// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package gif implements a GIF image decoder and encoder. // // The GIF specification is at https://www.w3.org/Graphics/GIF/spec-gif89a.txt. package gif import ( "bufio" "compress/lzw" "errors" "fmt" "image" "image/color" "io" ) var ( errNotEnough = errors.New("gif: not enough image data") errTooMuch = errors.New("gif: too much image data") errBadPixel = errors.New("gif: invalid pixel value") ) // If the io.Reader does not also have ReadByte, then decode will introduce its own buffering. type reader interface { io.Reader io.ByteReader } // Masks etc. const ( // Fields. fColorTable = 1 << 7 fInterlace = 1 << 6 fColorTableBitsMask = 7 // Graphic control flags. gcTransparentColorSet = 1 << 0 gcDisposalMethodMask = 7 << 2 ) // Disposal Methods. const ( DisposalNone = 0x01 DisposalBackground = 0x02 DisposalPrevious = 0x03 ) // Section indicators. const ( sExtension = 0x21 sImageDescriptor = 0x2C sTrailer = 0x3B ) // Extensions. const ( eText = 0x01 // Plain Text eGraphicControl = 0xF9 // Graphic Control eComment = 0xFE // Comment eApplication = 0xFF // Application ) func readFull(r io.Reader, b []byte) error { _, err := io.ReadFull(r, b) if err == io.EOF { err = io.ErrUnexpectedEOF } return err } func readByte(r io.ByteReader) (byte, error) { b, err := r.ReadByte() if err == io.EOF { err = io.ErrUnexpectedEOF } return b, err } // decoder is the type used to decode a GIF file. type decoder struct { r reader // From header. vers string width int height int loopCount int delayTime int backgroundIndex byte disposalMethod byte // From image descriptor. imageFields byte // From graphics control. transparentIndex byte hasTransparentIndex bool // Computed. globalColorTable color.Palette // Used when decoding. delay []int disposal []byte image []*image.Paletted tmp [1024]byte // must be at least 768 so we can read color table } // blockReader parses the block structure of GIF image data, which comprises // (n, (n bytes)) blocks, with 1 <= n <= 255. It is the reader given to the // LZW decoder, which is thus immune to the blocking. After the LZW decoder // completes, there will be a 0-byte block remaining (0, ()), which is // consumed when checking that the blockReader is exhausted. // // To avoid the allocation of a bufio.Reader for the lzw Reader, blockReader // implements io.ReadByte and buffers blocks into the decoder's "tmp" buffer. type blockReader struct { d *decoder i, j uint8 // d.tmp[i:j] contains the buffered bytes err error } func (b *blockReader) fill() { if b.err != nil { return } b.j, b.err = readByte(b.d.r) if b.j == 0 && b.err == nil { b.err = io.EOF } if b.err != nil { return } b.i = 0 b.err = readFull(b.d.r, b.d.tmp[:b.j]) if b.err != nil { b.j = 0 } } func (b *blockReader) ReadByte() (byte, error) { if b.i == b.j { b.fill() if b.err != nil { return 0, b.err } } c := b.d.tmp[b.i] b.i++ return c, nil } // blockReader must implement io.Reader, but its Read shouldn't ever actually // be called in practice. The compress/lzw package will only call ReadByte. func (b *blockReader) Read(p []byte) (int, error) { if len(p) == 0 || b.err != nil { return 0, b.err } if b.i == b.j { b.fill() if b.err != nil { return 0, b.err } } n := copy(p, b.d.tmp[b.i:b.j]) b.i += uint8(n) return n, nil } // close primarily detects whether or not a block terminator was encountered // after reading a sequence of data sub-blocks. It allows at most one trailing // sub-block worth of data. I.e., if some number of bytes exist in one sub-block // following the end of LZW data, the very next sub-block must be the block // terminator. If the very end of LZW data happened to fill one sub-block, at // most one more sub-block of length 1 may exist before the block-terminator. // These accommodations allow us to support GIFs created by less strict encoders. // See https://golang.org/issue/16146. func (b *blockReader) close() error { if b.err == io.EOF { // A clean block-sequence terminator was encountered while reading. return nil } else if b.err != nil { // Some other error was encountered while reading. return b.err } if b.i == b.j { // We reached the end of a sub block reading LZW data. We'll allow at // most one more sub block of data with a length of 1 byte. b.fill() if b.err == io.EOF { return nil } else if b.err != nil { return b.err } else if b.j > 1 { return errTooMuch } } // Part of a sub-block remains buffered. We expect that the next attempt to // buffer a sub-block will reach the block terminator. b.fill() if b.err == io.EOF { return nil } else if b.err != nil { return b.err } return errTooMuch } // decode reads a GIF image from r and stores the result in d. func (d *decoder) decode(r io.Reader, configOnly, keepAllFrames bool) error { // Add buffering if r does not provide ReadByte. if rr, ok := r.(reader); ok { d.r = rr } else { d.r = bufio.NewReader(r) } d.loopCount = -1 err := d.readHeaderAndScreenDescriptor() if err != nil { return err } if configOnly { return nil } for { c, err := readByte(d.r) if err != nil { return fmt.Errorf("gif: reading frames: %v", err) } switch c { case sExtension: if err = d.readExtension(); err != nil { return err } case sImageDescriptor: if err = d.readImageDescriptor(keepAllFrames); err != nil { return err } case sTrailer: if len(d.image) == 0 { return fmt.Errorf("gif: missing image data") } return nil default: return fmt.Errorf("gif: unknown block type: 0x%.2x", c) } } } func (d *decoder) readHeaderAndScreenDescriptor() error { err := readFull(d.r, d.tmp[:13]) if err != nil { return fmt.Errorf("gif: reading header: %v", err) } d.vers = string(d.tmp[:6]) if d.vers != "GIF87a" && d.vers != "GIF89a" { return fmt.Errorf("gif: can't recognize format %q", d.vers) } d.width = int(d.tmp[6]) + int(d.tmp[7])<<8 d.height = int(d.tmp[8]) + int(d.tmp[9])<<8 if fields := d.tmp[10]; fields&fColorTable != 0 { d.backgroundIndex = d.tmp[11] // readColorTable overwrites the contents of d.tmp, but that's OK. if d.globalColorTable, err = d.readColorTable(fields); err != nil { return err } } // d.tmp[12] is the Pixel Aspect Ratio, which is ignored. return nil } func (d *decoder) readColorTable(fields byte) (color.Palette, error) { n := 1 << (1 + uint(fields&fColorTableBitsMask)) err := readFull(d.r, d.tmp[:3*n]) if err != nil { return nil, fmt.Errorf("gif: reading color table: %s", err) } j, p := 0, make(color.Palette, n) for i := range p { p[i] = color.RGBA{d.tmp[j+0], d.tmp[j+1], d.tmp[j+2], 0xFF} j += 3 } return p, nil } func (d *decoder) readExtension() error { extension, err := readByte(d.r) if err != nil { return fmt.Errorf("gif: reading extension: %v", err) } size := 0 switch extension { case eText: size = 13 case eGraphicControl: return d.readGraphicControl() case eComment: // nothing to do but read the data. case eApplication: b, err := readByte(d.r) if err != nil { return fmt.Errorf("gif: reading extension: %v", err) } // The spec requires size be 11, but Adobe sometimes uses 10. size = int(b) default: return fmt.Errorf("gif: unknown extension 0x%.2x", extension) } if size > 0 { if err := readFull(d.r, d.tmp[:size]); err != nil { return fmt.Errorf("gif: reading extension: %v", err) } } // Application Extension with "NETSCAPE2.0" as string and 1 in data means // this extension defines a loop count. if extension == eApplication && string(d.tmp[:size]) == "NETSCAPE2.0" { n, err := d.readBlock() if err != nil { return fmt.Errorf("gif: reading extension: %v", err) } if n == 0 { return nil } if n == 3 && d.tmp[0] == 1 { d.loopCount = int(d.tmp[1]) | int(d.tmp[2])<<8 } } for { n, err := d.readBlock() if err != nil { return fmt.Errorf("gif: reading extension: %v", err) } if n == 0 { return nil } } } func (d *decoder) readGraphicControl() error { if err := readFull(d.r, d.tmp[:6]); err != nil { return fmt.Errorf("gif: can't read graphic control: %s", err) } if d.tmp[0] != 4 { return fmt.Errorf("gif: invalid graphic control extension block size: %d", d.tmp[0]) } flags := d.tmp[1] d.disposalMethod = (flags & gcDisposalMethodMask) >> 2 d.delayTime = int(d.tmp[2]) | int(d.tmp[3])<<8 if flags&gcTransparentColorSet != 0 { d.transparentIndex = d.tmp[4] d.hasTransparentIndex = true } if d.tmp[5] != 0 { return fmt.Errorf("gif: invalid graphic control extension block terminator: %d", d.tmp[5]) } return nil } func (d *decoder) readImageDescriptor(keepAllFrames bool) error { m, err := d.newImageFromDescriptor() if err != nil { return err } useLocalColorTable := d.imageFields&fColorTable != 0 if useLocalColorTable { m.Palette, err = d.readColorTable(d.imageFields) if err != nil { return err } } else { if d.globalColorTable == nil { return errors.New("gif: no color table") } m.Palette = d.globalColorTable } if d.hasTransparentIndex { if !useLocalColorTable { // Clone the global color table. m.Palette = append(color.Palette(nil), d.globalColorTable...) } if ti := int(d.transparentIndex); ti < len(m.Palette) { m.Palette[ti] = color.RGBA{} } else { // The transparentIndex is out of range, which is an error // according to the spec, but Firefox and Google Chrome // seem OK with this, so we enlarge the palette with // transparent colors. See golang.org/issue/15059. p := make(color.Palette, ti+1) copy(p, m.Palette) for i := len(m.Palette); i < len(p); i++ { p[i] = color.RGBA{} } m.Palette = p } } litWidth, err := readByte(d.r) if err != nil { return fmt.Errorf("gif: reading image data: %v", err) } if litWidth < 2 || litWidth > 8 { return fmt.Errorf("gif: pixel size in decode out of range: %d", litWidth) } // A wonderfully Go-like piece of magic. br := &blockReader{d: d} lzwr := lzw.NewReader(br, lzw.LSB, int(litWidth)) defer lzwr.Close() if err = readFull(lzwr, m.Pix); err != nil { if err != io.ErrUnexpectedEOF { return fmt.Errorf("gif: reading image data: %v", err) } return errNotEnough } // In theory, both lzwr and br should be exhausted. Reading from them // should yield (0, io.EOF). // // The spec (Appendix F - Compression), says that "An End of // Information code... must be the last code output by the encoder // for an image". In practice, though, giflib (a widely used C // library) does not enforce this, so we also accept lzwr returning // io.ErrUnexpectedEOF (meaning that the encoded stream hit io.EOF // before the LZW decoder saw an explicit end code), provided that // the io.ReadFull call above successfully read len(m.Pix) bytes. // See https://golang.org/issue/9856 for an example GIF. if n, err := lzwr.Read(d.tmp[256:257]); n != 0 || (err != io.EOF && err != io.ErrUnexpectedEOF) { if err != nil { return fmt.Errorf("gif: reading image data: %v", err) } return errTooMuch } // In practice, some GIFs have an extra byte in the data sub-block // stream, which we ignore. See https://golang.org/issue/16146. if err := br.close(); err == errTooMuch { return errTooMuch } else if err != nil { return fmt.Errorf("gif: reading image data: %v", err) } // Check that the color indexes are inside the palette. if len(m.Palette) < 256 { for _, pixel := range m.Pix { if int(pixel) >= len(m.Palette) { return errBadPixel } } } // Undo the interlacing if necessary. if d.imageFields&fInterlace != 0 { uninterlace(m) } if keepAllFrames || len(d.image) == 0 { d.image = append(d.image, m) d.delay = append(d.delay, d.delayTime) d.disposal = append(d.disposal, d.disposalMethod) } // The GIF89a spec, Section 23 (Graphic Control Extension) says: // "The scope of this extension is the first graphic rendering block // to follow." We therefore reset the GCE fields to zero. d.delayTime = 0 d.hasTransparentIndex = false return nil } func (d *decoder) newImageFromDescriptor() (*image.Paletted, error) { if err := readFull(d.r, d.tmp[:9]); err != nil { return nil, fmt.Errorf("gif: can't read image descriptor: %s", err) } left := int(d.tmp[0]) + int(d.tmp[1])<<8 top := int(d.tmp[2]) + int(d.tmp[3])<<8 width := int(d.tmp[4]) + int(d.tmp[5])<<8 height := int(d.tmp[6]) + int(d.tmp[7])<<8 d.imageFields = d.tmp[8] // The GIF89a spec, Section 20 (Image Descriptor) says: "Each image must // fit within the boundaries of the Logical Screen, as defined in the // Logical Screen Descriptor." // // This is conceptually similar to testing // frameBounds := image.Rect(left, top, left+width, top+height) // imageBounds := image.Rect(0, 0, d.width, d.height) // if !frameBounds.In(imageBounds) { etc } // but the semantics of the Go image.Rectangle type is that r.In(s) is true // whenever r is an empty rectangle, even if r.Min.X > s.Max.X. Here, we // want something stricter. // // Note that, by construction, left >= 0 && top >= 0, so we only have to // explicitly compare frameBounds.Max (left+width, top+height) against // imageBounds.Max (d.width, d.height) and not frameBounds.Min (left, top) // against imageBounds.Min (0, 0). if left+width > d.width || top+height > d.height { return nil, errors.New("gif: frame bounds larger than image bounds") } return image.NewPaletted(image.Rectangle{ Min: image.Point{left, top}, Max: image.Point{left + width, top + height}, }, nil), nil } func (d *decoder) readBlock() (int, error) { n, err := readByte(d.r) if n == 0 || err != nil { return 0, err } if err := readFull(d.r, d.tmp[:n]); err != nil { return 0, err } return int(n), nil } // interlaceScan defines the ordering for a pass of the interlace algorithm. type interlaceScan struct { skip, start int } // interlacing represents the set of scans in an interlaced GIF image. var interlacing = []interlaceScan{ {8, 0}, // Group 1 : Every 8th. row, starting with row 0. {8, 4}, // Group 2 : Every 8th. row, starting with row 4. {4, 2}, // Group 3 : Every 4th. row, starting with row 2. {2, 1}, // Group 4 : Every 2nd. row, starting with row 1. } // uninterlace rearranges the pixels in m to account for interlaced input. func uninterlace(m *image.Paletted) { var nPix []uint8 dx := m.Bounds().Dx() dy := m.Bounds().Dy() nPix = make([]uint8, dx*dy) offset := 0 // steps through the input by sequential scan lines. for _, pass := range interlacing { nOffset := pass.start * dx // steps through the output as defined by pass. for y := pass.start; y < dy; y += pass.skip { copy(nPix[nOffset:nOffset+dx], m.Pix[offset:offset+dx]) offset += dx nOffset += dx * pass.skip } } m.Pix = nPix } // Decode reads a GIF image from r and returns the first embedded // image as an image.Image. func Decode(r io.Reader) (image.Image, error) { var d decoder if err := d.decode(r, false, false); err != nil { return nil, err } return d.image[0], nil } // GIF represents the possibly multiple images stored in a GIF file. type GIF struct { Image []*image.Paletted // The successive images. Delay []int // The successive delay times, one per frame, in 100ths of a second. // LoopCount controls the number of times an animation will be // restarted during display. // A LoopCount of 0 means to loop forever. // A LoopCount of -1 means to show each frame only once. // Otherwise, the animation is looped LoopCount+1 times. LoopCount int // Disposal is the successive disposal methods, one per frame. For // backwards compatibility, a nil Disposal is valid to pass to EncodeAll, // and implies that each frame's disposal method is 0 (no disposal // specified). Disposal []byte // Config is the global color table (palette), width and height. A nil or // empty-color.Palette Config.ColorModel means that each frame has its own // color table and there is no global color table. Each frame's bounds must // be within the rectangle defined by the two points (0, 0) and // (Config.Width, Config.Height). // // For backwards compatibility, a zero-valued Config is valid to pass to // EncodeAll, and implies that the overall GIF's width and height equals // the first frame's bounds' Rectangle.Max point. Config image.Config // BackgroundIndex is the background index in the global color table, for // use with the DisposalBackground disposal method. BackgroundIndex byte } // DecodeAll reads a GIF image from r and returns the sequential frames // and timing information. func DecodeAll(r io.Reader) (*GIF, error) { var d decoder if err := d.decode(r, false, true); err != nil { return nil, err } gif := &GIF{ Image: d.image, LoopCount: d.loopCount, Delay: d.delay, Disposal: d.disposal, Config: image.Config{ ColorModel: d.globalColorTable, Width: d.width, Height: d.height, }, BackgroundIndex: d.backgroundIndex, } return gif, nil } // DecodeConfig returns the global color model and dimensions of a GIF image // without decoding the entire image. func DecodeConfig(r io.Reader) (image.Config, error) { var d decoder if err := d.decode(r, true, false); err != nil { return image.Config{}, err } return image.Config{ ColorModel: d.globalColorTable, Width: d.width, Height: d.height, }, nil } func init() { image.RegisterFormat("gif", "GIF8?a", Decode, DecodeConfig) }