// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Action graph creation (planning). package work import ( "bufio" "bytes" "container/heap" "context" "debug/elf" "encoding/json" "fmt" "os" "path/filepath" "runtime" "strings" "sync" "time" "cmd/go/internal/base" "cmd/go/internal/cache" "cmd/go/internal/cfg" "cmd/go/internal/load" "cmd/go/internal/trace" "cmd/internal/buildid" ) // A Builder holds global state about a build. // It does not hold per-package state, because we // build packages in parallel, and the builder is shared. type Builder struct { WorkDir string // the temporary work directory (ends in filepath.Separator) actionCache map[cacheKey]*Action // a cache of already-constructed actions mkdirCache map[string]bool // a cache of created directories flagCache map[[2]string]bool // a cache of supported compiler flags Print func(args ...interface{}) (int, error) IsCmdList bool // running as part of go list; set p.Stale and additional fields below NeedError bool // list needs p.Error NeedExport bool // list needs p.Export NeedCompiledGoFiles bool // list needs p.CompiledGoFiles objdirSeq int // counter for NewObjdir pkgSeq int output sync.Mutex scriptDir string // current directory in printed script exec sync.Mutex readySema chan bool ready actionQueue id sync.Mutex toolIDCache map[string]string // tool name -> tool ID buildIDCache map[string]string // file name -> build ID } // NOTE: Much of Action would not need to be exported if not for test. // Maybe test functionality should move into this package too? // An Action represents a single action in the action graph. type Action struct { Mode string // description of action operation Package *load.Package // the package this action works on Deps []*Action // actions that must happen before this one Func func(*Builder, context.Context, *Action) error // the action itself (nil = no-op) IgnoreFail bool // whether to run f even if dependencies fail TestOutput *bytes.Buffer // test output buffer Args []string // additional args for runProgram triggers []*Action // inverse of deps buggyInstall bool // is this a buggy install (see -linkshared)? TryCache func(*Builder, *Action) bool // callback for cache bypass // Generated files, directories. Objdir string // directory for intermediate objects Target string // goal of the action: the created package or executable built string // the actual created package or executable actionID cache.ActionID // cache ID of action input buildID string // build ID of action output VetxOnly bool // Mode=="vet": only being called to supply info about dependencies needVet bool // Mode=="build": need to fill in vet config needBuild bool // Mode=="build": need to do actual build (can be false if needVet is true) vetCfg *vetConfig // vet config output []byte // output redirect buffer (nil means use b.Print) // Execution state. pending int // number of deps yet to complete priority int // relative execution priority Failed bool // whether the action failed json *actionJSON // action graph information nonGoOverlay map[string]string // map from non-.go source files to copied files in objdir. Nil if no overlay is used. traceSpan *trace.Span } // BuildActionID returns the action ID section of a's build ID. func (a *Action) BuildActionID() string { return actionID(a.buildID) } // BuildContentID returns the content ID section of a's build ID. func (a *Action) BuildContentID() string { return contentID(a.buildID) } // BuildID returns a's build ID. func (a *Action) BuildID() string { return a.buildID } // BuiltTarget returns the actual file that was built. This differs // from Target when the result was cached. func (a *Action) BuiltTarget() string { return a.built } // An actionQueue is a priority queue of actions. type actionQueue []*Action // Implement heap.Interface func (q *actionQueue) Len() int { return len(*q) } func (q *actionQueue) Swap(i, j int) { (*q)[i], (*q)[j] = (*q)[j], (*q)[i] } func (q *actionQueue) Less(i, j int) bool { return (*q)[i].priority < (*q)[j].priority } func (q *actionQueue) Push(x interface{}) { *q = append(*q, x.(*Action)) } func (q *actionQueue) Pop() interface{} { n := len(*q) - 1 x := (*q)[n] *q = (*q)[:n] return x } func (q *actionQueue) push(a *Action) { if a.json != nil { a.json.TimeReady = time.Now() } heap.Push(q, a) } func (q *actionQueue) pop() *Action { return heap.Pop(q).(*Action) } type actionJSON struct { ID int Mode string Package string Deps []int `json:",omitempty"` IgnoreFail bool `json:",omitempty"` Args []string `json:",omitempty"` Link bool `json:",omitempty"` Objdir string `json:",omitempty"` Target string `json:",omitempty"` Priority int `json:",omitempty"` Failed bool `json:",omitempty"` Built string `json:",omitempty"` VetxOnly bool `json:",omitempty"` NeedVet bool `json:",omitempty"` NeedBuild bool `json:",omitempty"` ActionID string `json:",omitempty"` BuildID string `json:",omitempty"` TimeReady time.Time `json:",omitempty"` TimeStart time.Time `json:",omitempty"` TimeDone time.Time `json:",omitempty"` Cmd []string // `json:",omitempty"` CmdReal time.Duration `json:",omitempty"` CmdUser time.Duration `json:",omitempty"` CmdSys time.Duration `json:",omitempty"` } // cacheKey is the key for the action cache. type cacheKey struct { mode string p *load.Package } func actionGraphJSON(a *Action) string { var workq []*Action var inWorkq = make(map[*Action]int) add := func(a *Action) { if _, ok := inWorkq[a]; ok { return } inWorkq[a] = len(workq) workq = append(workq, a) } add(a) for i := 0; i < len(workq); i++ { for _, dep := range workq[i].Deps { add(dep) } } var list []*actionJSON for id, a := range workq { if a.json == nil { a.json = &actionJSON{ Mode: a.Mode, ID: id, IgnoreFail: a.IgnoreFail, Args: a.Args, Objdir: a.Objdir, Target: a.Target, Failed: a.Failed, Priority: a.priority, Built: a.built, VetxOnly: a.VetxOnly, NeedBuild: a.needBuild, NeedVet: a.needVet, } if a.Package != nil { // TODO(rsc): Make this a unique key for a.Package somehow. a.json.Package = a.Package.ImportPath } for _, a1 := range a.Deps { a.json.Deps = append(a.json.Deps, inWorkq[a1]) } } list = append(list, a.json) } js, err := json.MarshalIndent(list, "", "\t") if err != nil { fmt.Fprintf(os.Stderr, "go: writing debug action graph: %v\n", err) return "" } return string(js) } // BuildMode specifies the build mode: // are we just building things or also installing the results? type BuildMode int const ( ModeBuild BuildMode = iota ModeInstall ModeBuggyInstall ModeVetOnly = 1 << 8 ) func (b *Builder) Init() { b.Print = func(a ...interface{}) (int, error) { return fmt.Fprint(os.Stderr, a...) } b.actionCache = make(map[cacheKey]*Action) b.mkdirCache = make(map[string]bool) b.toolIDCache = make(map[string]string) b.buildIDCache = make(map[string]string) if cfg.BuildN { b.WorkDir = "$WORK" } else { tmp, err := os.MkdirTemp(cfg.Getenv("GOTMPDIR"), "go-build") if err != nil { base.Fatalf("go: creating work dir: %v", err) } if !filepath.IsAbs(tmp) { abs, err := filepath.Abs(tmp) if err != nil { os.RemoveAll(tmp) base.Fatalf("go: creating work dir: %v", err) } tmp = abs } b.WorkDir = tmp if cfg.BuildX || cfg.BuildWork { fmt.Fprintf(os.Stderr, "WORK=%s\n", b.WorkDir) } if !cfg.BuildWork { workdir := b.WorkDir base.AtExit(func() { start := time.Now() for { err := os.RemoveAll(workdir) if err == nil { return } // On some configurations of Windows, directories containing executable // files may be locked for a while after the executable exits (perhaps // due to antivirus scans?). It's probably worth a little extra latency // on exit to avoid filling up the user's temporary directory with leaked // files. (See golang.org/issue/30789.) if runtime.GOOS != "windows" || time.Since(start) >= 500*time.Millisecond { fmt.Fprintf(os.Stderr, "go: failed to remove work dir: %s\n", err) return } time.Sleep(5 * time.Millisecond) } }) } } if err := CheckGOOSARCHPair(cfg.Goos, cfg.Goarch); err != nil { fmt.Fprintf(os.Stderr, "cmd/go: %v\n", err) base.SetExitStatus(2) base.Exit() } for _, tag := range cfg.BuildContext.BuildTags { if strings.Contains(tag, ",") { fmt.Fprintf(os.Stderr, "cmd/go: -tags space-separated list contains comma\n") base.SetExitStatus(2) base.Exit() } } } func CheckGOOSARCHPair(goos, goarch string) error { if _, ok := cfg.OSArchSupportsCgo[goos+"/"+goarch]; !ok && cfg.BuildContext.Compiler == "gc" { return fmt.Errorf("unsupported GOOS/GOARCH pair %s/%s", goos, goarch) } return nil } // NewObjdir returns the name of a fresh object directory under b.WorkDir. // It is up to the caller to call b.Mkdir on the result at an appropriate time. // The result ends in a slash, so that file names in that directory // can be constructed with direct string addition. // // NewObjdir must be called only from a single goroutine at a time, // so it is safe to call during action graph construction, but it must not // be called during action graph execution. func (b *Builder) NewObjdir() string { b.objdirSeq++ return filepath.Join(b.WorkDir, fmt.Sprintf("b%03d", b.objdirSeq)) + string(filepath.Separator) } // readpkglist returns the list of packages that were built into the shared library // at shlibpath. For the native toolchain this list is stored, newline separated, in // an ELF note with name "Go\x00\x00" and type 1. For GCCGO it is extracted from the // .go_export section. func readpkglist(shlibpath string) (pkgs []*load.Package) { var stk load.ImportStack if cfg.BuildToolchainName == "gccgo" { f, _ := elf.Open(shlibpath) sect := f.Section(".go_export") data, _ := sect.Data() scanner := bufio.NewScanner(bytes.NewBuffer(data)) for scanner.Scan() { t := scanner.Text() if strings.HasPrefix(t, "pkgpath ") { t = strings.TrimPrefix(t, "pkgpath ") t = strings.TrimSuffix(t, ";") pkgs = append(pkgs, load.LoadImportWithFlags(t, base.Cwd, nil, &stk, nil, 0)) } } } else { pkglistbytes, err := buildid.ReadELFNote(shlibpath, "Go\x00\x00", 1) if err != nil { base.Fatalf("readELFNote failed: %v", err) } scanner := bufio.NewScanner(bytes.NewBuffer(pkglistbytes)) for scanner.Scan() { t := scanner.Text() pkgs = append(pkgs, load.LoadImportWithFlags(t, base.Cwd, nil, &stk, nil, 0)) } } return } // cacheAction looks up {mode, p} in the cache and returns the resulting action. // If the cache has no such action, f() is recorded and returned. // TODO(rsc): Change the second key from *load.Package to interface{}, // to make the caching in linkShared less awkward? func (b *Builder) cacheAction(mode string, p *load.Package, f func() *Action) *Action { a := b.actionCache[cacheKey{mode, p}] if a == nil { a = f() b.actionCache[cacheKey{mode, p}] = a } return a } // AutoAction returns the "right" action for go build or go install of p. func (b *Builder) AutoAction(mode, depMode BuildMode, p *load.Package) *Action { if p.Name == "main" { return b.LinkAction(mode, depMode, p) } return b.CompileAction(mode, depMode, p) } // CompileAction returns the action for compiling and possibly installing // (according to mode) the given package. The resulting action is only // for building packages (archives), never for linking executables. // depMode is the action (build or install) to use when building dependencies. // To turn package main into an executable, call b.Link instead. func (b *Builder) CompileAction(mode, depMode BuildMode, p *load.Package) *Action { vetOnly := mode&ModeVetOnly != 0 mode &^= ModeVetOnly if mode != ModeBuild && (p.Internal.Local || p.Module != nil) && p.Target == "" { // Imported via local path or using modules. No permanent target. mode = ModeBuild } if mode != ModeBuild && p.Name == "main" { // We never install the .a file for a main package. mode = ModeBuild } // Construct package build action. a := b.cacheAction("build", p, func() *Action { a := &Action{ Mode: "build", Package: p, Func: (*Builder).build, Objdir: b.NewObjdir(), } if p.Error == nil || !p.Error.IsImportCycle { for _, p1 := range p.Internal.Imports { a.Deps = append(a.Deps, b.CompileAction(depMode, depMode, p1)) } } if p.Standard { switch p.ImportPath { case "builtin", "unsafe": // Fake packages - nothing to build. a.Mode = "built-in package" a.Func = nil return a } // gccgo standard library is "fake" too. if cfg.BuildToolchainName == "gccgo" { // the target name is needed for cgo. a.Mode = "gccgo stdlib" a.Target = p.Target a.Func = nil return a } } return a }) // Find the build action; the cache entry may have been replaced // by the install action during (*Builder).installAction. buildAction := a switch buildAction.Mode { case "build", "built-in package", "gccgo stdlib": // ok case "build-install": buildAction = a.Deps[0] default: panic("lost build action: " + buildAction.Mode) } buildAction.needBuild = buildAction.needBuild || !vetOnly // Construct install action. if mode == ModeInstall || mode == ModeBuggyInstall { a = b.installAction(a, mode) } return a } // VetAction returns the action for running go vet on package p. // It depends on the action for compiling p. // If the caller may be causing p to be installed, it is up to the caller // to make sure that the install depends on (runs after) vet. func (b *Builder) VetAction(mode, depMode BuildMode, p *load.Package) *Action { a := b.vetAction(mode, depMode, p) a.VetxOnly = false return a } func (b *Builder) vetAction(mode, depMode BuildMode, p *load.Package) *Action { // Construct vet action. a := b.cacheAction("vet", p, func() *Action { a1 := b.CompileAction(mode|ModeVetOnly, depMode, p) // vet expects to be able to import "fmt". var stk load.ImportStack stk.Push("vet") p1 := load.LoadImportWithFlags("fmt", p.Dir, p, &stk, nil, 0) stk.Pop() aFmt := b.CompileAction(ModeBuild, depMode, p1) var deps []*Action if a1.buggyInstall { // (*Builder).vet expects deps[0] to be the package // and deps[1] to be "fmt". If we see buggyInstall // here then a1 is an install of a shared library, // and the real package is a1.Deps[0]. deps = []*Action{a1.Deps[0], aFmt, a1} } else { deps = []*Action{a1, aFmt} } for _, p1 := range p.Internal.Imports { deps = append(deps, b.vetAction(mode, depMode, p1)) } a := &Action{ Mode: "vet", Package: p, Deps: deps, Objdir: a1.Objdir, VetxOnly: true, IgnoreFail: true, // it's OK if vet of dependencies "fails" (reports problems) } if a1.Func == nil { // Built-in packages like unsafe. return a } deps[0].needVet = true a.Func = (*Builder).vet return a }) return a } // LinkAction returns the action for linking p into an executable // and possibly installing the result (according to mode). // depMode is the action (build or install) to use when compiling dependencies. func (b *Builder) LinkAction(mode, depMode BuildMode, p *load.Package) *Action { // Construct link action. a := b.cacheAction("link", p, func() *Action { a := &Action{ Mode: "link", Package: p, } a1 := b.CompileAction(ModeBuild, depMode, p) a.Func = (*Builder).link a.Deps = []*Action{a1} a.Objdir = a1.Objdir // An executable file. (This is the name of a temporary file.) // Because we run the temporary file in 'go run' and 'go test', // the name will show up in ps listings. If the caller has specified // a name, use that instead of a.out. The binary is generated // in an otherwise empty subdirectory named exe to avoid // naming conflicts. The only possible conflict is if we were // to create a top-level package named exe. name := "a.out" if p.Internal.ExeName != "" { name = p.Internal.ExeName } else if (cfg.Goos == "darwin" || cfg.Goos == "windows") && cfg.BuildBuildmode == "c-shared" && p.Target != "" { // On OS X, the linker output name gets recorded in the // shared library's LC_ID_DYLIB load command. // The code invoking the linker knows to pass only the final // path element. Arrange that the path element matches what // we'll install it as; otherwise the library is only loadable as "a.out". // On Windows, DLL file name is recorded in PE file // export section, so do like on OS X. _, name = filepath.Split(p.Target) } a.Target = a.Objdir + filepath.Join("exe", name) + cfg.ExeSuffix a.built = a.Target b.addTransitiveLinkDeps(a, a1, "") // Sequence the build of the main package (a1) strictly after the build // of all other dependencies that go into the link. It is likely to be after // them anyway, but just make sure. This is required by the build ID-based // shortcut in (*Builder).useCache(a1), which will call b.linkActionID(a). // In order for that linkActionID call to compute the right action ID, all the // dependencies of a (except a1) must have completed building and have // recorded their build IDs. a1.Deps = append(a1.Deps, &Action{Mode: "nop", Deps: a.Deps[1:]}) return a }) if mode == ModeInstall || mode == ModeBuggyInstall { a = b.installAction(a, mode) } return a } // installAction returns the action for installing the result of a1. func (b *Builder) installAction(a1 *Action, mode BuildMode) *Action { // Because we overwrite the build action with the install action below, // a1 may already be an install action fetched from the "build" cache key, // and the caller just doesn't realize. if strings.HasSuffix(a1.Mode, "-install") { if a1.buggyInstall && mode == ModeInstall { // Congratulations! The buggy install is now a proper install. a1.buggyInstall = false } return a1 } // If there's no actual action to build a1, // there's nothing to install either. // This happens if a1 corresponds to reusing an already-built object. if a1.Func == nil { return a1 } p := a1.Package return b.cacheAction(a1.Mode+"-install", p, func() *Action { // The install deletes the temporary build result, // so we need all other actions, both past and future, // that attempt to depend on the build to depend instead // on the install. // Make a private copy of a1 (the build action), // no longer accessible to any other rules. buildAction := new(Action) *buildAction = *a1 // Overwrite a1 with the install action. // This takes care of updating past actions that // point at a1 for the build action; now they will // point at a1 and get the install action. // We also leave a1 in the action cache as the result // for "build", so that actions not yet created that // try to depend on the build will instead depend // on the install. *a1 = Action{ Mode: buildAction.Mode + "-install", Func: BuildInstallFunc, Package: p, Objdir: buildAction.Objdir, Deps: []*Action{buildAction}, Target: p.Target, built: p.Target, buggyInstall: mode == ModeBuggyInstall, } b.addInstallHeaderAction(a1) return a1 }) } // addTransitiveLinkDeps adds to the link action a all packages // that are transitive dependencies of a1.Deps. // That is, if a is a link of package main, a1 is the compile of package main // and a1.Deps is the actions for building packages directly imported by // package main (what the compiler needs). The linker needs all packages // transitively imported by the whole program; addTransitiveLinkDeps // makes sure those are present in a.Deps. // If shlib is non-empty, then a corresponds to the build and installation of shlib, // so any rebuild of shlib should not be added as a dependency. func (b *Builder) addTransitiveLinkDeps(a, a1 *Action, shlib string) { // Expand Deps to include all built packages, for the linker. // Use breadth-first search to find rebuilt-for-test packages // before the standard ones. // TODO(rsc): Eliminate the standard ones from the action graph, // which will require doing a little bit more rebuilding. workq := []*Action{a1} haveDep := map[string]bool{} if a1.Package != nil { haveDep[a1.Package.ImportPath] = true } for i := 0; i < len(workq); i++ { a1 := workq[i] for _, a2 := range a1.Deps { // TODO(rsc): Find a better discriminator than the Mode strings, once the dust settles. if a2.Package == nil || (a2.Mode != "build-install" && a2.Mode != "build") || haveDep[a2.Package.ImportPath] { continue } haveDep[a2.Package.ImportPath] = true a.Deps = append(a.Deps, a2) if a2.Mode == "build-install" { a2 = a2.Deps[0] // walk children of "build" action } workq = append(workq, a2) } } // If this is go build -linkshared, then the link depends on the shared libraries // in addition to the packages themselves. (The compile steps do not.) if cfg.BuildLinkshared { haveShlib := map[string]bool{shlib: true} for _, a1 := range a.Deps { p1 := a1.Package if p1 == nil || p1.Shlib == "" || haveShlib[filepath.Base(p1.Shlib)] { continue } haveShlib[filepath.Base(p1.Shlib)] = true // TODO(rsc): The use of ModeInstall here is suspect, but if we only do ModeBuild, // we'll end up building an overall library or executable that depends at runtime // on other libraries that are out-of-date, which is clearly not good either. // We call it ModeBuggyInstall to make clear that this is not right. a.Deps = append(a.Deps, b.linkSharedAction(ModeBuggyInstall, ModeBuggyInstall, p1.Shlib, nil)) } } } // addInstallHeaderAction adds an install header action to a, if needed. // The action a should be an install action as generated by either // b.CompileAction or b.LinkAction with mode=ModeInstall, // and so a.Deps[0] is the corresponding build action. func (b *Builder) addInstallHeaderAction(a *Action) { // Install header for cgo in c-archive and c-shared modes. p := a.Package if p.UsesCgo() && (cfg.BuildBuildmode == "c-archive" || cfg.BuildBuildmode == "c-shared") { hdrTarget := a.Target[:len(a.Target)-len(filepath.Ext(a.Target))] + ".h" if cfg.BuildContext.Compiler == "gccgo" && cfg.BuildO == "" { // For the header file, remove the "lib" // added by go/build, so we generate pkg.h // rather than libpkg.h. dir, file := filepath.Split(hdrTarget) file = strings.TrimPrefix(file, "lib") hdrTarget = filepath.Join(dir, file) } ah := &Action{ Mode: "install header", Package: a.Package, Deps: []*Action{a.Deps[0]}, Func: (*Builder).installHeader, Objdir: a.Deps[0].Objdir, Target: hdrTarget, } a.Deps = append(a.Deps, ah) } } // buildmodeShared takes the "go build" action a1 into the building of a shared library of a1.Deps. // That is, the input a1 represents "go build pkgs" and the result represents "go build -buildmode=shared pkgs". func (b *Builder) buildmodeShared(mode, depMode BuildMode, args []string, pkgs []*load.Package, a1 *Action) *Action { name, err := libname(args, pkgs) if err != nil { base.Fatalf("%v", err) } return b.linkSharedAction(mode, depMode, name, a1) } // linkSharedAction takes a grouping action a1 corresponding to a list of built packages // and returns an action that links them together into a shared library with the name shlib. // If a1 is nil, shlib should be an absolute path to an existing shared library, // and then linkSharedAction reads that library to find out the package list. func (b *Builder) linkSharedAction(mode, depMode BuildMode, shlib string, a1 *Action) *Action { fullShlib := shlib shlib = filepath.Base(shlib) a := b.cacheAction("build-shlib "+shlib, nil, func() *Action { if a1 == nil { // TODO(rsc): Need to find some other place to store config, // not in pkg directory. See golang.org/issue/22196. pkgs := readpkglist(fullShlib) a1 = &Action{ Mode: "shlib packages", } for _, p := range pkgs { a1.Deps = append(a1.Deps, b.CompileAction(mode, depMode, p)) } } // Fake package to hold ldflags. // As usual shared libraries are a kludgy, abstraction-violating special case: // we let them use the flags specified for the command-line arguments. p := &load.Package{} p.Internal.CmdlinePkg = true p.Internal.Ldflags = load.BuildLdflags.For(p) p.Internal.Gccgoflags = load.BuildGccgoflags.For(p) // Add implicit dependencies to pkgs list. // Currently buildmode=shared forces external linking mode, and // external linking mode forces an import of runtime/cgo (and // math on arm). So if it was not passed on the command line and // it is not present in another shared library, add it here. // TODO(rsc): Maybe this should only happen if "runtime" is in the original package set. // TODO(rsc): This should probably be changed to use load.LinkerDeps(p). // TODO(rsc): We don't add standard library imports for gccgo // because they are all always linked in anyhow. // Maybe load.LinkerDeps should be used and updated. a := &Action{ Mode: "go build -buildmode=shared", Package: p, Objdir: b.NewObjdir(), Func: (*Builder).linkShared, Deps: []*Action{a1}, } a.Target = filepath.Join(a.Objdir, shlib) if cfg.BuildToolchainName != "gccgo" { add := func(a1 *Action, pkg string, force bool) { for _, a2 := range a1.Deps { if a2.Package != nil && a2.Package.ImportPath == pkg { return } } var stk load.ImportStack p := load.LoadImportWithFlags(pkg, base.Cwd, nil, &stk, nil, 0) if p.Error != nil { base.Fatalf("load %s: %v", pkg, p.Error) } // Assume that if pkg (runtime/cgo or math) // is already accounted for in a different shared library, // then that shared library also contains runtime, // so that anything we do will depend on that library, // so we don't need to include pkg in our shared library. if force || p.Shlib == "" || filepath.Base(p.Shlib) == pkg { a1.Deps = append(a1.Deps, b.CompileAction(depMode, depMode, p)) } } add(a1, "runtime/cgo", false) if cfg.Goarch == "arm" { add(a1, "math", false) } // The linker step still needs all the usual linker deps. // (For example, the linker always opens runtime.a.) for _, dep := range load.LinkerDeps(nil) { add(a, dep, true) } } b.addTransitiveLinkDeps(a, a1, shlib) return a }) // Install result. if (mode == ModeInstall || mode == ModeBuggyInstall) && a.Func != nil { buildAction := a a = b.cacheAction("install-shlib "+shlib, nil, func() *Action { // Determine the eventual install target. // The install target is root/pkg/shlib, where root is the source root // in which all the packages lie. // TODO(rsc): Perhaps this cross-root check should apply to the full // transitive package dependency list, not just the ones named // on the command line? pkgDir := a1.Deps[0].Package.Internal.Build.PkgTargetRoot for _, a2 := range a1.Deps { if dir := a2.Package.Internal.Build.PkgTargetRoot; dir != pkgDir { base.Fatalf("installing shared library: cannot use packages %s and %s from different roots %s and %s", a1.Deps[0].Package.ImportPath, a2.Package.ImportPath, pkgDir, dir) } } // TODO(rsc): Find out and explain here why gccgo is different. if cfg.BuildToolchainName == "gccgo" { pkgDir = filepath.Join(pkgDir, "shlibs") } target := filepath.Join(pkgDir, shlib) a := &Action{ Mode: "go install -buildmode=shared", Objdir: buildAction.Objdir, Func: BuildInstallFunc, Deps: []*Action{buildAction}, Target: target, } for _, a2 := range buildAction.Deps[0].Deps { p := a2.Package if p.Target == "" { continue } a.Deps = append(a.Deps, &Action{ Mode: "shlibname", Package: p, Func: (*Builder).installShlibname, Target: strings.TrimSuffix(p.Target, ".a") + ".shlibname", Deps: []*Action{a.Deps[0]}, }) } return a }) } return a }