summaryrefslogtreecommitdiffstats
path: root/src/sync/once.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/sync/once.go')
-rw-r--r--src/sync/once.go70
1 files changed, 70 insertions, 0 deletions
diff --git a/src/sync/once.go b/src/sync/once.go
new file mode 100644
index 0000000..8844314
--- /dev/null
+++ b/src/sync/once.go
@@ -0,0 +1,70 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package sync
+
+import (
+ "sync/atomic"
+)
+
+// Once is an object that will perform exactly one action.
+//
+// A Once must not be copied after first use.
+type Once struct {
+ // done indicates whether the action has been performed.
+ // It is first in the struct because it is used in the hot path.
+ // The hot path is inlined at every call site.
+ // Placing done first allows more compact instructions on some architectures (amd64/386),
+ // and fewer instructions (to calculate offset) on other architectures.
+ done uint32
+ m Mutex
+}
+
+// Do calls the function f if and only if Do is being called for the
+// first time for this instance of Once. In other words, given
+// var once Once
+// if once.Do(f) is called multiple times, only the first call will invoke f,
+// even if f has a different value in each invocation. A new instance of
+// Once is required for each function to execute.
+//
+// Do is intended for initialization that must be run exactly once. Since f
+// is niladic, it may be necessary to use a function literal to capture the
+// arguments to a function to be invoked by Do:
+// config.once.Do(func() { config.init(filename) })
+//
+// Because no call to Do returns until the one call to f returns, if f causes
+// Do to be called, it will deadlock.
+//
+// If f panics, Do considers it to have returned; future calls of Do return
+// without calling f.
+//
+func (o *Once) Do(f func()) {
+ // Note: Here is an incorrect implementation of Do:
+ //
+ // if atomic.CompareAndSwapUint32(&o.done, 0, 1) {
+ // f()
+ // }
+ //
+ // Do guarantees that when it returns, f has finished.
+ // This implementation would not implement that guarantee:
+ // given two simultaneous calls, the winner of the cas would
+ // call f, and the second would return immediately, without
+ // waiting for the first's call to f to complete.
+ // This is why the slow path falls back to a mutex, and why
+ // the atomic.StoreUint32 must be delayed until after f returns.
+
+ if atomic.LoadUint32(&o.done) == 0 {
+ // Outlined slow-path to allow inlining of the fast-path.
+ o.doSlow(f)
+ }
+}
+
+func (o *Once) doSlow(f func()) {
+ o.m.Lock()
+ defer o.m.Unlock()
+ if o.done == 0 {
+ defer atomic.StoreUint32(&o.done, 1)
+ f()
+ }
+}