// Copyright 2019 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package gc import ( "bytes" "container/heap" "fmt" ) // Package initialization // // Here we implement the algorithm for ordering package-level variable // initialization. The spec is written in terms of variable // initialization, but multiple variables initialized by a single // assignment are handled together, so here we instead focus on // ordering initialization assignments. Conveniently, this maps well // to how we represent package-level initializations using the Node // AST. // // Assignments are in one of three phases: NotStarted, Pending, or // Done. For assignments in the Pending phase, we use Xoffset to // record the number of unique variable dependencies whose // initialization assignment is not yet Done. We also maintain a // "blocking" map that maps assignments back to all of the assignments // that depend on it. // // For example, for an initialization like: // // var x = f(a, b, b) // var a, b = g() // // the "x = f(a, b, b)" assignment depends on two variables (a and b), // so its Xoffset will be 2. Correspondingly, the "a, b = g()" // assignment's "blocking" entry will have two entries back to x's // assignment. // // Logically, initialization works by (1) taking all NotStarted // assignments, calculating their dependencies, and marking them // Pending; (2) adding all Pending assignments with Xoffset==0 to a // "ready" priority queue (ordered by variable declaration position); // and (3) iteratively processing the next Pending assignment from the // queue, decreasing the Xoffset of assignments it's blocking, and // adding them to the queue if decremented to 0. // // As an optimization, we actually apply each of these three steps for // each assignment. This yields the same order, but keeps queue size // down and thus also heap operation costs. // Static initialization phase. // These values are stored in two bits in Node.flags. const ( InitNotStarted = iota InitDone InitPending ) type InitOrder struct { // blocking maps initialization assignments to the assignments // that depend on it. blocking map[*Node][]*Node // ready is the queue of Pending initialization assignments // that are ready for initialization. ready declOrder } // initOrder computes initialization order for a list l of // package-level declarations (in declaration order) and outputs the // corresponding list of statements to include in the init() function // body. func initOrder(l []*Node) []*Node { s := InitSchedule{ initplans: make(map[*Node]*InitPlan), inittemps: make(map[*Node]*Node), } o := InitOrder{ blocking: make(map[*Node][]*Node), } // Process all package-level assignment in declaration order. for _, n := range l { switch n.Op { case OAS, OAS2DOTTYPE, OAS2FUNC, OAS2MAPR, OAS2RECV: o.processAssign(n) o.flushReady(s.staticInit) case ODCLCONST, ODCLFUNC, ODCLTYPE: // nop default: Fatalf("unexpected package-level statement: %v", n) } } // Check that all assignments are now Done; if not, there must // have been a dependency cycle. for _, n := range l { switch n.Op { case OAS, OAS2DOTTYPE, OAS2FUNC, OAS2MAPR, OAS2RECV: if n.Initorder() != InitDone { // If there have already been errors // printed, those errors may have // confused us and there might not be // a loop. Let the user fix those // first. if nerrors > 0 { errorexit() } findInitLoopAndExit(firstLHS(n), new([]*Node), make(map[*Node]bool)) Fatalf("initialization unfinished, but failed to identify loop") } } } // Invariant consistency check. If this is non-zero, then we // should have found a cycle above. if len(o.blocking) != 0 { Fatalf("expected empty map: %v", o.blocking) } return s.out } func (o *InitOrder) processAssign(n *Node) { if n.Initorder() != InitNotStarted || n.Xoffset != BADWIDTH { Fatalf("unexpected state: %v, %v, %v", n, n.Initorder(), n.Xoffset) } n.SetInitorder(InitPending) n.Xoffset = 0 // Compute number of variable dependencies and build the // inverse dependency ("blocking") graph. for dep := range collectDeps(n, true) { defn := dep.Name.Defn // Skip dependencies on functions (PFUNC) and // variables already initialized (InitDone). if dep.Class() != PEXTERN || defn.Initorder() == InitDone { continue } n.Xoffset++ o.blocking[defn] = append(o.blocking[defn], n) } if n.Xoffset == 0 { heap.Push(&o.ready, n) } } // flushReady repeatedly applies initialize to the earliest (in // declaration order) assignment ready for initialization and updates // the inverse dependency ("blocking") graph. func (o *InitOrder) flushReady(initialize func(*Node)) { for o.ready.Len() != 0 { n := heap.Pop(&o.ready).(*Node) if n.Initorder() != InitPending || n.Xoffset != 0 { Fatalf("unexpected state: %v, %v, %v", n, n.Initorder(), n.Xoffset) } initialize(n) n.SetInitorder(InitDone) n.Xoffset = BADWIDTH blocked := o.blocking[n] delete(o.blocking, n) for _, m := range blocked { m.Xoffset-- if m.Xoffset == 0 { heap.Push(&o.ready, m) } } } } // findInitLoopAndExit searches for an initialization loop involving variable // or function n. If one is found, it reports the loop as an error and exits. // // path points to a slice used for tracking the sequence of // variables/functions visited. Using a pointer to a slice allows the // slice capacity to grow and limit reallocations. func findInitLoopAndExit(n *Node, path *[]*Node, ok map[*Node]bool) { for i, x := range *path { if x == n { reportInitLoopAndExit((*path)[i:]) return } } // There might be multiple loops involving n; by sorting // references, we deterministically pick the one reported. refers := collectDeps(n.Name.Defn, false).Sorted(func(ni, nj *Node) bool { return ni.Pos.Before(nj.Pos) }) *path = append(*path, n) for _, ref := range refers { // Short-circuit variables that were initialized. if ref.Class() == PEXTERN && ref.Name.Defn.Initorder() == InitDone || ok[ref] { continue } findInitLoopAndExit(ref, path, ok) } // n is not involved in a cycle. // Record that fact to avoid checking it again when reached another way, // or else this traversal will take exponential time traversing all paths // through the part of the package's call graph implicated in the cycle. ok[n] = true *path = (*path)[:len(*path)-1] } // reportInitLoopAndExit reports and initialization loop as an error // and exits. However, if l is not actually an initialization loop, it // simply returns instead. func reportInitLoopAndExit(l []*Node) { // Rotate loop so that the earliest variable declaration is at // the start. i := -1 for j, n := range l { if n.Class() == PEXTERN && (i == -1 || n.Pos.Before(l[i].Pos)) { i = j } } if i == -1 { // False positive: loop only involves recursive // functions. Return so that findInitLoop can continue // searching. return } l = append(l[i:], l[:i]...) // TODO(mdempsky): Method values are printed as "T.m-fm" // rather than "T.m". Figure out how to avoid that. var msg bytes.Buffer fmt.Fprintf(&msg, "initialization loop:\n") for _, n := range l { fmt.Fprintf(&msg, "\t%v: %v refers to\n", n.Line(), n) } fmt.Fprintf(&msg, "\t%v: %v", l[0].Line(), l[0]) yyerrorl(l[0].Pos, msg.String()) errorexit() } // collectDeps returns all of the package-level functions and // variables that declaration n depends on. If transitive is true, // then it also includes the transitive dependencies of any depended // upon functions (but not variables). func collectDeps(n *Node, transitive bool) NodeSet { d := initDeps{transitive: transitive} switch n.Op { case OAS: d.inspect(n.Right) case OAS2DOTTYPE, OAS2FUNC, OAS2MAPR, OAS2RECV: d.inspect(n.Right) case ODCLFUNC: d.inspectList(n.Nbody) default: Fatalf("unexpected Op: %v", n.Op) } return d.seen } type initDeps struct { transitive bool seen NodeSet } func (d *initDeps) inspect(n *Node) { inspect(n, d.visit) } func (d *initDeps) inspectList(l Nodes) { inspectList(l, d.visit) } // visit calls foundDep on any package-level functions or variables // referenced by n, if any. func (d *initDeps) visit(n *Node) bool { switch n.Op { case ONAME: if n.isMethodExpression() { d.foundDep(asNode(n.Type.FuncType().Nname)) return false } switch n.Class() { case PEXTERN, PFUNC: d.foundDep(n) } case OCLOSURE: d.inspectList(n.Func.Closure.Nbody) case ODOTMETH, OCALLPART: d.foundDep(asNode(n.Type.FuncType().Nname)) } return true } // foundDep records that we've found a dependency on n by adding it to // seen. func (d *initDeps) foundDep(n *Node) { // Can happen with method expressions involving interface // types; e.g., fixedbugs/issue4495.go. if n == nil { return } // Names without definitions aren't interesting as far as // initialization ordering goes. if n.Name.Defn == nil { return } if d.seen.Has(n) { return } d.seen.Add(n) if d.transitive && n.Class() == PFUNC { d.inspectList(n.Name.Defn.Nbody) } } // declOrder implements heap.Interface, ordering assignment statements // by the position of their first LHS expression. // // N.B., the Pos of the first LHS expression is used because because // an OAS node's Pos may not be unique. For example, given the // declaration "var a, b = f(), g()", "a" must be ordered before "b", // but both OAS nodes use the "=" token's position as their Pos. type declOrder []*Node func (s declOrder) Len() int { return len(s) } func (s declOrder) Less(i, j int) bool { return firstLHS(s[i]).Pos.Before(firstLHS(s[j]).Pos) } func (s declOrder) Swap(i, j int) { s[i], s[j] = s[j], s[i] } func (s *declOrder) Push(x interface{}) { *s = append(*s, x.(*Node)) } func (s *declOrder) Pop() interface{} { n := (*s)[len(*s)-1] *s = (*s)[:len(*s)-1] return n } // firstLHS returns the first expression on the left-hand side of // assignment n. func firstLHS(n *Node) *Node { switch n.Op { case OAS: return n.Left case OAS2DOTTYPE, OAS2FUNC, OAS2RECV, OAS2MAPR: return n.List.First() } Fatalf("unexpected Op: %v", n.Op) return nil }