// Copyright 2019 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // +build ppc64le package elliptic import ( "crypto/subtle" "encoding/binary" "math/big" ) // This was ported from the s390x implementation for ppc64le. // Some hints are included here for changes that should be // in the big endian ppc64 implementation, however more // investigation and testing is needed for the ppc64 big // endian version to work. type p256CurveFast struct { *CurveParams } type p256Point struct { x [32]byte y [32]byte z [32]byte } var ( p256 Curve p256PreFast *[37][64]p256Point ) func initP256Arch() { p256 = p256CurveFast{p256Params} initTable() return } func (curve p256CurveFast) Params() *CurveParams { return curve.CurveParams } // Functions implemented in p256_asm_ppc64le.s // Montgomery multiplication modulo P256 // //go:noescape func p256MulAsm(res, in1, in2 []byte) // Montgomery square modulo P256 // func p256Sqr(res, in []byte) { p256MulAsm(res, in, in) } // Montgomery multiplication by 1 // //go:noescape func p256FromMont(res, in []byte) // iff cond == 1 val <- -val // //go:noescape func p256NegCond(val *p256Point, cond int) // if cond == 0 res <- b; else res <- a // //go:noescape func p256MovCond(res, a, b *p256Point, cond int) // Constant time table access // //go:noescape func p256Select(point *p256Point, table []p256Point, idx int) // //go:noescape func p256SelectBase(point *p256Point, table []p256Point, idx int) // Point add with P2 being affine point // If sign == 1 -> P2 = -P2 // If sel == 0 -> P3 = P1 // if zero == 0 -> P3 = P2 // //go:noescape func p256PointAddAffineAsm(res, in1, in2 *p256Point, sign, sel, zero int) // Point add // //go:noescape func p256PointAddAsm(res, in1, in2 *p256Point) int // //go:noescape func p256PointDoubleAsm(res, in *p256Point) // The result should be a slice in LE order, but the slice // from big.Bytes is in BE order. // TODO: For big endian implementation, do not reverse bytes. // func fromBig(big *big.Int) []byte { // This could be done a lot more efficiently... res := big.Bytes() t := make([]byte, 32) if len(res) < 32 { copy(t[32-len(res):], res) } else if len(res) == 32 { copy(t, res) } else { copy(t, res[len(res)-32:]) } p256ReverseBytes(t, t) return t } // p256GetMultiplier makes sure byte array will have 32 byte elements, If the scalar // is equal or greater than the order of the group, it's reduced modulo that order. func p256GetMultiplier(in []byte) []byte { n := new(big.Int).SetBytes(in) if n.Cmp(p256Params.N) >= 0 { n.Mod(n, p256Params.N) } return fromBig(n) } // p256MulAsm operates in a Montgomery domain with R = 2^256 mod p, where p is the // underlying field of the curve. (See initP256 for the value.) Thus rr here is // R×R mod p. See comment in Inverse about how this is used. // TODO: For big endian implementation, the bytes in these slices should be in reverse order, // as found in the s390x implementation. var rr = []byte{0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0, 0xff, 0xff, 0xff, 0xff, 0xfb, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfd, 0xff, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00} // (This is one, in the Montgomery domain.) var one = []byte{0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00} func maybeReduceModP(in *big.Int) *big.Int { if in.Cmp(p256Params.P) < 0 { return in } return new(big.Int).Mod(in, p256Params.P) } // p256ReverseBytes copies the first 32 bytes from in to res in reverse order. func p256ReverseBytes(res, in []byte) { // remove bounds check in = in[:32] res = res[:32] // Load in reverse order a := binary.BigEndian.Uint64(in[0:]) b := binary.BigEndian.Uint64(in[8:]) c := binary.BigEndian.Uint64(in[16:]) d := binary.BigEndian.Uint64(in[24:]) // Store in normal order binary.LittleEndian.PutUint64(res[0:], d) binary.LittleEndian.PutUint64(res[8:], c) binary.LittleEndian.PutUint64(res[16:], b) binary.LittleEndian.PutUint64(res[24:], a) } func (curve p256CurveFast) CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int) { var r1, r2 p256Point scalarReduced := p256GetMultiplier(baseScalar) r1IsInfinity := scalarIsZero(scalarReduced) r1.p256BaseMult(scalarReduced) copy(r2.x[:], fromBig(maybeReduceModP(bigX))) copy(r2.y[:], fromBig(maybeReduceModP(bigY))) copy(r2.z[:], one) p256MulAsm(r2.x[:], r2.x[:], rr[:]) p256MulAsm(r2.y[:], r2.y[:], rr[:]) scalarReduced = p256GetMultiplier(scalar) r2IsInfinity := scalarIsZero(scalarReduced) r2.p256ScalarMult(scalarReduced) var sum, double p256Point pointsEqual := p256PointAddAsm(&sum, &r1, &r2) p256PointDoubleAsm(&double, &r1) p256MovCond(&sum, &double, &sum, pointsEqual) p256MovCond(&sum, &r1, &sum, r2IsInfinity) p256MovCond(&sum, &r2, &sum, r1IsInfinity) return sum.p256PointToAffine() } func (curve p256CurveFast) ScalarBaseMult(scalar []byte) (x, y *big.Int) { var r p256Point reducedScalar := p256GetMultiplier(scalar) r.p256BaseMult(reducedScalar) return r.p256PointToAffine() } func (curve p256CurveFast) ScalarMult(bigX, bigY *big.Int, scalar []byte) (x, y *big.Int) { scalarReduced := p256GetMultiplier(scalar) var r p256Point copy(r.x[:], fromBig(maybeReduceModP(bigX))) copy(r.y[:], fromBig(maybeReduceModP(bigY))) copy(r.z[:], one) p256MulAsm(r.x[:], r.x[:], rr[:]) p256MulAsm(r.y[:], r.y[:], rr[:]) r.p256ScalarMult(scalarReduced) return r.p256PointToAffine() } func scalarIsZero(scalar []byte) int { // If any byte is not zero, return 0. // Check for -0.... since that appears to compare to 0. b := byte(0) for _, s := range scalar { b |= s } return subtle.ConstantTimeByteEq(b, 0) } func (p *p256Point) p256PointToAffine() (x, y *big.Int) { zInv := make([]byte, 32) zInvSq := make([]byte, 32) p256Inverse(zInv, p.z[:]) p256Sqr(zInvSq, zInv) p256MulAsm(zInv, zInv, zInvSq) p256MulAsm(zInvSq, p.x[:], zInvSq) p256MulAsm(zInv, p.y[:], zInv) p256FromMont(zInvSq, zInvSq) p256FromMont(zInv, zInv) // SetBytes expects a slice in big endian order, // since ppc64le is little endian, reverse the bytes. // TODO: For big endian, bytes don't need to be reversed. p256ReverseBytes(zInvSq, zInvSq) p256ReverseBytes(zInv, zInv) rx := new(big.Int).SetBytes(zInvSq) ry := new(big.Int).SetBytes(zInv) return rx, ry } // p256Inverse sets out to in^-1 mod p. func p256Inverse(out, in []byte) { var stack [6 * 32]byte p2 := stack[32*0 : 32*0+32] p4 := stack[32*1 : 32*1+32] p8 := stack[32*2 : 32*2+32] p16 := stack[32*3 : 32*3+32] p32 := stack[32*4 : 32*4+32] p256Sqr(out, in) p256MulAsm(p2, out, in) // 3*p p256Sqr(out, p2) p256Sqr(out, out) p256MulAsm(p4, out, p2) // f*p p256Sqr(out, p4) p256Sqr(out, out) p256Sqr(out, out) p256Sqr(out, out) p256MulAsm(p8, out, p4) // ff*p p256Sqr(out, p8) for i := 0; i < 7; i++ { p256Sqr(out, out) } p256MulAsm(p16, out, p8) // ffff*p p256Sqr(out, p16) for i := 0; i < 15; i++ { p256Sqr(out, out) } p256MulAsm(p32, out, p16) // ffffffff*p p256Sqr(out, p32) for i := 0; i < 31; i++ { p256Sqr(out, out) } p256MulAsm(out, out, in) for i := 0; i < 32*4; i++ { p256Sqr(out, out) } p256MulAsm(out, out, p32) for i := 0; i < 32; i++ { p256Sqr(out, out) } p256MulAsm(out, out, p32) for i := 0; i < 16; i++ { p256Sqr(out, out) } p256MulAsm(out, out, p16) for i := 0; i < 8; i++ { p256Sqr(out, out) } p256MulAsm(out, out, p8) p256Sqr(out, out) p256Sqr(out, out) p256Sqr(out, out) p256Sqr(out, out) p256MulAsm(out, out, p4) p256Sqr(out, out) p256Sqr(out, out) p256MulAsm(out, out, p2) p256Sqr(out, out) p256Sqr(out, out) p256MulAsm(out, out, in) } func boothW5(in uint) (int, int) { var s uint = ^((in >> 5) - 1) var d uint = (1 << 6) - in - 1 d = (d & s) | (in & (^s)) d = (d >> 1) + (d & 1) return int(d), int(s & 1) } func boothW6(in uint) (int, int) { var s uint = ^((in >> 6) - 1) var d uint = (1 << 7) - in - 1 d = (d & s) | (in & (^s)) d = (d >> 1) + (d & 1) return int(d), int(s & 1) } func boothW7(in uint) (int, int) { var s uint = ^((in >> 7) - 1) var d uint = (1 << 8) - in - 1 d = (d & s) | (in & (^s)) d = (d >> 1) + (d & 1) return int(d), int(s & 1) } func initTable() { p256PreFast = new([37][64]p256Point) // TODO: For big endian, these slices should be in reverse byte order, // as found in the s390x implementation. basePoint := p256Point{ x: [32]byte{0x3c, 0x14, 0xa9, 0x18, 0xd4, 0x30, 0xe7, 0x79, 0x01, 0xb6, 0xed, 0x5f, 0xfc, 0x95, 0xba, 0x75, 0x10, 0x25, 0x62, 0x77, 0x2b, 0x73, 0xfb, 0x79, 0xc6, 0x55, 0x37, 0xa5, 0x76, 0x5f, 0x90, 0x18}, //(p256.x*2^256)%p y: [32]byte{0x0a, 0x56, 0x95, 0xce, 0x57, 0x53, 0xf2, 0xdd, 0x5c, 0xe4, 0x19, 0xba, 0xe4, 0xb8, 0x4a, 0x8b, 0x25, 0xf3, 0x21, 0xdd, 0x88, 0x86, 0xe8, 0xd2, 0x85, 0x5d, 0x88, 0x25, 0x18, 0xff, 0x71, 0x85}, //(p256.y*2^256)%p z: [32]byte{0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00}, //(p256.z*2^256)%p } t1 := new(p256Point) t2 := new(p256Point) *t2 = basePoint zInv := make([]byte, 32) zInvSq := make([]byte, 32) for j := 0; j < 64; j++ { *t1 = *t2 for i := 0; i < 37; i++ { // The window size is 7 so we need to double 7 times. if i != 0 { for k := 0; k < 7; k++ { p256PointDoubleAsm(t1, t1) } } // Convert the point to affine form. (Its values are // still in Montgomery form however.) p256Inverse(zInv, t1.z[:]) p256Sqr(zInvSq, zInv) p256MulAsm(zInv, zInv, zInvSq) p256MulAsm(t1.x[:], t1.x[:], zInvSq) p256MulAsm(t1.y[:], t1.y[:], zInv) copy(t1.z[:], basePoint.z[:]) // Update the table entry copy(p256PreFast[i][j].x[:], t1.x[:]) copy(p256PreFast[i][j].y[:], t1.y[:]) } if j == 0 { p256PointDoubleAsm(t2, &basePoint) } else { p256PointAddAsm(t2, t2, &basePoint) } } } func (p *p256Point) p256BaseMult(scalar []byte) { // TODO: For big endian, the index should be 31 not 0. wvalue := (uint(scalar[0]) << 1) & 0xff sel, sign := boothW7(uint(wvalue)) p256SelectBase(p, p256PreFast[0][:], sel) p256NegCond(p, sign) copy(p.z[:], one[:]) var t0 p256Point copy(t0.z[:], one[:]) index := uint(6) zero := sel for i := 1; i < 37; i++ { // TODO: For big endian, use the same index values as found // in the s390x implementation. if index < 247 { wvalue = ((uint(scalar[index/8]) >> (index % 8)) + (uint(scalar[index/8+1]) << (8 - (index % 8)))) & 0xff } else { wvalue = (uint(scalar[index/8]) >> (index % 8)) & 0xff } index += 7 sel, sign = boothW7(uint(wvalue)) p256SelectBase(&t0, p256PreFast[i][:], sel) p256PointAddAffineAsm(p, p, &t0, sign, sel, zero) zero |= sel } } func (p *p256Point) p256ScalarMult(scalar []byte) { // precomp is a table of precomputed points that stores powers of p // from p^1 to p^16. var precomp [16]p256Point var t0, t1, t2, t3 p256Point *&precomp[0] = *p p256PointDoubleAsm(&t0, p) p256PointDoubleAsm(&t1, &t0) p256PointDoubleAsm(&t2, &t1) p256PointDoubleAsm(&t3, &t2) *&precomp[1] = t0 *&precomp[3] = t1 *&precomp[7] = t2 *&precomp[15] = t3 p256PointAddAsm(&t0, &t0, p) p256PointAddAsm(&t1, &t1, p) p256PointAddAsm(&t2, &t2, p) *&precomp[2] = t0 *&precomp[4] = t1 *&precomp[8] = t2 p256PointDoubleAsm(&t0, &t0) p256PointDoubleAsm(&t1, &t1) *&precomp[5] = t0 *&precomp[9] = t1 p256PointAddAsm(&t2, &t0, p) p256PointAddAsm(&t1, &t1, p) *&precomp[6] = t2 *&precomp[10] = t1 p256PointDoubleAsm(&t0, &t0) p256PointDoubleAsm(&t2, &t2) *&precomp[11] = t0 *&precomp[13] = t2 p256PointAddAsm(&t0, &t0, p) p256PointAddAsm(&t2, &t2, p) *&precomp[12] = t0 *&precomp[14] = t2 // Start scanning the window from top bit index := uint(254) var sel, sign int // TODO: For big endian, use index found in s390x implementation. wvalue := (uint(scalar[index/8]) >> (index % 8)) & 0x3f sel, _ = boothW5(uint(wvalue)) p256Select(p, precomp[:], sel) zero := sel for index > 4 { index -= 5 p256PointDoubleAsm(p, p) p256PointDoubleAsm(p, p) p256PointDoubleAsm(p, p) p256PointDoubleAsm(p, p) p256PointDoubleAsm(p, p) // TODO: For big endian, use index values as found in s390x implementation. if index < 247 { wvalue = ((uint(scalar[index/8]) >> (index % 8)) + (uint(scalar[index/8+1]) << (8 - (index % 8)))) & 0x3f } else { wvalue = (uint(scalar[index/8]) >> (index % 8)) & 0x3f } sel, sign = boothW5(uint(wvalue)) p256Select(&t0, precomp[:], sel) p256NegCond(&t0, sign) p256PointAddAsm(&t1, p, &t0) p256MovCond(&t1, &t1, p, sel) p256MovCond(p, &t1, &t0, zero) zero |= sel } p256PointDoubleAsm(p, p) p256PointDoubleAsm(p, p) p256PointDoubleAsm(p, p) p256PointDoubleAsm(p, p) p256PointDoubleAsm(p, p) // TODO: Use index for big endian as found in s390x implementation. wvalue = (uint(scalar[0]) << 1) & 0x3f sel, sign = boothW5(uint(wvalue)) p256Select(&t0, precomp[:], sel) p256NegCond(&t0, sign) p256PointAddAsm(&t1, p, &t0) p256MovCond(&t1, &t1, p, sel) p256MovCond(p, &t1, &t0, zero) }