summaryrefslogtreecommitdiffstats
path: root/src/image/jpeg/huffman.go
blob: 95aaf71e2f36cc2f52887d6facb6b144f1246c15 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package jpeg

import (
	"io"
)

// maxCodeLength is the maximum (inclusive) number of bits in a Huffman code.
const maxCodeLength = 16

// maxNCodes is the maximum (inclusive) number of codes in a Huffman tree.
const maxNCodes = 256

// lutSize is the log-2 size of the Huffman decoder's look-up table.
const lutSize = 8

// huffman is a Huffman decoder, specified in section C.
type huffman struct {
	// length is the number of codes in the tree.
	nCodes int32
	// lut is the look-up table for the next lutSize bits in the bit-stream.
	// The high 8 bits of the uint16 are the encoded value. The low 8 bits
	// are 1 plus the code length, or 0 if the value is too large to fit in
	// lutSize bits.
	lut [1 << lutSize]uint16
	// vals are the decoded values, sorted by their encoding.
	vals [maxNCodes]uint8
	// minCodes[i] is the minimum code of length i, or -1 if there are no
	// codes of that length.
	minCodes [maxCodeLength]int32
	// maxCodes[i] is the maximum code of length i, or -1 if there are no
	// codes of that length.
	maxCodes [maxCodeLength]int32
	// valsIndices[i] is the index into vals of minCodes[i].
	valsIndices [maxCodeLength]int32
}

// errShortHuffmanData means that an unexpected EOF occurred while decoding
// Huffman data.
var errShortHuffmanData = FormatError("short Huffman data")

// ensureNBits reads bytes from the byte buffer to ensure that d.bits.n is at
// least n. For best performance (avoiding function calls inside hot loops),
// the caller is the one responsible for first checking that d.bits.n < n.
func (d *decoder) ensureNBits(n int32) error {
	for {
		c, err := d.readByteStuffedByte()
		if err != nil {
			if err == io.EOF {
				return errShortHuffmanData
			}
			return err
		}
		d.bits.a = d.bits.a<<8 | uint32(c)
		d.bits.n += 8
		if d.bits.m == 0 {
			d.bits.m = 1 << 7
		} else {
			d.bits.m <<= 8
		}
		if d.bits.n >= n {
			break
		}
	}
	return nil
}

// receiveExtend is the composition of RECEIVE and EXTEND, specified in section
// F.2.2.1.
func (d *decoder) receiveExtend(t uint8) (int32, error) {
	if d.bits.n < int32(t) {
		if err := d.ensureNBits(int32(t)); err != nil {
			return 0, err
		}
	}
	d.bits.n -= int32(t)
	d.bits.m >>= t
	s := int32(1) << t
	x := int32(d.bits.a>>uint8(d.bits.n)) & (s - 1)
	if x < s>>1 {
		x += ((-1) << t) + 1
	}
	return x, nil
}

// processDHT processes a Define Huffman Table marker, and initializes a huffman
// struct from its contents. Specified in section B.2.4.2.
func (d *decoder) processDHT(n int) error {
	for n > 0 {
		if n < 17 {
			return FormatError("DHT has wrong length")
		}
		if err := d.readFull(d.tmp[:17]); err != nil {
			return err
		}
		tc := d.tmp[0] >> 4
		if tc > maxTc {
			return FormatError("bad Tc value")
		}
		th := d.tmp[0] & 0x0f
		// The baseline th <= 1 restriction is specified in table B.5.
		if th > maxTh || (d.baseline && th > 1) {
			return FormatError("bad Th value")
		}
		h := &d.huff[tc][th]

		// Read nCodes and h.vals (and derive h.nCodes).
		// nCodes[i] is the number of codes with code length i.
		// h.nCodes is the total number of codes.
		h.nCodes = 0
		var nCodes [maxCodeLength]int32
		for i := range nCodes {
			nCodes[i] = int32(d.tmp[i+1])
			h.nCodes += nCodes[i]
		}
		if h.nCodes == 0 {
			return FormatError("Huffman table has zero length")
		}
		if h.nCodes > maxNCodes {
			return FormatError("Huffman table has excessive length")
		}
		n -= int(h.nCodes) + 17
		if n < 0 {
			return FormatError("DHT has wrong length")
		}
		if err := d.readFull(h.vals[:h.nCodes]); err != nil {
			return err
		}

		// Derive the look-up table.
		for i := range h.lut {
			h.lut[i] = 0
		}
		var x, code uint32
		for i := uint32(0); i < lutSize; i++ {
			code <<= 1
			for j := int32(0); j < nCodes[i]; j++ {
				// The codeLength is 1+i, so shift code by 8-(1+i) to
				// calculate the high bits for every 8-bit sequence
				// whose codeLength's high bits matches code.
				// The high 8 bits of lutValue are the encoded value.
				// The low 8 bits are 1 plus the codeLength.
				base := uint8(code << (7 - i))
				lutValue := uint16(h.vals[x])<<8 | uint16(2+i)
				for k := uint8(0); k < 1<<(7-i); k++ {
					h.lut[base|k] = lutValue
				}
				code++
				x++
			}
		}

		// Derive minCodes, maxCodes, and valsIndices.
		var c, index int32
		for i, n := range nCodes {
			if n == 0 {
				h.minCodes[i] = -1
				h.maxCodes[i] = -1
				h.valsIndices[i] = -1
			} else {
				h.minCodes[i] = c
				h.maxCodes[i] = c + n - 1
				h.valsIndices[i] = index
				c += n
				index += n
			}
			c <<= 1
		}
	}
	return nil
}

// decodeHuffman returns the next Huffman-coded value from the bit-stream,
// decoded according to h.
func (d *decoder) decodeHuffman(h *huffman) (uint8, error) {
	if h.nCodes == 0 {
		return 0, FormatError("uninitialized Huffman table")
	}

	if d.bits.n < 8 {
		if err := d.ensureNBits(8); err != nil {
			if err != errMissingFF00 && err != errShortHuffmanData {
				return 0, err
			}
			// There are no more bytes of data in this segment, but we may still
			// be able to read the next symbol out of the previously read bits.
			// First, undo the readByte that the ensureNBits call made.
			if d.bytes.nUnreadable != 0 {
				d.unreadByteStuffedByte()
			}
			goto slowPath
		}
	}
	if v := h.lut[(d.bits.a>>uint32(d.bits.n-lutSize))&0xff]; v != 0 {
		n := (v & 0xff) - 1
		d.bits.n -= int32(n)
		d.bits.m >>= n
		return uint8(v >> 8), nil
	}

slowPath:
	for i, code := 0, int32(0); i < maxCodeLength; i++ {
		if d.bits.n == 0 {
			if err := d.ensureNBits(1); err != nil {
				return 0, err
			}
		}
		if d.bits.a&d.bits.m != 0 {
			code |= 1
		}
		d.bits.n--
		d.bits.m >>= 1
		if code <= h.maxCodes[i] {
			return h.vals[h.valsIndices[i]+code-h.minCodes[i]], nil
		}
		code <<= 1
	}
	return 0, FormatError("bad Huffman code")
}

func (d *decoder) decodeBit() (bool, error) {
	if d.bits.n == 0 {
		if err := d.ensureNBits(1); err != nil {
			return false, err
		}
	}
	ret := d.bits.a&d.bits.m != 0
	d.bits.n--
	d.bits.m >>= 1
	return ret, nil
}

func (d *decoder) decodeBits(n int32) (uint32, error) {
	if d.bits.n < n {
		if err := d.ensureNBits(n); err != nil {
			return 0, err
		}
	}
	ret := d.bits.a >> uint32(d.bits.n-n)
	ret &= (1 << uint32(n)) - 1
	d.bits.n -= n
	d.bits.m >>= uint32(n)
	return ret, nil
}