// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This file provides support for parsing coverage profiles // generated by "go test -coverprofile=cover.out". // It is a copy of golang.org/x/tools/cover/profile.go. package main import ( "bufio" "fmt" "math" "os" "regexp" "sort" "strconv" "strings" ) // Profile represents the profiling data for a specific file. type Profile struct { FileName string Mode string Blocks []ProfileBlock } // ProfileBlock represents a single block of profiling data. type ProfileBlock struct { StartLine, StartCol int EndLine, EndCol int NumStmt, Count int } type byFileName []*Profile func (p byFileName) Len() int { return len(p) } func (p byFileName) Less(i, j int) bool { return p[i].FileName < p[j].FileName } func (p byFileName) Swap(i, j int) { p[i], p[j] = p[j], p[i] } // ParseProfiles parses profile data in the specified file and returns a // Profile for each source file described therein. func ParseProfiles(fileName string) ([]*Profile, error) { pf, err := os.Open(fileName) if err != nil { return nil, err } defer pf.Close() files := make(map[string]*Profile) buf := bufio.NewReader(pf) // First line is "mode: foo", where foo is "set", "count", or "atomic". // Rest of file is in the format // encoding/base64/base64.go:34.44,37.40 3 1 // where the fields are: name.go:line.column,line.column numberOfStatements count s := bufio.NewScanner(buf) mode := "" for s.Scan() { line := s.Text() if mode == "" { const p = "mode: " if !strings.HasPrefix(line, p) || line == p { return nil, fmt.Errorf("bad mode line: %v", line) } mode = line[len(p):] continue } m := lineRe.FindStringSubmatch(line) if m == nil { return nil, fmt.Errorf("line %q doesn't match expected format: %v", m, lineRe) } fn := m[1] p := files[fn] if p == nil { p = &Profile{ FileName: fn, Mode: mode, } files[fn] = p } p.Blocks = append(p.Blocks, ProfileBlock{ StartLine: toInt(m[2]), StartCol: toInt(m[3]), EndLine: toInt(m[4]), EndCol: toInt(m[5]), NumStmt: toInt(m[6]), Count: toInt(m[7]), }) } if err := s.Err(); err != nil { return nil, err } for _, p := range files { sort.Sort(blocksByStart(p.Blocks)) // Merge samples from the same location. j := 1 for i := 1; i < len(p.Blocks); i++ { b := p.Blocks[i] last := p.Blocks[j-1] if b.StartLine == last.StartLine && b.StartCol == last.StartCol && b.EndLine == last.EndLine && b.EndCol == last.EndCol { if b.NumStmt != last.NumStmt { return nil, fmt.Errorf("inconsistent NumStmt: changed from %d to %d", last.NumStmt, b.NumStmt) } if mode == "set" { p.Blocks[j-1].Count |= b.Count } else { p.Blocks[j-1].Count += b.Count } continue } p.Blocks[j] = b j++ } p.Blocks = p.Blocks[:j] } // Generate a sorted slice. profiles := make([]*Profile, 0, len(files)) for _, profile := range files { profiles = append(profiles, profile) } sort.Sort(byFileName(profiles)) return profiles, nil } type blocksByStart []ProfileBlock func (b blocksByStart) Len() int { return len(b) } func (b blocksByStart) Swap(i, j int) { b[i], b[j] = b[j], b[i] } func (b blocksByStart) Less(i, j int) bool { bi, bj := b[i], b[j] return bi.StartLine < bj.StartLine || bi.StartLine == bj.StartLine && bi.StartCol < bj.StartCol } var lineRe = regexp.MustCompile(`^(.+):([0-9]+).([0-9]+),([0-9]+).([0-9]+) ([0-9]+) ([0-9]+)$`) func toInt(s string) int { i, err := strconv.Atoi(s) if err != nil { panic(err) } return i } // Boundary represents the position in a source file of the beginning or end of a // block as reported by the coverage profile. In HTML mode, it will correspond to // the opening or closing of a tag and will be used to colorize the source type Boundary struct { Offset int // Location as a byte offset in the source file. Start bool // Is this the start of a block? Count int // Event count from the cover profile. Norm float64 // Count normalized to [0..1]. Index int // Order in input file. } // Boundaries returns a Profile as a set of Boundary objects within the provided src. func (p *Profile) Boundaries(src []byte) (boundaries []Boundary) { // Find maximum count. max := 0 for _, b := range p.Blocks { if b.Count > max { max = b.Count } } // Divisor for normalization. divisor := math.Log(float64(max)) // boundary returns a Boundary, populating the Norm field with a normalized Count. index := 0 boundary := func(offset int, start bool, count int) Boundary { b := Boundary{Offset: offset, Start: start, Count: count, Index: index} index++ if !start || count == 0 { return b } if max <= 1 { b.Norm = 0.8 // Profile is in "set" mode; we want a heat map. Use cov8 in the CSS. } else if count > 0 { b.Norm = math.Log(float64(count)) / divisor } return b } line, col := 1, 2 // TODO: Why is this 2? for si, bi := 0, 0; si < len(src) && bi < len(p.Blocks); { b := p.Blocks[bi] if b.StartLine == line && b.StartCol == col { boundaries = append(boundaries, boundary(si, true, b.Count)) } if b.EndLine == line && b.EndCol == col || line > b.EndLine { boundaries = append(boundaries, boundary(si, false, 0)) bi++ continue // Don't advance through src; maybe the next block starts here. } if src[si] == '\n' { line++ col = 0 } col++ si++ } sort.Sort(boundariesByPos(boundaries)) return } type boundariesByPos []Boundary func (b boundariesByPos) Len() int { return len(b) } func (b boundariesByPos) Swap(i, j int) { b[i], b[j] = b[j], b[i] } func (b boundariesByPos) Less(i, j int) bool { if b[i].Offset == b[j].Offset { // Boundaries at the same offset should be ordered according to // their original position. return b[i].Index < b[j].Index } return b[i].Offset < b[j].Offset }