// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package elf implements access to ELF object files. package elf import ( "bytes" "compress/zlib" "debug/dwarf" "encoding/binary" "errors" "fmt" "io" "os" "strings" ) // seekStart, seekCurrent, seekEnd are copies of // io.SeekStart, io.SeekCurrent, and io.SeekEnd. // We can't use the ones from package io because // we want this code to build with Go 1.4 during // cmd/dist bootstrap. const ( seekStart int = 0 seekCurrent int = 1 seekEnd int = 2 ) // TODO: error reporting detail /* * Internal ELF representation */ // A FileHeader represents an ELF file header. type FileHeader struct { Class Class Data Data Version Version OSABI OSABI ABIVersion uint8 ByteOrder binary.ByteOrder Type Type Machine Machine Entry uint64 } // A File represents an open ELF file. type File struct { FileHeader Sections []*Section Progs []*Prog closer io.Closer gnuNeed []verneed gnuVersym []byte } // A SectionHeader represents a single ELF section header. type SectionHeader struct { Name string Type SectionType Flags SectionFlag Addr uint64 Offset uint64 Size uint64 Link uint32 Info uint32 Addralign uint64 Entsize uint64 // FileSize is the size of this section in the file in bytes. // If a section is compressed, FileSize is the size of the // compressed data, while Size (above) is the size of the // uncompressed data. FileSize uint64 } // A Section represents a single section in an ELF file. type Section struct { SectionHeader // Embed ReaderAt for ReadAt method. // Do not embed SectionReader directly // to avoid having Read and Seek. // If a client wants Read and Seek it must use // Open() to avoid fighting over the seek offset // with other clients. // // ReaderAt may be nil if the section is not easily available // in a random-access form. For example, a compressed section // may have a nil ReaderAt. io.ReaderAt sr *io.SectionReader compressionType CompressionType compressionOffset int64 } // Data reads and returns the contents of the ELF section. // Even if the section is stored compressed in the ELF file, // Data returns uncompressed data. func (s *Section) Data() ([]byte, error) { dat := make([]byte, s.Size) n, err := io.ReadFull(s.Open(), dat) return dat[0:n], err } // stringTable reads and returns the string table given by the // specified link value. func (f *File) stringTable(link uint32) ([]byte, error) { if link <= 0 || link >= uint32(len(f.Sections)) { return nil, errors.New("section has invalid string table link") } return f.Sections[link].Data() } // Open returns a new ReadSeeker reading the ELF section. // Even if the section is stored compressed in the ELF file, // the ReadSeeker reads uncompressed data. func (s *Section) Open() io.ReadSeeker { if s.Flags&SHF_COMPRESSED == 0 { return io.NewSectionReader(s.sr, 0, 1<<63-1) } if s.compressionType == COMPRESS_ZLIB { return &readSeekerFromReader{ reset: func() (io.Reader, error) { fr := io.NewSectionReader(s.sr, s.compressionOffset, int64(s.FileSize)-s.compressionOffset) return zlib.NewReader(fr) }, size: int64(s.Size), } } err := &FormatError{int64(s.Offset), "unknown compression type", s.compressionType} return errorReader{err} } // A ProgHeader represents a single ELF program header. type ProgHeader struct { Type ProgType Flags ProgFlag Off uint64 Vaddr uint64 Paddr uint64 Filesz uint64 Memsz uint64 Align uint64 } // A Prog represents a single ELF program header in an ELF binary. type Prog struct { ProgHeader // Embed ReaderAt for ReadAt method. // Do not embed SectionReader directly // to avoid having Read and Seek. // If a client wants Read and Seek it must use // Open() to avoid fighting over the seek offset // with other clients. io.ReaderAt sr *io.SectionReader } // Open returns a new ReadSeeker reading the ELF program body. func (p *Prog) Open() io.ReadSeeker { return io.NewSectionReader(p.sr, 0, 1<<63-1) } // A Symbol represents an entry in an ELF symbol table section. type Symbol struct { Name string Info, Other byte Section SectionIndex Value, Size uint64 // Version and Library are present only for the dynamic symbol // table. Version string Library string } /* * ELF reader */ type FormatError struct { off int64 msg string val interface{} } func (e *FormatError) Error() string { msg := e.msg if e.val != nil { msg += fmt.Sprintf(" '%v' ", e.val) } msg += fmt.Sprintf("in record at byte %#x", e.off) return msg } // Open opens the named file using os.Open and prepares it for use as an ELF binary. func Open(name string) (*File, error) { f, err := os.Open(name) if err != nil { return nil, err } ff, err := NewFile(f) if err != nil { f.Close() return nil, err } ff.closer = f return ff, nil } // Close closes the File. // If the File was created using NewFile directly instead of Open, // Close has no effect. func (f *File) Close() error { var err error if f.closer != nil { err = f.closer.Close() f.closer = nil } return err } // SectionByType returns the first section in f with the // given type, or nil if there is no such section. func (f *File) SectionByType(typ SectionType) *Section { for _, s := range f.Sections { if s.Type == typ { return s } } return nil } // NewFile creates a new File for accessing an ELF binary in an underlying reader. // The ELF binary is expected to start at position 0 in the ReaderAt. func NewFile(r io.ReaderAt) (*File, error) { sr := io.NewSectionReader(r, 0, 1<<63-1) // Read and decode ELF identifier var ident [16]uint8 if _, err := r.ReadAt(ident[0:], 0); err != nil { return nil, err } if ident[0] != '\x7f' || ident[1] != 'E' || ident[2] != 'L' || ident[3] != 'F' { return nil, &FormatError{0, "bad magic number", ident[0:4]} } f := new(File) f.Class = Class(ident[EI_CLASS]) switch f.Class { case ELFCLASS32: case ELFCLASS64: // ok default: return nil, &FormatError{0, "unknown ELF class", f.Class} } f.Data = Data(ident[EI_DATA]) switch f.Data { case ELFDATA2LSB: f.ByteOrder = binary.LittleEndian case ELFDATA2MSB: f.ByteOrder = binary.BigEndian default: return nil, &FormatError{0, "unknown ELF data encoding", f.Data} } f.Version = Version(ident[EI_VERSION]) if f.Version != EV_CURRENT { return nil, &FormatError{0, "unknown ELF version", f.Version} } f.OSABI = OSABI(ident[EI_OSABI]) f.ABIVersion = ident[EI_ABIVERSION] // Read ELF file header var phoff int64 var phentsize, phnum int var shoff int64 var shentsize, shnum, shstrndx int switch f.Class { case ELFCLASS32: hdr := new(Header32) sr.Seek(0, seekStart) if err := binary.Read(sr, f.ByteOrder, hdr); err != nil { return nil, err } f.Type = Type(hdr.Type) f.Machine = Machine(hdr.Machine) f.Entry = uint64(hdr.Entry) if v := Version(hdr.Version); v != f.Version { return nil, &FormatError{0, "mismatched ELF version", v} } phoff = int64(hdr.Phoff) phentsize = int(hdr.Phentsize) phnum = int(hdr.Phnum) shoff = int64(hdr.Shoff) shentsize = int(hdr.Shentsize) shnum = int(hdr.Shnum) shstrndx = int(hdr.Shstrndx) case ELFCLASS64: hdr := new(Header64) sr.Seek(0, seekStart) if err := binary.Read(sr, f.ByteOrder, hdr); err != nil { return nil, err } f.Type = Type(hdr.Type) f.Machine = Machine(hdr.Machine) f.Entry = hdr.Entry if v := Version(hdr.Version); v != f.Version { return nil, &FormatError{0, "mismatched ELF version", v} } phoff = int64(hdr.Phoff) phentsize = int(hdr.Phentsize) phnum = int(hdr.Phnum) shoff = int64(hdr.Shoff) shentsize = int(hdr.Shentsize) shnum = int(hdr.Shnum) shstrndx = int(hdr.Shstrndx) } if shoff == 0 && shnum != 0 { return nil, &FormatError{0, "invalid ELF shnum for shoff=0", shnum} } if shnum > 0 && shstrndx >= shnum { return nil, &FormatError{0, "invalid ELF shstrndx", shstrndx} } // Read program headers f.Progs = make([]*Prog, phnum) for i := 0; i < phnum; i++ { off := phoff + int64(i)*int64(phentsize) sr.Seek(off, seekStart) p := new(Prog) switch f.Class { case ELFCLASS32: ph := new(Prog32) if err := binary.Read(sr, f.ByteOrder, ph); err != nil { return nil, err } p.ProgHeader = ProgHeader{ Type: ProgType(ph.Type), Flags: ProgFlag(ph.Flags), Off: uint64(ph.Off), Vaddr: uint64(ph.Vaddr), Paddr: uint64(ph.Paddr), Filesz: uint64(ph.Filesz), Memsz: uint64(ph.Memsz), Align: uint64(ph.Align), } case ELFCLASS64: ph := new(Prog64) if err := binary.Read(sr, f.ByteOrder, ph); err != nil { return nil, err } p.ProgHeader = ProgHeader{ Type: ProgType(ph.Type), Flags: ProgFlag(ph.Flags), Off: ph.Off, Vaddr: ph.Vaddr, Paddr: ph.Paddr, Filesz: ph.Filesz, Memsz: ph.Memsz, Align: ph.Align, } } p.sr = io.NewSectionReader(r, int64(p.Off), int64(p.Filesz)) p.ReaderAt = p.sr f.Progs[i] = p } // Read section headers f.Sections = make([]*Section, shnum) names := make([]uint32, shnum) for i := 0; i < shnum; i++ { off := shoff + int64(i)*int64(shentsize) sr.Seek(off, seekStart) s := new(Section) switch f.Class { case ELFCLASS32: sh := new(Section32) if err := binary.Read(sr, f.ByteOrder, sh); err != nil { return nil, err } names[i] = sh.Name s.SectionHeader = SectionHeader{ Type: SectionType(sh.Type), Flags: SectionFlag(sh.Flags), Addr: uint64(sh.Addr), Offset: uint64(sh.Off), FileSize: uint64(sh.Size), Link: sh.Link, Info: sh.Info, Addralign: uint64(sh.Addralign), Entsize: uint64(sh.Entsize), } case ELFCLASS64: sh := new(Section64) if err := binary.Read(sr, f.ByteOrder, sh); err != nil { return nil, err } names[i] = sh.Name s.SectionHeader = SectionHeader{ Type: SectionType(sh.Type), Flags: SectionFlag(sh.Flags), Offset: sh.Off, FileSize: sh.Size, Addr: sh.Addr, Link: sh.Link, Info: sh.Info, Addralign: sh.Addralign, Entsize: sh.Entsize, } } s.sr = io.NewSectionReader(r, int64(s.Offset), int64(s.FileSize)) if s.Flags&SHF_COMPRESSED == 0 { s.ReaderAt = s.sr s.Size = s.FileSize } else { // Read the compression header. switch f.Class { case ELFCLASS32: ch := new(Chdr32) if err := binary.Read(s.sr, f.ByteOrder, ch); err != nil { return nil, err } s.compressionType = CompressionType(ch.Type) s.Size = uint64(ch.Size) s.Addralign = uint64(ch.Addralign) s.compressionOffset = int64(binary.Size(ch)) case ELFCLASS64: ch := new(Chdr64) if err := binary.Read(s.sr, f.ByteOrder, ch); err != nil { return nil, err } s.compressionType = CompressionType(ch.Type) s.Size = ch.Size s.Addralign = ch.Addralign s.compressionOffset = int64(binary.Size(ch)) } } f.Sections[i] = s } if len(f.Sections) == 0 { return f, nil } // Load section header string table. shstrtab, err := f.Sections[shstrndx].Data() if err != nil { return nil, err } for i, s := range f.Sections { var ok bool s.Name, ok = getString(shstrtab, int(names[i])) if !ok { return nil, &FormatError{shoff + int64(i*shentsize), "bad section name index", names[i]} } } return f, nil } // getSymbols returns a slice of Symbols from parsing the symbol table // with the given type, along with the associated string table. func (f *File) getSymbols(typ SectionType) ([]Symbol, []byte, error) { switch f.Class { case ELFCLASS64: return f.getSymbols64(typ) case ELFCLASS32: return f.getSymbols32(typ) } return nil, nil, errors.New("not implemented") } // ErrNoSymbols is returned by File.Symbols and File.DynamicSymbols // if there is no such section in the File. var ErrNoSymbols = errors.New("no symbol section") func (f *File) getSymbols32(typ SectionType) ([]Symbol, []byte, error) { symtabSection := f.SectionByType(typ) if symtabSection == nil { return nil, nil, ErrNoSymbols } data, err := symtabSection.Data() if err != nil { return nil, nil, errors.New("cannot load symbol section") } symtab := bytes.NewReader(data) if symtab.Len()%Sym32Size != 0 { return nil, nil, errors.New("length of symbol section is not a multiple of SymSize") } strdata, err := f.stringTable(symtabSection.Link) if err != nil { return nil, nil, errors.New("cannot load string table section") } // The first entry is all zeros. var skip [Sym32Size]byte symtab.Read(skip[:]) symbols := make([]Symbol, symtab.Len()/Sym32Size) i := 0 var sym Sym32 for symtab.Len() > 0 { binary.Read(symtab, f.ByteOrder, &sym) str, _ := getString(strdata, int(sym.Name)) symbols[i].Name = str symbols[i].Info = sym.Info symbols[i].Other = sym.Other symbols[i].Section = SectionIndex(sym.Shndx) symbols[i].Value = uint64(sym.Value) symbols[i].Size = uint64(sym.Size) i++ } return symbols, strdata, nil } func (f *File) getSymbols64(typ SectionType) ([]Symbol, []byte, error) { symtabSection := f.SectionByType(typ) if symtabSection == nil { return nil, nil, ErrNoSymbols } data, err := symtabSection.Data() if err != nil { return nil, nil, errors.New("cannot load symbol section") } symtab := bytes.NewReader(data) if symtab.Len()%Sym64Size != 0 { return nil, nil, errors.New("length of symbol section is not a multiple of Sym64Size") } strdata, err := f.stringTable(symtabSection.Link) if err != nil { return nil, nil, errors.New("cannot load string table section") } // The first entry is all zeros. var skip [Sym64Size]byte symtab.Read(skip[:]) symbols := make([]Symbol, symtab.Len()/Sym64Size) i := 0 var sym Sym64 for symtab.Len() > 0 { binary.Read(symtab, f.ByteOrder, &sym) str, _ := getString(strdata, int(sym.Name)) symbols[i].Name = str symbols[i].Info = sym.Info symbols[i].Other = sym.Other symbols[i].Section = SectionIndex(sym.Shndx) symbols[i].Value = sym.Value symbols[i].Size = sym.Size i++ } return symbols, strdata, nil } // getString extracts a string from an ELF string table. func getString(section []byte, start int) (string, bool) { if start < 0 || start >= len(section) { return "", false } for end := start; end < len(section); end++ { if section[end] == 0 { return string(section[start:end]), true } } return "", false } // Section returns a section with the given name, or nil if no such // section exists. func (f *File) Section(name string) *Section { for _, s := range f.Sections { if s.Name == name { return s } } return nil } // applyRelocations applies relocations to dst. rels is a relocations section // in REL or RELA format. func (f *File) applyRelocations(dst []byte, rels []byte) error { switch { case f.Class == ELFCLASS64 && f.Machine == EM_X86_64: return f.applyRelocationsAMD64(dst, rels) case f.Class == ELFCLASS32 && f.Machine == EM_386: return f.applyRelocations386(dst, rels) case f.Class == ELFCLASS32 && f.Machine == EM_ARM: return f.applyRelocationsARM(dst, rels) case f.Class == ELFCLASS64 && f.Machine == EM_AARCH64: return f.applyRelocationsARM64(dst, rels) case f.Class == ELFCLASS32 && f.Machine == EM_PPC: return f.applyRelocationsPPC(dst, rels) case f.Class == ELFCLASS64 && f.Machine == EM_PPC64: return f.applyRelocationsPPC64(dst, rels) case f.Class == ELFCLASS32 && f.Machine == EM_MIPS: return f.applyRelocationsMIPS(dst, rels) case f.Class == ELFCLASS64 && f.Machine == EM_MIPS: return f.applyRelocationsMIPS64(dst, rels) case f.Class == ELFCLASS64 && f.Machine == EM_RISCV: return f.applyRelocationsRISCV64(dst, rels) case f.Class == ELFCLASS64 && f.Machine == EM_S390: return f.applyRelocationss390x(dst, rels) case f.Class == ELFCLASS64 && f.Machine == EM_SPARCV9: return f.applyRelocationsSPARC64(dst, rels) default: return errors.New("applyRelocations: not implemented") } } // canApplyRelocation reports whether we should try to apply a // relocation to a DWARF data section, given a pointer to the symbol // targeted by the relocation. // Most relocations in DWARF data tend to be section-relative, but // some target non-section symbols (for example, low_PC attrs on // subprogram or compilation unit DIEs that target function symbols). func canApplyRelocation(sym *Symbol) bool { return sym.Section != SHN_UNDEF && sym.Section < SHN_LORESERVE } func (f *File) applyRelocationsAMD64(dst []byte, rels []byte) error { // 24 is the size of Rela64. if len(rels)%24 != 0 { return errors.New("length of relocation section is not a multiple of 24") } symbols, _, err := f.getSymbols(SHT_SYMTAB) if err != nil { return err } b := bytes.NewReader(rels) var rela Rela64 for b.Len() > 0 { binary.Read(b, f.ByteOrder, &rela) symNo := rela.Info >> 32 t := R_X86_64(rela.Info & 0xffff) if symNo == 0 || symNo > uint64(len(symbols)) { continue } sym := &symbols[symNo-1] if !canApplyRelocation(sym) { continue } // There are relocations, so this must be a normal // object file. The code below handles only basic relocations // of the form S + A (symbol plus addend). switch t { case R_X86_64_64: if rela.Off+8 >= uint64(len(dst)) || rela.Addend < 0 { continue } val64 := sym.Value + uint64(rela.Addend) f.ByteOrder.PutUint64(dst[rela.Off:rela.Off+8], val64) case R_X86_64_32: if rela.Off+4 >= uint64(len(dst)) || rela.Addend < 0 { continue } val32 := uint32(sym.Value) + uint32(rela.Addend) f.ByteOrder.PutUint32(dst[rela.Off:rela.Off+4], val32) } } return nil } func (f *File) applyRelocations386(dst []byte, rels []byte) error { // 8 is the size of Rel32. if len(rels)%8 != 0 { return errors.New("length of relocation section is not a multiple of 8") } symbols, _, err := f.getSymbols(SHT_SYMTAB) if err != nil { return err } b := bytes.NewReader(rels) var rel Rel32 for b.Len() > 0 { binary.Read(b, f.ByteOrder, &rel) symNo := rel.Info >> 8 t := R_386(rel.Info & 0xff) if symNo == 0 || symNo > uint32(len(symbols)) { continue } sym := &symbols[symNo-1] if t == R_386_32 { if rel.Off+4 >= uint32(len(dst)) { continue } val := f.ByteOrder.Uint32(dst[rel.Off : rel.Off+4]) val += uint32(sym.Value) f.ByteOrder.PutUint32(dst[rel.Off:rel.Off+4], val) } } return nil } func (f *File) applyRelocationsARM(dst []byte, rels []byte) error { // 8 is the size of Rel32. if len(rels)%8 != 0 { return errors.New("length of relocation section is not a multiple of 8") } symbols, _, err := f.getSymbols(SHT_SYMTAB) if err != nil { return err } b := bytes.NewReader(rels) var rel Rel32 for b.Len() > 0 { binary.Read(b, f.ByteOrder, &rel) symNo := rel.Info >> 8 t := R_ARM(rel.Info & 0xff) if symNo == 0 || symNo > uint32(len(symbols)) { continue } sym := &symbols[symNo-1] switch t { case R_ARM_ABS32: if rel.Off+4 >= uint32(len(dst)) { continue } val := f.ByteOrder.Uint32(dst[rel.Off : rel.Off+4]) val += uint32(sym.Value) f.ByteOrder.PutUint32(dst[rel.Off:rel.Off+4], val) } } return nil } func (f *File) applyRelocationsARM64(dst []byte, rels []byte) error { // 24 is the size of Rela64. if len(rels)%24 != 0 { return errors.New("length of relocation section is not a multiple of 24") } symbols, _, err := f.getSymbols(SHT_SYMTAB) if err != nil { return err } b := bytes.NewReader(rels) var rela Rela64 for b.Len() > 0 { binary.Read(b, f.ByteOrder, &rela) symNo := rela.Info >> 32 t := R_AARCH64(rela.Info & 0xffff) if symNo == 0 || symNo > uint64(len(symbols)) { continue } sym := &symbols[symNo-1] if !canApplyRelocation(sym) { continue } // There are relocations, so this must be a normal // object file. The code below handles only basic relocations // of the form S + A (symbol plus addend). switch t { case R_AARCH64_ABS64: if rela.Off+8 >= uint64(len(dst)) || rela.Addend < 0 { continue } val64 := sym.Value + uint64(rela.Addend) f.ByteOrder.PutUint64(dst[rela.Off:rela.Off+8], val64) case R_AARCH64_ABS32: if rela.Off+4 >= uint64(len(dst)) || rela.Addend < 0 { continue } val32 := uint32(sym.Value) + uint32(rela.Addend) f.ByteOrder.PutUint32(dst[rela.Off:rela.Off+4], val32) } } return nil } func (f *File) applyRelocationsPPC(dst []byte, rels []byte) error { // 12 is the size of Rela32. if len(rels)%12 != 0 { return errors.New("length of relocation section is not a multiple of 12") } symbols, _, err := f.getSymbols(SHT_SYMTAB) if err != nil { return err } b := bytes.NewReader(rels) var rela Rela32 for b.Len() > 0 { binary.Read(b, f.ByteOrder, &rela) symNo := rela.Info >> 8 t := R_PPC(rela.Info & 0xff) if symNo == 0 || symNo > uint32(len(symbols)) { continue } sym := &symbols[symNo-1] if !canApplyRelocation(sym) { continue } switch t { case R_PPC_ADDR32: if rela.Off+4 >= uint32(len(dst)) || rela.Addend < 0 { continue } val32 := uint32(sym.Value) + uint32(rela.Addend) f.ByteOrder.PutUint32(dst[rela.Off:rela.Off+4], val32) } } return nil } func (f *File) applyRelocationsPPC64(dst []byte, rels []byte) error { // 24 is the size of Rela64. if len(rels)%24 != 0 { return errors.New("length of relocation section is not a multiple of 24") } symbols, _, err := f.getSymbols(SHT_SYMTAB) if err != nil { return err } b := bytes.NewReader(rels) var rela Rela64 for b.Len() > 0 { binary.Read(b, f.ByteOrder, &rela) symNo := rela.Info >> 32 t := R_PPC64(rela.Info & 0xffff) if symNo == 0 || symNo > uint64(len(symbols)) { continue } sym := &symbols[symNo-1] if !canApplyRelocation(sym) { continue } switch t { case R_PPC64_ADDR64: if rela.Off+8 >= uint64(len(dst)) || rela.Addend < 0 { continue } val64 := sym.Value + uint64(rela.Addend) f.ByteOrder.PutUint64(dst[rela.Off:rela.Off+8], val64) case R_PPC64_ADDR32: if rela.Off+4 >= uint64(len(dst)) || rela.Addend < 0 { continue } val32 := uint32(sym.Value) + uint32(rela.Addend) f.ByteOrder.PutUint32(dst[rela.Off:rela.Off+4], val32) } } return nil } func (f *File) applyRelocationsMIPS(dst []byte, rels []byte) error { // 8 is the size of Rel32. if len(rels)%8 != 0 { return errors.New("length of relocation section is not a multiple of 8") } symbols, _, err := f.getSymbols(SHT_SYMTAB) if err != nil { return err } b := bytes.NewReader(rels) var rel Rel32 for b.Len() > 0 { binary.Read(b, f.ByteOrder, &rel) symNo := rel.Info >> 8 t := R_MIPS(rel.Info & 0xff) if symNo == 0 || symNo > uint32(len(symbols)) { continue } sym := &symbols[symNo-1] switch t { case R_MIPS_32: if rel.Off+4 >= uint32(len(dst)) { continue } val := f.ByteOrder.Uint32(dst[rel.Off : rel.Off+4]) val += uint32(sym.Value) f.ByteOrder.PutUint32(dst[rel.Off:rel.Off+4], val) } } return nil } func (f *File) applyRelocationsMIPS64(dst []byte, rels []byte) error { // 24 is the size of Rela64. if len(rels)%24 != 0 { return errors.New("length of relocation section is not a multiple of 24") } symbols, _, err := f.getSymbols(SHT_SYMTAB) if err != nil { return err } b := bytes.NewReader(rels) var rela Rela64 for b.Len() > 0 { binary.Read(b, f.ByteOrder, &rela) var symNo uint64 var t R_MIPS if f.ByteOrder == binary.BigEndian { symNo = rela.Info >> 32 t = R_MIPS(rela.Info & 0xff) } else { symNo = rela.Info & 0xffffffff t = R_MIPS(rela.Info >> 56) } if symNo == 0 || symNo > uint64(len(symbols)) { continue } sym := &symbols[symNo-1] if !canApplyRelocation(sym) { continue } switch t { case R_MIPS_64: if rela.Off+8 >= uint64(len(dst)) || rela.Addend < 0 { continue } val64 := sym.Value + uint64(rela.Addend) f.ByteOrder.PutUint64(dst[rela.Off:rela.Off+8], val64) case R_MIPS_32: if rela.Off+4 >= uint64(len(dst)) || rela.Addend < 0 { continue } val32 := uint32(sym.Value) + uint32(rela.Addend) f.ByteOrder.PutUint32(dst[rela.Off:rela.Off+4], val32) } } return nil } func (f *File) applyRelocationsRISCV64(dst []byte, rels []byte) error { // 24 is the size of Rela64. if len(rels)%24 != 0 { return errors.New("length of relocation section is not a multiple of 24") } symbols, _, err := f.getSymbols(SHT_SYMTAB) if err != nil { return err } b := bytes.NewReader(rels) var rela Rela64 for b.Len() > 0 { binary.Read(b, f.ByteOrder, &rela) symNo := rela.Info >> 32 t := R_RISCV(rela.Info & 0xffff) if symNo == 0 || symNo > uint64(len(symbols)) { continue } sym := &symbols[symNo-1] if !canApplyRelocation(sym) { continue } switch t { case R_RISCV_64: if rela.Off+8 >= uint64(len(dst)) || rela.Addend < 0 { continue } val64 := sym.Value + uint64(rela.Addend) f.ByteOrder.PutUint64(dst[rela.Off:rela.Off+8], val64) case R_RISCV_32: if rela.Off+4 >= uint64(len(dst)) || rela.Addend < 0 { continue } val32 := uint32(sym.Value) + uint32(rela.Addend) f.ByteOrder.PutUint32(dst[rela.Off:rela.Off+4], val32) } } return nil } func (f *File) applyRelocationss390x(dst []byte, rels []byte) error { // 24 is the size of Rela64. if len(rels)%24 != 0 { return errors.New("length of relocation section is not a multiple of 24") } symbols, _, err := f.getSymbols(SHT_SYMTAB) if err != nil { return err } b := bytes.NewReader(rels) var rela Rela64 for b.Len() > 0 { binary.Read(b, f.ByteOrder, &rela) symNo := rela.Info >> 32 t := R_390(rela.Info & 0xffff) if symNo == 0 || symNo > uint64(len(symbols)) { continue } sym := &symbols[symNo-1] if !canApplyRelocation(sym) { continue } switch t { case R_390_64: if rela.Off+8 >= uint64(len(dst)) || rela.Addend < 0 { continue } val64 := sym.Value + uint64(rela.Addend) f.ByteOrder.PutUint64(dst[rela.Off:rela.Off+8], val64) case R_390_32: if rela.Off+4 >= uint64(len(dst)) || rela.Addend < 0 { continue } val32 := uint32(sym.Value) + uint32(rela.Addend) f.ByteOrder.PutUint32(dst[rela.Off:rela.Off+4], val32) } } return nil } func (f *File) applyRelocationsSPARC64(dst []byte, rels []byte) error { // 24 is the size of Rela64. if len(rels)%24 != 0 { return errors.New("length of relocation section is not a multiple of 24") } symbols, _, err := f.getSymbols(SHT_SYMTAB) if err != nil { return err } b := bytes.NewReader(rels) var rela Rela64 for b.Len() > 0 { binary.Read(b, f.ByteOrder, &rela) symNo := rela.Info >> 32 t := R_SPARC(rela.Info & 0xff) if symNo == 0 || symNo > uint64(len(symbols)) { continue } sym := &symbols[symNo-1] if !canApplyRelocation(sym) { continue } switch t { case R_SPARC_64, R_SPARC_UA64: if rela.Off+8 >= uint64(len(dst)) || rela.Addend < 0 { continue } val64 := sym.Value + uint64(rela.Addend) f.ByteOrder.PutUint64(dst[rela.Off:rela.Off+8], val64) case R_SPARC_32, R_SPARC_UA32: if rela.Off+4 >= uint64(len(dst)) || rela.Addend < 0 { continue } val32 := uint32(sym.Value) + uint32(rela.Addend) f.ByteOrder.PutUint32(dst[rela.Off:rela.Off+4], val32) } } return nil } func (f *File) DWARF() (*dwarf.Data, error) { dwarfSuffix := func(s *Section) string { switch { case strings.HasPrefix(s.Name, ".debug_"): return s.Name[7:] case strings.HasPrefix(s.Name, ".zdebug_"): return s.Name[8:] default: return "" } } // sectionData gets the data for s, checks its size, and // applies any applicable relations. sectionData := func(i int, s *Section) ([]byte, error) { b, err := s.Data() if err != nil && uint64(len(b)) < s.Size { return nil, err } if len(b) >= 12 && string(b[:4]) == "ZLIB" { dlen := binary.BigEndian.Uint64(b[4:12]) dbuf := make([]byte, dlen) r, err := zlib.NewReader(bytes.NewBuffer(b[12:])) if err != nil { return nil, err } if _, err := io.ReadFull(r, dbuf); err != nil { return nil, err } if err := r.Close(); err != nil { return nil, err } b = dbuf } for _, r := range f.Sections { if r.Type != SHT_RELA && r.Type != SHT_REL { continue } if int(r.Info) != i { continue } rd, err := r.Data() if err != nil { return nil, err } err = f.applyRelocations(b, rd) if err != nil { return nil, err } } return b, nil } // There are many DWARf sections, but these are the ones // the debug/dwarf package started with. var dat = map[string][]byte{"abbrev": nil, "info": nil, "str": nil, "line": nil, "ranges": nil} for i, s := range f.Sections { suffix := dwarfSuffix(s) if suffix == "" { continue } if _, ok := dat[suffix]; !ok { continue } b, err := sectionData(i, s) if err != nil { return nil, err } dat[suffix] = b } d, err := dwarf.New(dat["abbrev"], nil, nil, dat["info"], dat["line"], nil, dat["ranges"], dat["str"]) if err != nil { return nil, err } // Look for DWARF4 .debug_types sections and DWARF5 sections. for i, s := range f.Sections { suffix := dwarfSuffix(s) if suffix == "" { continue } if _, ok := dat[suffix]; ok { // Already handled. continue } b, err := sectionData(i, s) if err != nil { return nil, err } if suffix == "types" { if err := d.AddTypes(fmt.Sprintf("types-%d", i), b); err != nil { return nil, err } } else { if err := d.AddSection(".debug_"+suffix, b); err != nil { return nil, err } } } return d, nil } // Symbols returns the symbol table for f. The symbols will be listed in the order // they appear in f. // // For compatibility with Go 1.0, Symbols omits the null symbol at index 0. // After retrieving the symbols as symtab, an externally supplied index x // corresponds to symtab[x-1], not symtab[x]. func (f *File) Symbols() ([]Symbol, error) { sym, _, err := f.getSymbols(SHT_SYMTAB) return sym, err } // DynamicSymbols returns the dynamic symbol table for f. The symbols // will be listed in the order they appear in f. // // If f has a symbol version table, the returned Symbols will have // initialized Version and Library fields. // // For compatibility with Symbols, DynamicSymbols omits the null symbol at index 0. // After retrieving the symbols as symtab, an externally supplied index x // corresponds to symtab[x-1], not symtab[x]. func (f *File) DynamicSymbols() ([]Symbol, error) { sym, str, err := f.getSymbols(SHT_DYNSYM) if err != nil { return nil, err } if f.gnuVersionInit(str) { for i := range sym { sym[i].Library, sym[i].Version = f.gnuVersion(i) } } return sym, nil } type ImportedSymbol struct { Name string Version string Library string } // ImportedSymbols returns the names of all symbols // referred to by the binary f that are expected to be // satisfied by other libraries at dynamic load time. // It does not return weak symbols. func (f *File) ImportedSymbols() ([]ImportedSymbol, error) { sym, str, err := f.getSymbols(SHT_DYNSYM) if err != nil { return nil, err } f.gnuVersionInit(str) var all []ImportedSymbol for i, s := range sym { if ST_BIND(s.Info) == STB_GLOBAL && s.Section == SHN_UNDEF { all = append(all, ImportedSymbol{Name: s.Name}) sym := &all[len(all)-1] sym.Library, sym.Version = f.gnuVersion(i) } } return all, nil } type verneed struct { File string Name string } // gnuVersionInit parses the GNU version tables // for use by calls to gnuVersion. func (f *File) gnuVersionInit(str []byte) bool { if f.gnuNeed != nil { // Already initialized return true } // Accumulate verneed information. vn := f.SectionByType(SHT_GNU_VERNEED) if vn == nil { return false } d, _ := vn.Data() var need []verneed i := 0 for { if i+16 > len(d) { break } vers := f.ByteOrder.Uint16(d[i : i+2]) if vers != 1 { break } cnt := f.ByteOrder.Uint16(d[i+2 : i+4]) fileoff := f.ByteOrder.Uint32(d[i+4 : i+8]) aux := f.ByteOrder.Uint32(d[i+8 : i+12]) next := f.ByteOrder.Uint32(d[i+12 : i+16]) file, _ := getString(str, int(fileoff)) var name string j := i + int(aux) for c := 0; c < int(cnt); c++ { if j+16 > len(d) { break } // hash := f.ByteOrder.Uint32(d[j:j+4]) // flags := f.ByteOrder.Uint16(d[j+4:j+6]) other := f.ByteOrder.Uint16(d[j+6 : j+8]) nameoff := f.ByteOrder.Uint32(d[j+8 : j+12]) next := f.ByteOrder.Uint32(d[j+12 : j+16]) name, _ = getString(str, int(nameoff)) ndx := int(other) if ndx >= len(need) { a := make([]verneed, 2*(ndx+1)) copy(a, need) need = a } need[ndx] = verneed{file, name} if next == 0 { break } j += int(next) } if next == 0 { break } i += int(next) } // Versym parallels symbol table, indexing into verneed. vs := f.SectionByType(SHT_GNU_VERSYM) if vs == nil { return false } d, _ = vs.Data() f.gnuNeed = need f.gnuVersym = d return true } // gnuVersion adds Library and Version information to sym, // which came from offset i of the symbol table. func (f *File) gnuVersion(i int) (library string, version string) { // Each entry is two bytes. i = (i + 1) * 2 if i >= len(f.gnuVersym) { return } j := int(f.ByteOrder.Uint16(f.gnuVersym[i:])) if j < 2 || j >= len(f.gnuNeed) { return } n := &f.gnuNeed[j] return n.File, n.Name } // ImportedLibraries returns the names of all libraries // referred to by the binary f that are expected to be // linked with the binary at dynamic link time. func (f *File) ImportedLibraries() ([]string, error) { return f.DynString(DT_NEEDED) } // DynString returns the strings listed for the given tag in the file's dynamic // section. // // The tag must be one that takes string values: DT_NEEDED, DT_SONAME, DT_RPATH, or // DT_RUNPATH. func (f *File) DynString(tag DynTag) ([]string, error) { switch tag { case DT_NEEDED, DT_SONAME, DT_RPATH, DT_RUNPATH: default: return nil, fmt.Errorf("non-string-valued tag %v", tag) } ds := f.SectionByType(SHT_DYNAMIC) if ds == nil { // not dynamic, so no libraries return nil, nil } d, err := ds.Data() if err != nil { return nil, err } str, err := f.stringTable(ds.Link) if err != nil { return nil, err } var all []string for len(d) > 0 { var t DynTag var v uint64 switch f.Class { case ELFCLASS32: t = DynTag(f.ByteOrder.Uint32(d[0:4])) v = uint64(f.ByteOrder.Uint32(d[4:8])) d = d[8:] case ELFCLASS64: t = DynTag(f.ByteOrder.Uint64(d[0:8])) v = f.ByteOrder.Uint64(d[8:16]) d = d[16:] } if t == tag { s, ok := getString(str, int(v)) if ok { all = append(all, s) } } } return all, nil }