrelevant.
+ copy(nidlepMask, idlepMask)
+ idlepMask = nidlepMask
+
+ ntimerpMask := make([]uint32, maskWords)
+ copy(ntimerpMask, timerpMask)
+ timerpMask = ntimerpMask
+ }
+ unlock(&allpLock)
+ }
+
+ // initialize new P's
+ for i := old; i < nprocs; i++ {
+ pp := allp[i]
+ if pp == nil {
+ pp = new(p)
+ }
+ pp.init(i)
+ atomicstorep(unsafe.Pointer(&allp[i]), unsafe.Pointer(pp))
+ }
+
+ _g_ := getg()
+ if _g_.m.p != 0 && _g_.m.p.ptr().id < nprocs {
+ // continue to use the current P
+ _g_.m.p.ptr().status = _Prunning
+ _g_.m.p.ptr().mcache.prepareForSweep()
+ } else {
+ // release the current P and acquire allp[0].
+ //
+ // We must do this before destroying our current P
+ // because p.destroy itself has write barriers, so we
+ // need to do that from a valid P.
+ if _g_.m.p != 0 {
+ if trace.enabled {
+ // Pretend that we were descheduled
+ // and then scheduled again to keep
+ // the trace sane.
+ traceGoSched()
+ traceProcStop(_g_.m.p.ptr())
+ }
+ _g_.m.p.ptr().m = 0
+ }
+ _g_.m.p = 0
+ p := allp[0]
+ p.m = 0
+ p.status = _Pidle
+ acquirep(p)
+ if trace.enabled {
+ traceGoStart()
+ }
+ }
+
+ // g.m.p is now set, so we no longer need mcache0 for bootstrapping.
+ mcache0 = nil
+
+ // release resources from unused P's
+ for i := nprocs; i < old; i++ {
+ p := allp[i]
+ p.destroy()
+ // can't free P itself because it can be referenced by an M in syscall
+ }
+
+ // Trim allp.
+ if int32(len(allp)) != nprocs {
+ lock(&allpLock)
+ allp = allp[:nprocs]
+ idlepMask = idlepMask[:maskWords]
+ timerpMask = timerpMask[:maskWords]
+ unlock(&allpLock)
+ }
+
+ var runnablePs *p
+ for i := nprocs - 1; i >= 0; i-- {
+ p := allp[i]
+ if _g_.m.p.ptr() == p {
+ continue
+ }
+ p.status = _Pidle
+ if runqempty(p) {
+ pidleput(p)
+ } else {
+ p.m.set(mget())
+ p.link.set(runnablePs)
+ runnablePs = p
+ }
+ }
+ stealOrder.reset(uint32(nprocs))
+ var int32p *int32 = &gomaxprocs // make compiler check that gomaxprocs is an int32
+ atomic.Store((*uint32)(unsafe.Pointer(int32p)), uint32(nprocs))
+ return runnablePs
+}
+
+// Associate p and the current m.
+//
+// This function is allowed to have write barriers even if the caller
+// isn't because it immediately acquires _p_.
+//
+//go:yeswritebarrierrec
+func acquirep(_p_ *p) {
+ // Do the part that isn't allowed to have write barriers.
+ wirep(_p_)
+
+ // Have p; write barriers now allowed.
+
+ // Perform deferred mcache flush before this P can allocate
+ // from a potentially stale mcache.
+ _p_.mcache.prepareForSweep()
+
+ if trace.enabled {
+ traceProcStart()
+ }
+}
+
+// wirep is the first step of acquirep, which actually associates the
+// current M to _p_. This is broken out so we can disallow write
+// barriers for this part, since we don't yet have a P.
+//
+//go:nowritebarrierrec
+//go:nosplit
+func wirep(_p_ *p) {
+ _g_ := getg()
+
+ if _g_.m.p != 0 {
+ throw("wirep: already in go")
+ }
+ if _p_.m != 0 || _p_.status != _Pidle {
+ id := int64(0)
+ if _p_.m != 0 {
+ id = _p_.m.ptr().id
+ }
+ print("wirep: p->m=", _p_.m, "(", id, ") p->status=", _p_.status, "\n")
+ throw("wirep: invalid p state")
+ }
+ _g_.m.p.set(_p_)
+ _p_.m.set(_g_.m)
+ _p_.status = _Prunning
+}
+
+// Disassociate p and the current m.
+func releasep() *p {
+ _g_ := getg()
+
+ if _g_.m.p == 0 {
+ throw("releasep: invalid arg")
+ }
+ _p_ := _g_.m.p.ptr()
+ if _p_.m.ptr() != _g_.m || _p_.status != _Prunning {
+ print("releasep: m=", _g_.m, " m->p=", _g_.m.p.ptr(), " p->m=", hex(_p_.m), " p->status=", _p_.status, "\n")
+ throw("releasep: invalid p state")
+ }
+ if trace.enabled {
+ traceProcStop(_g_.m.p.ptr())
+ }
+ _g_.m.p = 0
+ _p_.m = 0
+ _p_.status = _Pidle
+ return _p_
+}
+
+func incidlelocked(v int32) {
+ lock(&sched.lock)
+ sched.nmidlelocked += v
+ if v > 0 {
+ checkdead()
+ }
+ unlock(&sched.lock)
+}
+
+// Check for deadlock situation.
+// The check is based on number of running M's, if 0 -> deadlock.
+// sched.lock must be held.
+func checkdead() {
+ assertLockHeld(&sched.lock)
+
+ // For -buildmode=c-shared or -buildmode=c-archive it's OK if
+ // there are no running goroutines. The calling program is
+ // assumed to be running.
+ if islibrary || isarchive {
+ return
+ }
+
+ // If we are dying because of a signal caught on an already idle thread,
+ // freezetheworld will cause all running threads to block.
+ // And runtime will essentially enter into deadlock state,
+ // except that there is a thread that will call exit soon.
+ if panicking > 0 {
+ return
+ }
+
+ // If we are not running under cgo, but we have an extra M then account
+ // for it. (It is possible to have an extra M on Windows without cgo to
+ // accommodate callbacks created by syscall.NewCallback. See issue #6751
+ // for details.)
+ var run0 int32
+ if !iscgo && cgoHasExtraM {
+ mp := lockextra(true)
+ haveExtraM := extraMCount > 0
+ unlockextra(mp)
+ if haveExtraM {
+ run0 = 1
+ }
+ }
+
+ run := mcount() - sched.nmidle - sched.nmidlelocked - sched.nmsys
+ if run > run0 {
+ return
+ }
+ if run < 0 {
+ print("runtime: checkdead: nmidle=", sched.nmidle, " nmidlelocked=", sched.nmidlelocked, " mcount=", mcount(), " nmsys=", sched.nmsys, "\n")
+ throw("checkdead: inconsistent counts")
+ }
+
+ grunning := 0
+ lock(&allglock)
+ for i := 0; i < len(allgs); i++ {
+ gp := allgs[i]
+ if isSystemGoroutine(gp, false) {
+ continue
+ }
+ s := readgstatus(gp)
+ switch s &^ _Gscan {
+ case _Gwaiting,
+ _Gpreempted:
+ grunning++
+ case _Grunnable,
+ _Grunning,
+ _Gsyscall:
+ print("runtime: checkdead: find g ", gp.goid, " in status ", s, "\n")
+ throw("checkdead: runnable g")
+ }
+ }
+ unlock(&allglock)
+ if grunning == 0 { // possible if main goroutine calls runtime·Goexit()
+ unlock(&sched.lock) // unlock so that GODEBUG=scheddetail=1 doesn't hang
+ throw("no goroutines (main called runtime.Goexit) - deadlock!")
+ }
+
+ // Maybe jump time forward for playground.
+ if faketime != 0 {
+ when, _p_ := timeSleepUntil()
+ if _p_ != nil {
+ faketime = when
+ for pp := &sched.pidle; *pp != 0; pp = &(*pp).ptr().link {
+ if (*pp).ptr() == _p_ {
+ *pp = _p_.link
+ break
+ }
+ }
+ mp := mget()
+ if mp == nil {
+ // There should always be a free M since
+ // nothing is running.
+ throw("checkdead: no m for timer")
+ }
+ mp.nextp.set(_p_)
+ notewakeup(&mp.park)
+ return
+ }
+ }
+
+ // There are no goroutines running, so we can look at the P's.
+ for _, _p_ := range allp {
+ if len(_p_.timers) > 0 {
+ return
+ }
+ }
+
+ getg().m.throwing = -1 // do not dump full stacks
+ unlock(&sched.lock) // unlock so that GODEBUG=scheddetail=1 doesn't hang
+ throw("all goroutines are asleep - deadlock!")
+}
+
+// forcegcperiod is the maximum time in nanoseconds between garbage
+// collections. If we go this long without a garbage collection, one
+// is forced to run.
+//
+// This is a variable for testing purposes. It normally doesn't change.
+var forcegcperiod int64 = 2 * 60 * 1e9
+
+// Always runs without a P, so write barriers are not allowed.
+//
+//go:nowritebarrierrec
+func sysmon() {
+ lock(&sched.lock)
+ sched.nmsys++
+ checkdead()
+ unlock(&sched.lock)
+
+ // For syscall_runtime_doAllThreadsSyscall, sysmon is
+ // sufficiently up to participate in fixups.
+ atomic.Store(&sched.sysmonStarting, 0)
+
+ lasttrace := int64(0)
+ idle := 0 // how many cycles in succession we had not wokeup somebody
+ delay := uint32(0)
+
+ for {
+ if idle == 0 { // start with 20us sleep...
+ delay = 20
+ } else if idle > 50 { // start doubling the sleep after 1ms...
+ delay *= 2
+ }
+ if delay > 10*1000 { // up to 10ms
+ delay = 10 * 1000
+ }
+ usleep(delay)
+ mDoFixup()
+
+ // sysmon should not enter deep sleep if schedtrace is enabled so that
+ // it can print that information at the right time.
+ //
+ // It should also not enter deep sleep if there are any active P's so
+ // that it can retake P's from syscalls, preempt long running G's, and
+ // poll the network if all P's are busy for long stretches.
+ //
+ // It should wakeup from deep sleep if any P's become active either due
+ // to exiting a syscall or waking up due to a timer expiring so that it
+ // can resume performing those duties. If it wakes from a syscall it
+ // resets idle and delay as a bet that since it had retaken a P from a
+ // syscall before, it may need to do it again shortly after the
+ // application starts work again. It does not reset idle when waking
+ // from a timer to avoid adding system load to applications that spend
+ // most of their time sleeping.
+ now := nanotime()
+ if debug.schedtrace <= 0 && (sched.gcwaiting != 0 || atomic.Load(&sched.npidle) == uint32(gomaxprocs)) {
+ lock(&sched.lock)
+ if atomic.Load(&sched.gcwaiting) != 0 || atomic.Load(&sched.npidle) == uint32(gomaxprocs) {
+ syscallWake := false
+ next, _ := timeSleepUntil()
+ if next > now {
+ atomic.Store(&sched.sysmonwait, 1)
+ unlock(&sched.lock)
+ // Make wake-up period small enough
+ // for the sampling to be correct.
+ sleep := forcegcperiod / 2
+ if next-now < sleep {
+ sleep = next - now
+ }
+ shouldRelax := sleep >= osRelaxMinNS
+ if shouldRelax {
+ osRelax(true)
+ }
+ syscallWake = notetsleep(&sched.sysmonnote, sleep)
+ mDoFixup()
+ if shouldRelax {
+ osRelax(false)
+ }
+ lock(&sched.lock)
+ atomic.Store(&sched.sysmonwait, 0)
+ noteclear(&sched.sysmonnote)
+ }
+ if syscallWake {
+ idle = 0
+ delay = 20
+ }
+ }
+ unlock(&sched.lock)
+ }
+
+ lock(&sched.sysmonlock)
+ // Update now in case we blocked on sysmonnote or spent a long time
+ // blocked on schedlock or sysmonlock above.
+ now = nanotime()
+
+ // trigger libc interceptors if needed
+ if *cgo_yield != nil {
+ asmcgocall(*cgo_yield, nil)
+ }
+ // poll network if not polled for more than 10ms
+ lastpoll := int64(atomic.Load64(&sched.lastpoll))
+ if netpollinited() && lastpoll != 0 && lastpoll+10*1000*1000 < now {
+ atomic.Cas64(&sched.lastpoll, uint64(lastpoll), uint64(now))
+ list := netpoll(0) // non-blocking - returns list of goroutines
+ if !list.empty() {
+ // Need to decrement number of idle locked M's
+ // (pretending that one more is running) before injectglist.
+ // Otherwise it can lead to the following situation:
+ // injectglist grabs all P's but before it starts M's to run the P's,
+ // another M returns from syscall, finishes running its G,
+ // observes that there is no work to do and no other running M's
+ // and reports deadlock.
+ incidlelocked(-1)
+ injectglist(&list)
+ incidlelocked(1)
+ }
+ }
+ mDoFixup()
+ if GOOS == "netbsd" {
+ // netpoll is responsible for waiting for timer
+ // expiration, so we typically don't have to worry
+ // about starting an M to service timers. (Note that
+ // sleep for timeSleepUntil above simply ensures sysmon
+ // starts running again when that timer expiration may
+ // cause Go code to run again).
+ //
+ // However, netbsd has a kernel bug that sometimes
+ // misses netpollBreak wake-ups, which can lead to
+ // unbounded delays servicing timers. If we detect this
+ // overrun, then startm to get something to handle the
+ // timer.
+ //
+ // See issue 42515 and
+ // https://gnats.netbsd.org/cgi-bin/query-pr-single.pl?number=50094.
+ if next, _ := timeSleepUntil(); next < now {
+ startm(nil, false)
+ }
+ }
+ if atomic.Load(&scavenge.sysmonWake) != 0 {
+ // Kick the scavenger awake if someone requested it.
+ wakeScavenger()
+ }
+ // retake P's blocked in syscalls
+ // and preempt long running G's
+ if retake(now) != 0 {
+ idle = 0
+ } else {
+ idle++
+ }
+ // check if we need to force a GC
+ if t := (gcTrigger{kind: gcTriggerTime, now: now}); t.test() && atomic.Load(&forcegc.idle) != 0 {
+ lock(&forcegc.lock)
+ forcegc.idle = 0
+ var list gList
+ list.push(forcegc.g)
+ injectglist(&list)
+ unlock(&forcegc.lock)
+ }
+ if debug.schedtrace > 0 && lasttrace+int64(debug.schedtrace)*1000000 <= now {
+ lasttrace = now
+ schedtrace(debug.scheddetail > 0)
+ }
+ unlock(&sched.sysmonlock)
+ }
+}
+
+type sysmontick struct {
+ schedtick uint32
+ schedwhen int64
+ syscalltick uint32
+ syscallwhen int64
+}
+
+// forcePreemptNS is the time slice given to a G before it is
+// preempted.
+const forcePreemptNS = 10 * 1000 * 1000 // 10ms
+
+func retake(now int64) uint32 {
+ n := 0
+ // Prevent allp slice changes. This lock will be completely
+ // uncontended unless we're already stopping the world.
+ lock(&allpLock)
+ // We can't use a range loop over allp because we may
+ // temporarily drop the allpLock. Hence, we need to re-fetch
+ // allp each time around the loop.
+ for i := 0; i < len(allp); i++ {
+ _p_ := allp[i]
+ if _p_ == nil {
+ // This can happen if procresize has grown
+ // allp but not yet created new Ps.
+ continue
+ }
+ pd := &_p_.sysmontick
+ s := _p_.status
+ sysretake := false
+ if s == _Prunning || s == _Psyscall {
+ // Preempt G if it's running for too long.
+ t := int64(_p_.schedtick)
+ if int64(pd.schedtick) != t {
+ pd.schedtick = uint32(t)
+ pd.schedwhen = now
+ } else if pd.schedwhen+forcePreemptNS <= now {
+ preemptone(_p_)
+ // In case of syscall, preemptone() doesn't
+ // work, because there is no M wired to P.
+ sysretake = true
+ }
+ }
+ if s == _Psyscall {
+ // Retake P from syscall if it's there for more than 1 sysmon tick (at least 20us).
+ t := int64(_p_.syscalltick)
+ if !sysretake && int64(pd.syscalltick) != t {
+ pd.syscalltick = uint32(t)
+ pd.syscallwhen = now
+ continue
+ }
+ // On the one hand we don't want to retake Ps if there is no other work to do,
+ // but on the other hand we want to retake them eventually
+ // because they can prevent the sysmon thread from deep sleep.
+ if runqempty(_p_) && atomic.Load(&sched.nmspinning)+atomic.Load(&sched.npidle) > 0 && pd.syscallwhen+10*1000*1000 > now {
+ continue
+ }
+ // Drop allpLock so we can take sched.lock.
+ unlock(&allpLock)
+ // Need to decrement number of idle locked M's
+ // (pretending that one more is running) before the CAS.
+ // Otherwise the M from which we retake can exit the syscall,
+ // increment nmidle and report deadlock.
+ incidlelocked(-1)
+ if atomic.Cas(&_p_.status, s, _Pidle) {
+ if trace.enabled {
+ traceGoSysBlock(_p_)
+ traceProcStop(_p_)
+ }
+ n++
+ _p_.syscalltick++
+ handoffp(_p_)
+ }
+ incidlelocked(1)
+ lock(&allpLock)
+ }
+ }
+ unlock(&allpLock)
+ return uint32(n)
+}
+
+// Tell all goroutines that they have been preempted and they should stop.
+// This function is purely best-effort. It can fail to inform a goroutine if a
+// processor just started running it.
+// No locks need to be held.
+// Returns true if preemption request was issued to at least one goroutine.
+func preemptall() bool {
+ res := false
+ for _, _p_ := range allp {
+ if _p_.status != _Prunning {
+ continue
+ }
+ if preemptone(_p_) {
+ res = true
+ }
+ }
+ return res
+}
+
+// Tell the goroutine running on processor P to stop.
+// This function is purely best-effort. It can incorrectly fail to inform the
+// goroutine. It can send inform the wrong goroutine. Even if it informs the
+// correct goroutine, that goroutine might ignore the request if it is
+// simultaneously executing newstack.
+// No lock needs to be held.
+// Returns true if preemption request was issued.
+// The actual preemption will happen at some point in the future
+// and will be indicated by the gp->status no longer being
+// Grunning
+func preemptone(_p_ *p) bool {
+ mp := _p_.m.ptr()
+ if mp == nil || mp == getg().m {
+ return false
+ }
+ gp := mp.curg
+ if gp == nil || gp == mp.g0 {
+ return false
+ }
+
+ gp.preempt = true
+
+ // Every call in a go routine checks for stack overflow by
+ // comparing the current stack pointer to gp->stackguard0.
+ // Setting gp->stackguard0 to StackPreempt folds
+ // preemption into the normal stack overflow check.
+ gp.stackguard0 = stackPreempt
+
+ // Request an async preemption of this P.
+ if preemptMSupported && debug.asyncpreemptoff == 0 {
+ _p_.preempt = true
+ preemptM(mp)
+ }
+
+ return true
+}
+
+var starttime int64
+
+func schedtrace(detailed bool) {
+ now := nanotime()
+ if starttime == 0 {
+ starttime = now
+ }
+
+ lock(&sched.lock)
+ print("SCHED ", (now-starttime)/1e6, "ms: gomaxprocs=", gomaxprocs, " idleprocs=", sched.npidle, " threads=", mcount(), " spinningthreads=", sched.nmspinning, " idlethreads=", sched.nmidle, " runqueue=", sched.runqsize)
+ if detailed {
+ print(" gcwaiting=", sched.gcwaiting, " nmidlelocked=", sched.nmidlelocked, " stopwait=", sched.stopwait, " sysmonwait=", sched.sysmonwait, "\n")
+ }
+ // We must be careful while reading data from P's, M's and G's.
+ // Even if we hold schedlock, most data can be changed concurrently.
+ // E.g. (p->m ? p->m->id : -1) can crash if p->m changes from non-nil to nil.
+ for i, _p_ := range allp {
+ mp := _p_.m.ptr()
+ h := atomic.Load(&_p_.runqhead)
+ t := atomic.Load(&_p_.runqtail)
+ if detailed {
+ id := int64(-1)
+ if mp != nil {
+ id = mp.id
+ }
+ print(" P", i, ": status=", _p_.status, " schedtick=", _p_.schedtick, " syscalltick=", _p_.syscalltick, " m=", id, " runqsize=", t-h, " gfreecnt=", _p_.gFree.n, " timerslen=", len(_p_.timers), "\n")
+ } else {
+ // In non-detailed mode format lengths of per-P run queues as:
+ // [len1 len2 len3 len4]
+ print(" ")
+ if i == 0 {
+ print("[")
+ }
+ print(t - h)
+ if i == len(allp)-1 {
+ print("]\n")
+ }
+ }
+ }
+
+ if !detailed {
+ unlock(&sched.lock)
+ return
+ }
+
+ for mp := allm; mp != nil; mp = mp.alllink {
+ _p_ := mp.p.ptr()
+ gp := mp.curg
+ lockedg := mp.lockedg.ptr()
+ id1 := int32(-1)
+ if _p_ != nil {
+ id1 = _p_.id
+ }
+ id2 := int64(-1)
+ if gp != nil {
+ id2 = gp.goid
+ }
+ id3 := int64(-1)
+ if lockedg != nil {
+ id3 = lockedg.goid
+ }
+ print(" M", mp.id, ": p=", id1, " curg=", id2, " mallocing=", mp.mallocing, " throwing=", mp.throwing, " preemptoff=", mp.preemptoff, ""+" locks=", mp.locks, " dying=", mp.dying, " spinning=", mp.spinning, " blocked=", mp.blocked, " lockedg=", id3, "\n")
+ }
+
+ lock(&allglock)
+ for gi := 0; gi < len(allgs); gi++ {
+ gp := allgs[gi]
+ mp := gp.m
+ lockedm := gp.lockedm.ptr()
+ id1 := int64(-1)
+ if mp != nil {
+ id1 = mp.id
+ }
+ id2 := int64(-1)
+ if lockedm != nil {
+ id2 = lockedm.id
+ }
+ print(" G", gp.goid, ": status=", readgstatus(gp), "(", gp.waitreason.String(), ") m=", id1, " lockedm=", id2, "\n")
+ }
+ unlock(&allglock)
+ unlock(&sched.lock)
+}
+
+// schedEnableUser enables or disables the scheduling of user
+// goroutines.
+//
+// This does not stop already running user goroutines, so the caller
+// should first stop the world when disabling user goroutines.
+func schedEnableUser(enable bool) {
+ lock(&sched.lock)
+ if sched.disable.user == !enable {
+ unlock(&sched.lock)
+ return
+ }
+ sched.disable.user = !enable
+ if enable {
+ n := sched.disable.n
+ sched.disable.n = 0
+ globrunqputbatch(&sched.disable.runnable, n)
+ unlock(&sched.lock)
+ for ; n != 0 && sched.npidle != 0; n-- {
+ startm(nil, false)
+ }
+ } else {
+ unlock(&sched.lock)
+ }
+}
+
+// schedEnabled reports whether gp should be scheduled. It returns
+// false is scheduling of gp is disabled.
+//
+// sched.lock must be held.
+func schedEnabled(gp *g) bool {
+ assertLockHeld(&sched.lock)
+
+ if sched.disable.user {
+ return isSystemGoroutine(gp, true)
+ }
+ return true
+}
+
+// Put mp on midle list.
+// sched.lock must be held.
+// May run during STW, so write barriers are not allowed.
+//go:nowritebarrierrec
+func mput(mp *m) {
+ assertLockHeld(&sched.lock)
+
+ mp.schedlink = sched.midle
+ sched.midle.set(mp)
+ sched.nmidle++
+ checkdead()
+}
+
+// Try to get an m from midle list.
+// sched.lock must be held.
+// May run during STW, so write barriers are not allowed.
+//go:nowritebarrierrec
+func mget() *m {
+ assertLockHeld(&sched.lock)
+
+ mp := sched.midle.ptr()
+ if mp != nil {
+ sched.midle = mp.schedlink
+ sched.nmidle--
+ }
+ return mp
+}
+
+// Put gp on the global runnable queue.
+// sched.lock must be held.
+// May run during STW, so write barriers are not allowed.
+//go:nowritebarrierrec
+func globrunqput(gp *g) {
+ assertLockHeld(&sched.lock)
+
+ sched.runq.pushBack(gp)
+ sched.runqsize++
+}
+
+// Put gp at the head of the global runnable queue.
+// sched.lock must be held.
+// May run during STW, so write barriers are not allowed.
+//go:nowritebarrierrec
+func globrunqputhead(gp *g) {
+ assertLockHeld(&sched.lock)
+
+ sched.runq.push(gp)
+ sched.runqsize++
+}
+
+// Put a batch of runnable goroutines on the global runnable queue.
+// This clears *batch.
+// sched.lock must be held.
+func globrunqputbatch(batch *gQueue, n int32) {
+ assertLockHeld(&sched.lock)
+
+ sched.runq.pushBackAll(*batch)
+ sched.runqsize += n
+ *batch = gQueue{}
+}
+
+// Try get a batch of G's from the global runnable queue.
+// sched.lock must be held.
+func globrunqget(_p_ *p, max int32) *g {
+ assertLockHeld(&sched.lock)
+
+ if sched.runqsize == 0 {
+ return nil
+ }
+
+ n := sched.runqsize/gomaxprocs + 1
+ if n > sched.runqsize {
+ n = sched.runqsize
+ }
+ if max > 0 && n > max {
+ n = max
+ }
+ if n > int32(len(_p_.runq))/2 {
+ n = int32(len(_p_.runq)) / 2
+ }
+
+ sched.runqsize -= n
+
+ gp := sched.runq.pop()
+ n--
+ for ; n > 0; n-- {
+ gp1 := sched.runq.pop()
+ runqput(_p_, gp1, false)
+ }
+ return gp
+}
+
+// pMask is an atomic bitstring with one bit per P.
+type pMask []uint32
+
+// read returns true if P id's bit is set.
+func (p pMask) read(id uint32) bool {
+ word := id / 32
+ mask := uint32(1) << (id % 32)
+ return (atomic.Load(&p[word]) & mask) != 0
+}
+
+// set sets P id's bit.
+func (p pMask) set(id int32) {
+ word := id / 32
+ mask := uint32(1) << (id % 32)
+ atomic.Or(&p[word], mask)
+}
+
+// clear clears P id's bit.
+func (p pMask) clear(id int32) {
+ word := id / 32
+ mask := uint32(1) << (id % 32)
+ atomic.And(&p[word], ^mask)
+}
+
+// updateTimerPMask clears pp's timer mask if it has no timers on its heap.
+//
+// Ideally, the timer mask would be kept immediately consistent on any timer
+// operations. Unfortunately, updating a shared global data structure in the
+// timer hot path adds too much overhead in applications frequently switching
+// between no timers and some timers.
+//
+// As a compromise, the timer mask is updated only on pidleget / pidleput. A
+// running P (returned by pidleget) may add a timer at any time, so its mask
+// must be set. An idle P (passed to pidleput) cannot add new timers while
+// idle, so if it has no timers at that time, its mask may be cleared.
+//
+// Thus, we get the following effects on timer-stealing in findrunnable:
+//
+// * Idle Ps with no timers when they go idle are never checked in findrunnable
+// (for work- or timer-stealing; this is the ideal case).
+// * Running Ps must always be checked.
+// * Idle Ps whose timers are stolen must continue to be checked until they run
+// again, even after timer expiration.
+//
+// When the P starts running again, the mask should be set, as a timer may be
+// added at any time.
+//
+// TODO(prattmic): Additional targeted updates may improve the above cases.
+// e.g., updating the mask when stealing a timer.
+func updateTimerPMask(pp *p) {
+ if atomic.Load(&pp.numTimers) > 0 {
+ return
+ }
+
+ // Looks like there are no timers, however another P may transiently
+ // decrement numTimers when handling a timerModified timer in
+ // checkTimers. We must take timersLock to serialize with these changes.
+ lock(&pp.timersLock)
+ if atomic.Load(&pp.numTimers) == 0 {
+ timerpMask.clear(pp.id)
+ }
+ unlock(&pp.timersLock)
+}
+
+// pidleput puts p to on the _Pidle list.
+//
+// This releases ownership of p. Once sched.lock is released it is no longer
+// safe to use p.
+//
+// sched.lock must be held.
+//
+// May run during STW, so write barriers are not allowed.
+//go:nowritebarrierrec
+func pidleput(_p_ *p) {
+ assertLockHeld(&sched.lock)
+
+ if !runqempty(_p_) {
+ throw("pidleput: P has non-empty run queue")
+ }
+ updateTimerPMask(_p_) // clear if there are no timers.
+ idlepMask.set(_p_.id)
+ _p_.link = sched.pidle
+ sched.pidle.set(_p_)
+ atomic.Xadd(&sched.npidle, 1) // TODO: fast atomic
+}
+
+// pidleget tries to get a p from the _Pidle list, acquiring ownership.
+//
+// sched.lock must be held.
+//
+// May run during STW, so write barriers are not allowed.
+//go:nowritebarrierrec
+func pidleget() *p {
+ assertLockHeld(&sched.lock)
+
+ _p_ := sched.pidle.ptr()
+ if _p_ != nil {
+ // Timer may get added at any time now.
+ timerpMask.set(_p_.id)
+ idlepMask.clear(_p_.id)
+ sched.pidle = _p_.link
+ atomic.Xadd(&sched.npidle, -1) // TODO: fast atomic
+ }
+ return _p_
+}
+
+// runqempty reports whether _p_ has no Gs on its local run queue.
+// It never returns true spuriously.
+func runqempty(_p_ *p) bool {
+ // Defend against a race where 1) _p_ has G1 in runqnext but runqhead == runqtail,
+ // 2) runqput on _p_ kicks G1 to the runq, 3) runqget on _p_ empties runqnext.
+ // Simply observing that runqhead == runqtail and then observing that runqnext == nil
+ // does not mean the queue is empty.
+ for {
+ head := atomic.Load(&_p_.runqhead)
+ tail := atomic.Load(&_p_.runqtail)
+ runnext := atomic.Loaduintptr((*uintptr)(unsafe.Pointer(&_p_.runnext)))
+ if tail == atomic.Load(&_p_.runqtail) {
+ return head == tail && runnext == 0
+ }
+ }
+}
+
+// To shake out latent assumptions about scheduling order,
+// we introduce some randomness into scheduling decisions
+// when running with the race detector.
+// The need for this was made obvious by changing the
+// (deterministic) scheduling order in Go 1.5 and breaking
+// many poorly-written tests.
+// With the randomness here, as long as the tests pass
+// consistently with -race, they shouldn't have latent scheduling
+// assumptions.
+const randomizeScheduler = raceenabled
+
+// runqput tries to put g on the local runnable queue.
+// If next is false, runqput adds g to the tail of the runnable queue.
+// If next is true, runqput puts g in the _p_.runnext slot.
+// If the run queue is full, runnext puts g on the global queue.
+// Executed only by the owner P.
+func runqput(_p_ *p, gp *g, next bool) {
+ if randomizeScheduler && next && fastrand()%2 == 0 {
+ next = false
+ }
+
+ if next {
+ retryNext:
+ oldnext := _p_.runnext
+ if !_p_.runnext.cas(oldnext, guintptr(unsafe.Pointer(gp))) {
+ goto retryNext
+ }
+ if oldnext == 0 {
+ return
+ }
+ // Kick the old runnext out to the regular run queue.
+ gp = oldnext.ptr()
+ }
+
+retry:
+ h := atomic.LoadAcq(&_p_.runqhead) // load-acquire, synchronize with consumers
+ t := _p_.runqtail
+ if t-h < uint32(len(_p_.runq)) {
+ _p_.runq[t%uint32(len(_p_.runq))].set(gp)
+ atomic.StoreRel(&_p_.runqtail, t+1) // store-release, makes the item available for consumption
+ return
+ }
+ if runqputslow(_p_, gp, h, t) {
+ return
+ }
+ // the queue is not full, now the put above must succeed
+ goto retry
+}
+
+// Put g and a batch of work from local runnable queue on global queue.
+// Executed only by the owner P.
+func runqputslow(_p_ *p, gp *g, h, t uint32) bool {
+ var batch [len(_p_.runq)/2 + 1]*g
+
+ // First, grab a batch from local queue.
+ n := t - h
+ n = n / 2
+ if n != uint32(len(_p_.runq)/2) {
+ throw("runqputslow: queue is not full")
+ }
+ for i := uint32(0); i < n; i++ {
+ batch[i] = _p_.runq[(h+i)%uint32(len(_p_.runq))].ptr()
+ }
+ if !atomic.CasRel(&_p_.runqhead, h, h+n) { // cas-release, commits consume
+ return false
+ }
+ batch[n] = gp
+
+ if randomizeScheduler {
+ for i := uint32(1); i <= n; i++ {
+ j := fastrandn(i + 1)
+ batch[i], batch[j] = batch[j], batch[i]
+ }
+ }
+
+ // Link the goroutines.
+ for i := uint32(0); i < n; i++ {
+ batch[i].schedlink.set(batch[i+1])
+ }
+ var q gQueue
+ q.head.set(batch[0])
+ q.tail.set(batch[n])
+
+ // Now put the batch on global queue.
+ lock(&sched.lock)
+ globrunqputbatch(&q, int32(n+1))
+ unlock(&sched.lock)
+ return true
+}
+
+// runqputbatch tries to put all the G's on q on the local runnable queue.
+// If the queue is full, they are put on the global queue; in that case
+// this will temporarily acquire the scheduler lock.
+// Executed only by the owner P.
+func runqputbatch(pp *p, q *gQueue, qsize int) {
+ h := atomic.LoadAcq(&pp.runqhead)
+ t := pp.runqtail
+ n := uint32(0)
+ for !q.empty() && t-h < uint32(len(pp.runq)) {
+ gp := q.pop()
+ pp.runq[t%uint32(len(pp.runq))].set(gp)
+ t++
+ n++
+ }
+ qsize -= int(n)
+
+ if randomizeScheduler {
+ off := func(o uint32) uint32 {
+ return (pp.runqtail + o) % uint32(len(pp.runq))
+ }
+ for i := uint32(1); i < n; i++ {
+ j := fastrandn(i + 1)
+ pp.runq[off(i)], pp.runq[off(j)] = pp.runq[off(j)], pp.runq[off(i)]
+ }
+ }
+
+ atomic.StoreRel(&pp.runqtail, t)
+ if !q.empty() {
+ lock(&sched.lock)
+ globrunqputbatch(q, int32(qsize))
+ unlock(&sched.lock)
+ }
+}
+
+// Get g from local runnable queue.
+// If inheritTime is true, gp should inherit the remaining time in the
+// current time slice. Otherwise, it should start a new time slice.
+// Executed only by the owner P.
+func runqget(_p_ *p) (gp *g, inheritTime bool) {
+ // If there's a runnext, it's the next G to run.
+ for {
+ next := _p_.runnext
+ if next == 0 {
+ break
+ }
+ if _p_.runnext.cas(next, 0) {
+ return next.ptr(), true
+ }
+ }
+
+ for {
+ h := atomic.LoadAcq(&_p_.runqhead) // load-acquire, synchronize with other consumers
+ t := _p_.runqtail
+ if t == h {
+ return nil, false
+ }
+ gp := _p_.runq[h%uint32(len(_p_.runq))].ptr()
+ if atomic.CasRel(&_p_.runqhead, h, h+1) { // cas-release, commits consume
+ return gp, false
+ }
+ }
+}
+
+// Grabs a batch of goroutines from _p_'s runnable queue into batch.
+// Batch is a ring buffer starting at batchHead.
+// Returns number of grabbed goroutines.
+// Can be executed by any P.
+func runqgrab(_p_ *p, batch *[256]guintptr, batchHead uint32, stealRunNextG bool) uint32 {
+ for {
+ h := atomic.LoadAcq(&_p_.runqhead) // load-acquire, synchronize with other consumers
+ t := atomic.LoadAcq(&_p_.runqtail) // load-acquire, synchronize with the producer
+ n := t - h
+ n = n - n/2
+ if n == 0 {
+ if stealRunNextG {
+ // Try to steal from _p_.runnext.
+ if next := _p_.runnext; next != 0 {
+ if _p_.status == _Prunning {
+ // Sleep to ensure that _p_ isn't about to run the g
+ // we are about to steal.
+ // The important use case here is when the g running
+ // on _p_ ready()s another g and then almost
+ // immediately blocks. Instead of stealing runnext
+ // in this window, back off to give _p_ a chance to
+ // schedule runnext. This will avoid thrashing gs
+ // between different Ps.
+ // A sync chan send/recv takes ~50ns as of time of
+ // writing, so 3us gives ~50x overshoot.
+ if GOOS != "windows" {
+ usleep(3)
+ } else {
+ // On windows system timer granularity is
+ // 1-15ms, which is way too much for this
+ // optimization. So just yield.
+ osyield()
+ }
+ }
+ if !_p_.runnext.cas(next, 0) {
+ continue
+ }
+ batch[batchHead%uint32(len(batch))] = next
+ return 1
+ }
+ }
+ return 0
+ }
+ if n > uint32(len(_p_.runq)/2) { // read inconsistent h and t
+ continue
+ }
+ for i := uint32(0); i < n; i++ {
+ g := _p_.runq[(h+i)%uint32(len(_p_.runq))]
+ batch[(batchHead+i)%uint32(len(batch))] = g
+ }
+ if atomic.CasRel(&_p_.runqhead, h, h+n) { // cas-release, commits consume
+ return n
+ }
+ }
+}
+
+// Steal half of elements from local runnable queue of p2
+// and put onto local runnable queue of p.
+// Returns one of the stolen elements (or nil if failed).
+func runqsteal(_p_, p2 *p, stealRunNextG bool) *g {
+ t := _p_.runqtail
+ n := runqgrab(p2, &_p_.runq, t, stealRunNextG)
+ if n == 0 {
+ return nil
+ }
+ n--
+ gp := _p_.runq[(t+n)%uint32(len(_p_.runq))].ptr()
+ if n == 0 {
+ return gp
+ }
+ h := atomic.LoadAcq(&_p_.runqhead) // load-acquire, synchronize with consumers
+ if t-h+n >= uint32(len(_p_.runq)) {
+ throw("runqsteal: runq overflow")
+ }
+ atomic.StoreRel(&_p_.runqtail, t+n) // store-release, makes the item available for consumption
+ return gp
+}
+
+// A gQueue is a dequeue of Gs linked through g.schedlink. A G can only
+// be on one gQueue or gList at a time.
+type gQueue struct {
+ head guintptr
+ tail guintptr
+}
+
+// empty reports whether q is empty.
+func (q *gQueue) empty() bool {
+ return q.head == 0
+}
+
+// push adds gp to the head of q.
+func (q *gQueue) push(gp *g) {
+ gp.schedlink = q.head
+ q.head.set(gp)
+ if q.tail == 0 {
+ q.tail.set(gp)
+ }
+}
+
+// pushBack adds gp to the tail of q.
+func (q *gQueue) pushBack(gp *g) {
+ gp.schedlink = 0
+ if q.tail != 0 {
+ q.tail.ptr().schedlink.set(gp)
+ } else {
+ q.head.set(gp)
+ }
+ q.tail.set(gp)
+}
+
+// pushBackAll adds all Gs in l2 to the tail of q. After this q2 must
+// not be used.
+func (q *gQueue) pushBackAll(q2 gQueue) {
+ if q2.tail == 0 {
+ return
+ }
+ q2.tail.ptr().schedlink = 0
+ if q.tail != 0 {
+ q.tail.ptr().schedlink = q2.head
+ } else {
+ q.head = q2.head
+ }
+ q.tail = q2.tail
+}
+
+// pop removes and returns the head of queue q. It returns nil if
+// q is empty.
+func (q *gQueue) pop() *g {
+ gp := q.head.ptr()
+ if gp != nil {
+ q.head = gp.schedlink
+ if q.head == 0 {
+ q.tail = 0
+ }
+ }
+ return gp
+}
+
+// popList takes all Gs in q and returns them as a gList.
+func (q *gQueue) popList() gList {
+ stack := gList{q.head}
+ *q = gQueue{}
+ return stack
+}
+
+// A gList is a list of Gs linked through g.schedlink. A G can only be
+// on one gQueue or gList at a time.
+type gList struct {
+ head guintptr
+}
+
+// empty reports whether l is empty.
+func (l *gList) empty() bool {
+ return l.head == 0
+}
+
+// push adds gp to the head of l.
+func (l *gList) push(gp *g) {
+ gp.schedlink = l.head
+ l.head.set(gp)
+}
+
+// pushAll prepends all Gs in q to l.
+func (l *gList) pushAll(q gQueue) {
+ if !q.empty() {
+ q.tail.ptr().schedlink = l.head
+ l.head = q.head
+ }
+}
+
+// pop removes and returns the head of l. If l is empty, it returns nil.
+func (l *gList) pop() *g {
+ gp := l.head.ptr()
+ if gp != nil {
+ l.head = gp.schedlink
+ }
+ return gp
+}
+
+//go:linkname setMaxThreads runtime/debug.setMaxThreads
+func setMaxThreads(in int) (out int) {
+ lock(&sched.lock)
+ out = int(sched.maxmcount)
+ if in > 0x7fffffff { // MaxInt32
+ sched.maxmcount = 0x7fffffff
+ } else {
+ sched.maxmcount = int32(in)
+ }
+ checkmcount()
+ unlock(&sched.lock)
+ return
+}
+
+func haveexperiment(name string) bool {
+ x := sys.Goexperiment
+ for x != "" {
+ xname := ""
+ i := bytealg.IndexByteString(x, ',')
+ if i < 0 {
+ xname, x = x, ""
+ } else {
+ xname, x = x[:i], x[i+1:]
+ }
+ if xname == name {
+ return true
+ }
+ if len(xname) > 2 && xname[:2] == "no" && xname[2:] == name {
+ return false
+ }
+ }
+ return false
+}
+
+//go:nosplit
+func procPin() int {
+ _g_ := getg()
+ mp := _g_.m
+
+ mp.locks++
+ return int(mp.p.ptr().id)
+}
+
+//go:nosplit
+func procUnpin() {
+ _g_ := getg()
+ _g_.m.locks--
+}
+
+//go:linkname sync_runtime_procPin sync.runtime_procPin
+//go:nosplit
+func sync_runtime_procPin() int {
+ return procPin()
+}
+
+//go:linkname sync_runtime_procUnpin sync.runtime_procUnpin
+//go:nosplit
+func sync_runtime_procUnpin() {
+ procUnpin()
+}
+
+//go:linkname sync_atomic_runtime_procPin sync/atomic.runtime_procPin
+//go:nosplit
+func sync_atomic_runtime_procPin() int {
+ return procPin()
+}
+
+//go:linkname sync_atomic_runtime_procUnpin sync/atomic.runtime_procUnpin
+//go:nosplit
+func sync_atomic_runtime_procUnpin() {
+ procUnpin()
+}
+
+// Active spinning for sync.Mutex.
+//go:linkname sync_runtime_canSpin sync.runtime_canSpin
+//go:nosplit
+func sync_runtime_canSpin(i int) bool {
+ // sync.Mutex is cooperative, so we are conservative with spinning.
+ // Spin only few times and only if running on a multicore machine and
+ // GOMAXPROCS>1 and there is at least one other running P and local runq is empty.
+ // As opposed to runtime mutex we don't do passive spinning here,
+ // because there can be work on global runq or on other Ps.
+ if i >= active_spin || ncpu <= 1 || gomaxprocs <= int32(sched.npidle+sched.nmspinning)+1 {
+ return false
+ }
+ if p := getg().m.p.ptr(); !runqempty(p) {
+ return false
+ }
+ return true
+}
+
+//go:linkname sync_runtime_doSpin sync.runtime_doSpin
+//go:nosplit
+func sync_runtime_doSpin() {
+ procyield(active_spin_cnt)
+}
+
+var stealOrder randomOrder
+
+// randomOrder/randomEnum are helper types for randomized work stealing.
+// They allow to enumerate all Ps in different pseudo-random orders without repetitions.
+// The algorithm is based on the fact that if we have X such that X and GOMAXPROCS
+// are coprime, then a sequences of (i + X) % GOMAXPROCS gives the required enumeration.
+type randomOrder struct {
+ count uint32
+ coprimes []uint32
+}
+
+type randomEnum struct {
+ i uint32
+ count uint32
+ pos uint32
+ inc uint32
+}
+
+func (ord *randomOrder) reset(count uint32) {
+ ord.count = count
+ ord.coprimes = ord.coprimes[:0]
+ for i := uint32(1); i <= count; i++ {
+ if gcd(i, count) == 1 {
+ ord.coprimes = append(ord.coprimes, i)
+ }
+ }
+}
+
+func (ord *randomOrder) start(i uint32) randomEnum {
+ return randomEnum{
+ count: ord.count,
+ pos: i % ord.count,
+ inc: ord.coprimes[i%uint32(len(ord.coprimes))],
+ }
+}
+
+func (enum *randomEnum) done() bool {
+ return enum.i == enum.count
+}
+
+func (enum *randomEnum) next() {
+ enum.i++
+ enum.pos = (enum.pos + enum.inc) % enum.count
+}
+
+func (enum *randomEnum) position() uint32 {
+ return enum.pos
+}
+
+func gcd(a, b uint32) uint32 {
+ for b != 0 {
+ a, b = b, a%b
+ }
+ return a
+}
+
+// An initTask represents the set of initializations that need to be done for a package.
+// Keep in sync with ../../test/initempty.go:initTask
+type initTask struct {
+ // TODO: pack the first 3 fields more tightly?
+ state uintptr // 0 = uninitialized, 1 = in progress, 2 = done
+ ndeps uintptr
+ nfns uintptr
+ // followed by ndeps instances of an *initTask, one per package depended on
+ // followed by nfns pcs, one per init function to run
+}
+
+// inittrace stores statistics for init functions which are
+// updated by malloc and newproc when active is true.
+var inittrace tracestat
+
+type tracestat struct {
+ active bool // init tracing activation status
+ id int64 // init go routine id
+ allocs uint64 // heap allocations
+ bytes uint64 // heap allocated bytes
+}
+
+func doInit(t *initTask) {
+ switch t.state {
+ case 2: // fully initialized
+ return
+ case 1: // initialization in progress
+ throw("recursive call during initialization - linker skew")
+ default: // not initialized yet
+ t.state = 1 // initialization in progress
+
+ for i := uintptr(0); i < t.ndeps; i++ {
+ p := add(unsafe.Pointer(t), (3+i)*sys.PtrSize)
+ t2 := *(**initTask)(p)
+ doInit(t2)
+ }
+
+ if t.nfns == 0 {
+ t.state = 2 // initialization done
+ return
+ }
+
+ var (
+ start int64
+ before tracestat
+ )
+
+ if inittrace.active {
+ start = nanotime()
+ // Load stats non-atomically since tracinit is updated only by this init go routine.
+ before = inittrace
+ }
+
+ firstFunc := add(unsafe.Pointer(t), (3+t.ndeps)*sys.PtrSize)
+ for i := uintptr(0); i < t.nfns; i++ {
+ p := add(firstFunc, i*sys.PtrSize)
+ f := *(*func())(unsafe.Pointer(&p))
+ f()
+ }
+
+ if inittrace.active {
+ end := nanotime()
+ // Load stats non-atomically since tracinit is updated only by this init go routine.
+ after := inittrace
+
+ pkg := funcpkgpath(findfunc(funcPC(firstFunc)))
+
+ var sbuf [24]byte
+ print("init ", pkg, " @")
+ print(string(fmtNSAsMS(sbuf[:], uint64(start-runtimeInitTime))), " ms, ")
+ print(string(fmtNSAsMS(sbuf[:], uint64(end-start))), " ms clock, ")
+ print(string(itoa(sbuf[:], after.bytes-before.bytes)), " bytes, ")
+ print(string(itoa(sbuf[:], after.allocs-before.allocs)), " allocs")
+ print("\n")
+ }
+
+ t.state = 2 // initialization done
+ }
+}