summaryrefslogtreecommitdiffstats
path: root/src/math/big/float.go
blob: 42050e2c39d76e2c703730ac8883b0dd2f31f715 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// This file implements multi-precision floating-point numbers.
// Like in the GNU MPFR library (https://www.mpfr.org/), operands
// can be of mixed precision. Unlike MPFR, the rounding mode is
// not specified with each operation, but with each operand. The
// rounding mode of the result operand determines the rounding
// mode of an operation. This is a from-scratch implementation.

package big

import (
	"fmt"
	"math"
	"math/bits"
)

const debugFloat = false // enable for debugging

// A nonzero finite Float represents a multi-precision floating point number
//
//   sign × mantissa × 2**exponent
//
// with 0.5 <= mantissa < 1.0, and MinExp <= exponent <= MaxExp.
// A Float may also be zero (+0, -0) or infinite (+Inf, -Inf).
// All Floats are ordered, and the ordering of two Floats x and y
// is defined by x.Cmp(y).
//
// Each Float value also has a precision, rounding mode, and accuracy.
// The precision is the maximum number of mantissa bits available to
// represent the value. The rounding mode specifies how a result should
// be rounded to fit into the mantissa bits, and accuracy describes the
// rounding error with respect to the exact result.
//
// Unless specified otherwise, all operations (including setters) that
// specify a *Float variable for the result (usually via the receiver
// with the exception of MantExp), round the numeric result according
// to the precision and rounding mode of the result variable.
//
// If the provided result precision is 0 (see below), it is set to the
// precision of the argument with the largest precision value before any
// rounding takes place, and the rounding mode remains unchanged. Thus,
// uninitialized Floats provided as result arguments will have their
// precision set to a reasonable value determined by the operands, and
// their mode is the zero value for RoundingMode (ToNearestEven).
//
// By setting the desired precision to 24 or 53 and using matching rounding
// mode (typically ToNearestEven), Float operations produce the same results
// as the corresponding float32 or float64 IEEE-754 arithmetic for operands
// that correspond to normal (i.e., not denormal) float32 or float64 numbers.
// Exponent underflow and overflow lead to a 0 or an Infinity for different
// values than IEEE-754 because Float exponents have a much larger range.
//
// The zero (uninitialized) value for a Float is ready to use and represents
// the number +0.0 exactly, with precision 0 and rounding mode ToNearestEven.
//
// Operations always take pointer arguments (*Float) rather
// than Float values, and each unique Float value requires
// its own unique *Float pointer. To "copy" a Float value,
// an existing (or newly allocated) Float must be set to
// a new value using the Float.Set method; shallow copies
// of Floats are not supported and may lead to errors.
type Float struct {
	prec uint32
	mode RoundingMode
	acc  Accuracy
	form form
	neg  bool
	mant nat
	exp  int32
}

// An ErrNaN panic is raised by a Float operation that would lead to
// a NaN under IEEE-754 rules. An ErrNaN implements the error interface.
type ErrNaN struct {
	msg string
}

func (err ErrNaN) Error() string {
	return err.msg
}

// NewFloat allocates and returns a new Float set to x,
// with precision 53 and rounding mode ToNearestEven.
// NewFloat panics with ErrNaN if x is a NaN.
func NewFloat(x float64) *Float {
	if math.IsNaN(x) {
		panic(ErrNaN{"NewFloat(NaN)"})
	}
	return new(Float).SetFloat64(x)
}

// Exponent and precision limits.
const (
	MaxExp  = math.MaxInt32  // largest supported exponent
	MinExp  = math.MinInt32  // smallest supported exponent
	MaxPrec = math.MaxUint32 // largest (theoretically) supported precision; likely memory-limited
)

// Internal representation: The mantissa bits x.mant of a nonzero finite
// Float x are stored in a nat slice long enough to hold up to x.prec bits;
// the slice may (but doesn't have to) be shorter if the mantissa contains
// trailing 0 bits. x.mant is normalized if the msb of x.mant == 1 (i.e.,
// the msb is shifted all the way "to the left"). Thus, if the mantissa has
// trailing 0 bits or x.prec is not a multiple of the Word size _W,
// x.mant[0] has trailing zero bits. The msb of the mantissa corresponds
// to the value 0.5; the exponent x.exp shifts the binary point as needed.
//
// A zero or non-finite Float x ignores x.mant and x.exp.
//
// x                 form      neg      mant         exp
// ----------------------------------------------------------
// ±0                zero      sign     -            -
// 0 < |x| < +Inf    finite    sign     mantissa     exponent
// ±Inf              inf       sign     -            -

// A form value describes the internal representation.
type form byte

// The form value order is relevant - do not change!
const (
	zero form = iota
	finite
	inf
)

// RoundingMode determines how a Float value is rounded to the
// desired precision. Rounding may change the Float value; the
// rounding error is described by the Float's Accuracy.
type RoundingMode byte

// These constants define supported rounding modes.
const (
	ToNearestEven RoundingMode = iota // == IEEE 754-2008 roundTiesToEven
	ToNearestAway                     // == IEEE 754-2008 roundTiesToAway
	ToZero                            // == IEEE 754-2008 roundTowardZero
	AwayFromZero                      // no IEEE 754-2008 equivalent
	ToNegativeInf                     // == IEEE 754-2008 roundTowardNegative
	ToPositiveInf                     // == IEEE 754-2008 roundTowardPositive
)

//go:generate stringer -type=RoundingMode

// Accuracy describes the rounding error produced by the most recent
// operation that generated a Float value, relative to the exact value.
type Accuracy int8

// Constants describing the Accuracy of a Float.
const (
	Below Accuracy = -1
	Exact Accuracy = 0
	Above Accuracy = +1
)

//go:generate stringer -type=Accuracy

// SetPrec sets z's precision to prec and returns the (possibly) rounded
// value of z. Rounding occurs according to z's rounding mode if the mantissa
// cannot be represented in prec bits without loss of precision.
// SetPrec(0) maps all finite values to ±0; infinite values remain unchanged.
// If prec > MaxPrec, it is set to MaxPrec.
func (z *Float) SetPrec(prec uint) *Float {
	z.acc = Exact // optimistically assume no rounding is needed

	// special case
	if prec == 0 {
		z.prec = 0
		if z.form == finite {
			// truncate z to 0
			z.acc = makeAcc(z.neg)
			z.form = zero
		}
		return z
	}

	// general case
	if prec > MaxPrec {
		prec = MaxPrec
	}
	old := z.prec
	z.prec = uint32(prec)
	if z.prec < old {
		z.round(0)
	}
	return z
}

func makeAcc(above bool) Accuracy {
	if above {
		return Above
	}
	return Below
}

// SetMode sets z's rounding mode to mode and returns an exact z.
// z remains unchanged otherwise.
// z.SetMode(z.Mode()) is a cheap way to set z's accuracy to Exact.
func (z *Float) SetMode(mode RoundingMode) *Float {
	z.mode = mode
	z.acc = Exact
	return z
}

// Prec returns the mantissa precision of x in bits.
// The result may be 0 for |x| == 0 and |x| == Inf.
func (x *Float) Prec() uint {
	return uint(x.prec)
}

// MinPrec returns the minimum precision required to represent x exactly
// (i.e., the smallest prec before x.SetPrec(prec) would start rounding x).
// The result is 0 for |x| == 0 and |x| == Inf.
func (x *Float) MinPrec() uint {
	if x.form != finite {
		return 0
	}
	return uint(len(x.mant))*_W - x.mant.trailingZeroBits()
}

// Mode returns the rounding mode of x.
func (x *Float) Mode() RoundingMode {
	return x.mode
}

// Acc returns the accuracy of x produced by the most recent
// operation, unless explicitly documented otherwise by that
// operation.
func (x *Float) Acc() Accuracy {
	return x.acc
}

// Sign returns:
//
//	-1 if x <   0
//	 0 if x is ±0
//	+1 if x >   0
//
func (x *Float) Sign() int {
	if debugFloat {
		x.validate()
	}
	if x.form == zero {
		return 0
	}
	if x.neg {
		return -1
	}
	return 1
}

// MantExp breaks x into its mantissa and exponent components
// and returns the exponent. If a non-nil mant argument is
// provided its value is set to the mantissa of x, with the
// same precision and rounding mode as x. The components
// satisfy x == mant × 2**exp, with 0.5 <= |mant| < 1.0.
// Calling MantExp with a nil argument is an efficient way to
// get the exponent of the receiver.
//
// Special cases are:
//
//	(  ±0).MantExp(mant) = 0, with mant set to   ±0
//	(±Inf).MantExp(mant) = 0, with mant set to ±Inf
//
// x and mant may be the same in which case x is set to its
// mantissa value.
func (x *Float) MantExp(mant *Float) (exp int) {
	if debugFloat {
		x.validate()
	}
	if x.form == finite {
		exp = int(x.exp)
	}
	if mant != nil {
		mant.Copy(x)
		if mant.form == finite {
			mant.exp = 0
		}
	}
	return
}

func (z *Float) setExpAndRound(exp int64, sbit uint) {
	if exp < MinExp {
		// underflow
		z.acc = makeAcc(z.neg)
		z.form = zero
		return
	}

	if exp > MaxExp {
		// overflow
		z.acc = makeAcc(!z.neg)
		z.form = inf
		return
	}

	z.form = finite
	z.exp = int32(exp)
	z.round(sbit)
}

// SetMantExp sets z to mant × 2**exp and returns z.
// The result z has the same precision and rounding mode
// as mant. SetMantExp is an inverse of MantExp but does
// not require 0.5 <= |mant| < 1.0. Specifically:
//
//	mant := new(Float)
//	new(Float).SetMantExp(mant, x.MantExp(mant)).Cmp(x) == 0
//
// Special cases are:
//
//	z.SetMantExp(  ±0, exp) =   ±0
//	z.SetMantExp(±Inf, exp) = ±Inf
//
// z and mant may be the same in which case z's exponent
// is set to exp.
func (z *Float) SetMantExp(mant *Float, exp int) *Float {
	if debugFloat {
		z.validate()
		mant.validate()
	}
	z.Copy(mant)

	if z.form == finite {
		// 0 < |mant| < +Inf
		z.setExpAndRound(int64(z.exp)+int64(exp), 0)
	}
	return z
}

// Signbit reports whether x is negative or negative zero.
func (x *Float) Signbit() bool {
	return x.neg
}

// IsInf reports whether x is +Inf or -Inf.
func (x *Float) IsInf() bool {
	return x.form == inf
}

// IsInt reports whether x is an integer.
// ±Inf values are not integers.
func (x *Float) IsInt() bool {
	if debugFloat {
		x.validate()
	}
	// special cases
	if x.form != finite {
		return x.form == zero
	}
	// x.form == finite
	if x.exp <= 0 {
		return false
	}
	// x.exp > 0
	return x.prec <= uint32(x.exp) || x.MinPrec() <= uint(x.exp) // not enough bits for fractional mantissa
}

// debugging support
func (x *Float) validate() {
	if !debugFloat {
		// avoid performance bugs
		panic("validate called but debugFloat is not set")
	}
	if x.form != finite {
		return
	}
	m := len(x.mant)
	if m == 0 {
		panic("nonzero finite number with empty mantissa")
	}
	const msb = 1 << (_W - 1)
	if x.mant[m-1]&msb == 0 {
		panic(fmt.Sprintf("msb not set in last word %#x of %s", x.mant[m-1], x.Text('p', 0)))
	}
	if x.prec == 0 {
		panic("zero precision finite number")
	}
}

// round rounds z according to z.mode to z.prec bits and sets z.acc accordingly.
// sbit must be 0 or 1 and summarizes any "sticky bit" information one might
// have before calling round. z's mantissa must be normalized (with the msb set)
// or empty.
//
// CAUTION: The rounding modes ToNegativeInf, ToPositiveInf are affected by the
// sign of z. For correct rounding, the sign of z must be set correctly before
// calling round.
func (z *Float) round(sbit uint) {
	if debugFloat {
		z.validate()
	}

	z.acc = Exact
	if z.form != finite {
		// ±0 or ±Inf => nothing left to do
		return
	}
	// z.form == finite && len(z.mant) > 0
	// m > 0 implies z.prec > 0 (checked by validate)

	m := uint32(len(z.mant)) // present mantissa length in words
	bits := m * _W           // present mantissa bits; bits > 0
	if bits <= z.prec {
		// mantissa fits => nothing to do
		return
	}
	// bits > z.prec

	// Rounding is based on two bits: the rounding bit (rbit) and the
	// sticky bit (sbit). The rbit is the bit immediately before the
	// z.prec leading mantissa bits (the "0.5"). The sbit is set if any
	// of the bits before the rbit are set (the "0.25", "0.125", etc.):
	//
	//   rbit  sbit  => "fractional part"
	//
	//   0     0        == 0
	//   0     1        >  0  , < 0.5
	//   1     0        == 0.5
	//   1     1        >  0.5, < 1.0

	// bits > z.prec: mantissa too large => round
	r := uint(bits - z.prec - 1) // rounding bit position; r >= 0
	rbit := z.mant.bit(r) & 1    // rounding bit; be safe and ensure it's a single bit
	// The sticky bit is only needed for rounding ToNearestEven
	// or when the rounding bit is zero. Avoid computation otherwise.
	if sbit == 0 && (rbit == 0 || z.mode == ToNearestEven) {
		sbit = z.mant.sticky(r)
	}
	sbit &= 1 // be safe and ensure it's a single bit

	// cut off extra words
	n := (z.prec + (_W - 1)) / _W // mantissa length in words for desired precision
	if m > n {
		copy(z.mant, z.mant[m-n:]) // move n last words to front
		z.mant = z.mant[:n]
	}

	// determine number of trailing zero bits (ntz) and compute lsb mask of mantissa's least-significant word
	ntz := n*_W - z.prec // 0 <= ntz < _W
	lsb := Word(1) << ntz

	// round if result is inexact
	if rbit|sbit != 0 {
		// Make rounding decision: The result mantissa is truncated ("rounded down")
		// by default. Decide if we need to increment, or "round up", the (unsigned)
		// mantissa.
		inc := false
		switch z.mode {
		case ToNegativeInf:
			inc = z.neg
		case ToZero:
			// nothing to do
		case ToNearestEven:
			inc = rbit != 0 && (sbit != 0 || z.mant[0]&lsb != 0)
		case ToNearestAway:
			inc = rbit != 0
		case AwayFromZero:
			inc = true
		case ToPositiveInf:
			inc = !z.neg
		default:
			panic("unreachable")
		}

		// A positive result (!z.neg) is Above the exact result if we increment,
		// and it's Below if we truncate (Exact results require no rounding).
		// For a negative result (z.neg) it is exactly the opposite.
		z.acc = makeAcc(inc != z.neg)

		if inc {
			// add 1 to mantissa
			if addVW(z.mant, z.mant, lsb) != 0 {
				// mantissa overflow => adjust exponent
				if z.exp >= MaxExp {
					// exponent overflow
					z.form = inf
					return
				}
				z.exp++
				// adjust mantissa: divide by 2 to compensate for exponent adjustment
				shrVU(z.mant, z.mant, 1)
				// set msb == carry == 1 from the mantissa overflow above
				const msb = 1 << (_W - 1)
				z.mant[n-1] |= msb
			}
		}
	}

	// zero out trailing bits in least-significant word
	z.mant[0] &^= lsb - 1

	if debugFloat {
		z.validate()
	}
}

func (z *Float) setBits64(neg bool, x uint64) *Float {
	if z.prec == 0 {
		z.prec = 64
	}
	z.acc = Exact
	z.neg = neg
	if x == 0 {
		z.form = zero
		return z
	}
	// x != 0
	z.form = finite
	s := bits.LeadingZeros64(x)
	z.mant = z.mant.setUint64(x << uint(s))
	z.exp = int32(64 - s) // always fits
	if z.prec < 64 {
		z.round(0)
	}
	return z
}

// SetUint64 sets z to the (possibly rounded) value of x and returns z.
// If z's precision is 0, it is changed to 64 (and rounding will have
// no effect).
func (z *Float) SetUint64(x uint64) *Float {
	return z.setBits64(false, x)
}

// SetInt64 sets z to the (possibly rounded) value of x and returns z.
// If z's precision is 0, it is changed to 64 (and rounding will have
// no effect).
func (z *Float) SetInt64(x int64) *Float {
	u := x
	if u < 0 {
		u = -u
	}
	// We cannot simply call z.SetUint64(uint64(u)) and change
	// the sign afterwards because the sign affects rounding.
	return z.setBits64(x < 0, uint64(u))
}

// SetFloat64 sets z to the (possibly rounded) value of x and returns z.
// If z's precision is 0, it is changed to 53 (and rounding will have
// no effect). SetFloat64 panics with ErrNaN if x is a NaN.
func (z *Float) SetFloat64(x float64) *Float {
	if z.prec == 0 {
		z.prec = 53
	}
	if math.IsNaN(x) {
		panic(ErrNaN{"Float.SetFloat64(NaN)"})
	}
	z.acc = Exact
	z.neg = math.Signbit(x) // handle -0, -Inf correctly
	if x == 0 {
		z.form = zero
		return z
	}
	if math.IsInf(x, 0) {
		z.form = inf
		return z
	}
	// normalized x != 0
	z.form = finite
	fmant, exp := math.Frexp(x) // get normalized mantissa
	z.mant = z.mant.setUint64(1<<63 | math.Float64bits(fmant)<<11)
	z.exp = int32(exp) // always fits
	if z.prec < 53 {
		z.round(0)
	}
	return z
}

// fnorm normalizes mantissa m by shifting it to the left
// such that the msb of the most-significant word (msw) is 1.
// It returns the shift amount. It assumes that len(m) != 0.
func fnorm(m nat) int64 {
	if debugFloat && (len(m) == 0 || m[len(m)-1] == 0) {
		panic("msw of mantissa is 0")
	}
	s := nlz(m[len(m)-1])
	if s > 0 {
		c := shlVU(m, m, s)
		if debugFloat && c != 0 {
			panic("nlz or shlVU incorrect")
		}
	}
	return int64(s)
}

// SetInt sets z to the (possibly rounded) value of x and returns z.
// If z's precision is 0, it is changed to the larger of x.BitLen()
// or 64 (and rounding will have no effect).
func (z *Float) SetInt(x *Int) *Float {
	// TODO(gri) can be more efficient if z.prec > 0
	// but small compared to the size of x, or if there
	// are many trailing 0's.
	bits := uint32(x.BitLen())
	if z.prec == 0 {
		z.prec = umax32(bits, 64)
	}
	z.acc = Exact
	z.neg = x.neg
	if len(x.abs) == 0 {
		z.form = zero
		return z
	}
	// x != 0
	z.mant = z.mant.set(x.abs)
	fnorm(z.mant)
	z.setExpAndRound(int64(bits), 0)
	return z
}

// SetRat sets z to the (possibly rounded) value of x and returns z.
// If z's precision is 0, it is changed to the largest of a.BitLen(),
// b.BitLen(), or 64; with x = a/b.
func (z *Float) SetRat(x *Rat) *Float {
	if x.IsInt() {
		return z.SetInt(x.Num())
	}
	var a, b Float
	a.SetInt(x.Num())
	b.SetInt(x.Denom())
	if z.prec == 0 {
		z.prec = umax32(a.prec, b.prec)
	}
	return z.Quo(&a, &b)
}

// SetInf sets z to the infinite Float -Inf if signbit is
// set, or +Inf if signbit is not set, and returns z. The
// precision of z is unchanged and the result is always
// Exact.
func (z *Float) SetInf(signbit bool) *Float {
	z.acc = Exact
	z.form = inf
	z.neg = signbit
	return z
}

// Set sets z to the (possibly rounded) value of x and returns z.
// If z's precision is 0, it is changed to the precision of x
// before setting z (and rounding will have no effect).
// Rounding is performed according to z's precision and rounding
// mode; and z's accuracy reports the result error relative to the
// exact (not rounded) result.
func (z *Float) Set(x *Float) *Float {
	if debugFloat {
		x.validate()
	}
	z.acc = Exact
	if z != x {
		z.form = x.form
		z.neg = x.neg
		if x.form == finite {
			z.exp = x.exp
			z.mant = z.mant.set(x.mant)
		}
		if z.prec == 0 {
			z.prec = x.prec
		} else if z.prec < x.prec {
			z.round(0)
		}
	}
	return z
}

// Copy sets z to x, with the same precision, rounding mode, and
// accuracy as x, and returns z. x is not changed even if z and
// x are the same.
func (z *Float) Copy(x *Float) *Float {
	if debugFloat {
		x.validate()
	}
	if z != x {
		z.prec = x.prec
		z.mode = x.mode
		z.acc = x.acc
		z.form = x.form
		z.neg = x.neg
		if z.form == finite {
			z.mant = z.mant.set(x.mant)
			z.exp = x.exp
		}
	}
	return z
}

// msb32 returns the 32 most significant bits of x.
func msb32(x nat) uint32 {
	i := len(x) - 1
	if i < 0 {
		return 0
	}
	if debugFloat && x[i]&(1<<(_W-1)) == 0 {
		panic("x not normalized")
	}
	switch _W {
	case 32:
		return uint32(x[i])
	case 64:
		return uint32(x[i] >> 32)
	}
	panic("unreachable")
}

// msb64 returns the 64 most significant bits of x.
func msb64(x nat) uint64 {
	i := len(x) - 1
	if i < 0 {
		return 0
	}
	if debugFloat && x[i]&(1<<(_W-1)) == 0 {
		panic("x not normalized")
	}
	switch _W {
	case 32:
		v := uint64(x[i]) << 32
		if i > 0 {
			v |= uint64(x[i-1])
		}
		return v
	case 64:
		return uint64(x[i])
	}
	panic("unreachable")
}

// Uint64 returns the unsigned integer resulting from truncating x
// towards zero. If 0 <= x <= math.MaxUint64, the result is Exact
// if x is an integer and Below otherwise.
// The result is (0, Above) for x < 0, and (math.MaxUint64, Below)
// for x > math.MaxUint64.
func (x *Float) Uint64() (uint64, Accuracy) {
	if debugFloat {
		x.validate()
	}

	switch x.form {
	case finite:
		if x.neg {
			return 0, Above
		}
		// 0 < x < +Inf
		if x.exp <= 0 {
			// 0 < x < 1
			return 0, Below
		}
		// 1 <= x < Inf
		if x.exp <= 64 {
			// u = trunc(x) fits into a uint64
			u := msb64(x.mant) >> (64 - uint32(x.exp))
			if x.MinPrec() <= 64 {
				return u, Exact
			}
			return u, Below // x truncated
		}
		// x too large
		return math.MaxUint64, Below

	case zero:
		return 0, Exact

	case inf:
		if x.neg {
			return 0, Above
		}
		return math.MaxUint64, Below
	}

	panic("unreachable")
}

// Int64 returns the integer resulting from truncating x towards zero.
// If math.MinInt64 <= x <= math.MaxInt64, the result is Exact if x is
// an integer, and Above (x < 0) or Below (x > 0) otherwise.
// The result is (math.MinInt64, Above) for x < math.MinInt64,
// and (math.MaxInt64, Below) for x > math.MaxInt64.
func (x *Float) Int64() (int64, Accuracy) {
	if debugFloat {
		x.validate()
	}

	switch x.form {
	case finite:
		// 0 < |x| < +Inf
		acc := makeAcc(x.neg)
		if x.exp <= 0 {
			// 0 < |x| < 1
			return 0, acc
		}
		// x.exp > 0

		// 1 <= |x| < +Inf
		if x.exp <= 63 {
			// i = trunc(x) fits into an int64 (excluding math.MinInt64)
			i := int64(msb64(x.mant) >> (64 - uint32(x.exp)))
			if x.neg {
				i = -i
			}
			if x.MinPrec() <= uint(x.exp) {
				return i, Exact
			}
			return i, acc // x truncated
		}
		if x.neg {
			// check for special case x == math.MinInt64 (i.e., x == -(0.5 << 64))
			if x.exp == 64 && x.MinPrec() == 1 {
				acc = Exact
			}
			return math.MinInt64, acc
		}
		// x too large
		return math.MaxInt64, Below

	case zero:
		return 0, Exact

	case inf:
		if x.neg {
			return math.MinInt64, Above
		}
		return math.MaxInt64, Below
	}

	panic("unreachable")
}

// Float32 returns the float32 value nearest to x. If x is too small to be
// represented by a float32 (|x| < math.SmallestNonzeroFloat32), the result
// is (0, Below) or (-0, Above), respectively, depending on the sign of x.
// If x is too large to be represented by a float32 (|x| > math.MaxFloat32),
// the result is (+Inf, Above) or (-Inf, Below), depending on the sign of x.
func (x *Float) Float32() (float32, Accuracy) {
	if debugFloat {
		x.validate()
	}

	switch x.form {
	case finite:
		// 0 < |x| < +Inf

		const (
			fbits = 32                //        float size
			mbits = 23                //        mantissa size (excluding implicit msb)
			ebits = fbits - mbits - 1 //     8  exponent size
			bias  = 1<<(ebits-1) - 1  //   127  exponent bias
			dmin  = 1 - bias - mbits  //  -149  smallest unbiased exponent (denormal)
			emin  = 1 - bias          //  -126  smallest unbiased exponent (normal)
			emax  = bias              //   127  largest unbiased exponent (normal)
		)

		// Float mantissa m is 0.5 <= m < 1.0; compute exponent e for float32 mantissa.
		e := x.exp - 1 // exponent for normal mantissa m with 1.0 <= m < 2.0

		// Compute precision p for float32 mantissa.
		// If the exponent is too small, we have a denormal number before
		// rounding and fewer than p mantissa bits of precision available
		// (the exponent remains fixed but the mantissa gets shifted right).
		p := mbits + 1 // precision of normal float
		if e < emin {
			// recompute precision
			p = mbits + 1 - emin + int(e)
			// If p == 0, the mantissa of x is shifted so much to the right
			// that its msb falls immediately to the right of the float32
			// mantissa space. In other words, if the smallest denormal is
			// considered "1.0", for p == 0, the mantissa value m is >= 0.5.
			// If m > 0.5, it is rounded up to 1.0; i.e., the smallest denormal.
			// If m == 0.5, it is rounded down to even, i.e., 0.0.
			// If p < 0, the mantissa value m is <= "0.25" which is never rounded up.
			if p < 0 /* m <= 0.25 */ || p == 0 && x.mant.sticky(uint(len(x.mant))*_W-1) == 0 /* m == 0.5 */ {
				// underflow to ±0
				if x.neg {
					var z float32
					return -z, Above
				}
				return 0.0, Below
			}
			// otherwise, round up
			// We handle p == 0 explicitly because it's easy and because
			// Float.round doesn't support rounding to 0 bits of precision.
			if p == 0 {
				if x.neg {
					return -math.SmallestNonzeroFloat32, Below
				}
				return math.SmallestNonzeroFloat32, Above
			}
		}
		// p > 0

		// round
		var r Float
		r.prec = uint32(p)
		r.Set(x)
		e = r.exp - 1

		// Rounding may have caused r to overflow to ±Inf
		// (rounding never causes underflows to 0).
		// If the exponent is too large, also overflow to ±Inf.
		if r.form == inf || e > emax {
			// overflow
			if x.neg {
				return float32(math.Inf(-1)), Below
			}
			return float32(math.Inf(+1)), Above
		}
		// e <= emax

		// Determine sign, biased exponent, and mantissa.
		var sign, bexp, mant uint32
		if x.neg {
			sign = 1 << (fbits - 1)
		}

		// Rounding may have caused a denormal number to
		// become normal. Check again.
		if e < emin {
			// denormal number: recompute precision
			// Since rounding may have at best increased precision
			// and we have eliminated p <= 0 early, we know p > 0.
			// bexp == 0 for denormals
			p = mbits + 1 - emin + int(e)
			mant = msb32(r.mant) >> uint(fbits-p)
		} else {
			// normal number: emin <= e <= emax
			bexp = uint32(e+bias) << mbits
			mant = msb32(r.mant) >> ebits & (1<<mbits - 1) // cut off msb (implicit 1 bit)
		}

		return math.Float32frombits(sign | bexp | mant), r.acc

	case zero:
		if x.neg {
			var z float32
			return -z, Exact
		}
		return 0.0, Exact

	case inf:
		if x.neg {
			return float32(math.Inf(-1)), Exact
		}
		return float32(math.Inf(+1)), Exact
	}

	panic("unreachable")
}

// Float64 returns the float64 value nearest to x. If x is too small to be
// represented by a float64 (|x| < math.SmallestNonzeroFloat64), the result
// is (0, Below) or (-0, Above), respectively, depending on the sign of x.
// If x is too large to be represented by a float64 (|x| > math.MaxFloat64),
// the result is (+Inf, Above) or (-Inf, Below), depending on the sign of x.
func (x *Float) Float64() (float64, Accuracy) {
	if debugFloat {
		x.validate()
	}

	switch x.form {
	case finite:
		// 0 < |x| < +Inf

		const (
			fbits = 64                //        float size
			mbits = 52                //        mantissa size (excluding implicit msb)
			ebits = fbits - mbits - 1 //    11  exponent size
			bias  = 1<<(ebits-1) - 1  //  1023  exponent bias
			dmin  = 1 - bias - mbits  // -1074  smallest unbiased exponent (denormal)
			emin  = 1 - bias          // -1022  smallest unbiased exponent (normal)
			emax  = bias              //  1023  largest unbiased exponent (normal)
		)

		// Float mantissa m is 0.5 <= m < 1.0; compute exponent e for float64 mantissa.
		e := x.exp - 1 // exponent for normal mantissa m with 1.0 <= m < 2.0

		// Compute precision p for float64 mantissa.
		// If the exponent is too small, we have a denormal number before
		// rounding and fewer than p mantissa bits of precision available
		// (the exponent remains fixed but the mantissa gets shifted right).
		p := mbits + 1 // precision of normal float
		if e < emin {
			// recompute precision
			p = mbits + 1 - emin + int(e)
			// If p == 0, the mantissa of x is shifted so much to the right
			// that its msb falls immediately to the right of the float64
			// mantissa space. In other words, if the smallest denormal is
			// considered "1.0", for p == 0, the mantissa value m is >= 0.5.
			// If m > 0.5, it is rounded up to 1.0; i.e., the smallest denormal.
			// If m == 0.5, it is rounded down to even, i.e., 0.0.
			// If p < 0, the mantissa value m is <= "0.25" which is never rounded up.
			if p < 0 /* m <= 0.25 */ || p == 0 && x.mant.sticky(uint(len(x.mant))*_W-1) == 0 /* m == 0.5 */ {
				// underflow to ±0
				if x.neg {
					var z float64
					return -z, Above
				}
				return 0.0, Below
			}
			// otherwise, round up
			// We handle p == 0 explicitly because it's easy and because
			// Float.round doesn't support rounding to 0 bits of precision.
			if p == 0 {
				if x.neg {
					return -math.SmallestNonzeroFloat64, Below
				}
				return math.SmallestNonzeroFloat64, Above
			}
		}
		// p > 0

		// round
		var r Float
		r.prec = uint32(p)
		r.Set(x)
		e = r.exp - 1

		// Rounding may have caused r to overflow to ±Inf
		// (rounding never causes underflows to 0).
		// If the exponent is too large, also overflow to ±Inf.
		if r.form == inf || e > emax {
			// overflow
			if x.neg {
				return math.Inf(-1), Below
			}
			return math.Inf(+1), Above
		}
		// e <= emax

		// Determine sign, biased exponent, and mantissa.
		var sign, bexp, mant uint64
		if x.neg {
			sign = 1 << (fbits - 1)
		}

		// Rounding may have caused a denormal number to
		// become normal. Check again.
		if e < emin {
			// denormal number: recompute precision
			// Since rounding may have at best increased precision
			// and we have eliminated p <= 0 early, we know p > 0.
			// bexp == 0 for denormals
			p = mbits + 1 - emin + int(e)
			mant = msb64(r.mant) >> uint(fbits-p)
		} else {
			// normal number: emin <= e <= emax
			bexp = uint64(e+bias) << mbits
			mant = msb64(r.mant) >> ebits & (1<<mbits - 1) // cut off msb (implicit 1 bit)
		}

		return math.Float64frombits(sign | bexp | mant), r.acc

	case zero:
		if x.neg {
			var z float64
			return -z, Exact
		}
		return 0.0, Exact

	case inf:
		if x.neg {
			return math.Inf(-1), Exact
		}
		return math.Inf(+1), Exact
	}

	panic("unreachable")
}

// Int returns the result of truncating x towards zero;
// or nil if x is an infinity.
// The result is Exact if x.IsInt(); otherwise it is Below
// for x > 0, and Above for x < 0.
// If a non-nil *Int argument z is provided, Int stores
// the result in z instead of allocating a new Int.
func (x *Float) Int(z *Int) (*Int, Accuracy) {
	if debugFloat {
		x.validate()
	}

	if z == nil && x.form <= finite {
		z = new(Int)
	}

	switch x.form {
	case finite:
		// 0 < |x| < +Inf
		acc := makeAcc(x.neg)
		if x.exp <= 0 {
			// 0 < |x| < 1
			return z.SetInt64(0), acc
		}
		// x.exp > 0

		// 1 <= |x| < +Inf
		// determine minimum required precision for x
		allBits := uint(len(x.mant)) * _W
		exp := uint(x.exp)
		if x.MinPrec() <= exp {
			acc = Exact
		}
		// shift mantissa as needed
		if z == nil {
			z = new(Int)
		}
		z.neg = x.neg
		switch {
		case exp > allBits:
			z.abs = z.abs.shl(x.mant, exp-allBits)
		default:
			z.abs = z.abs.set(x.mant)
		case exp < allBits:
			z.abs = z.abs.shr(x.mant, allBits-exp)
		}
		return z, acc

	case zero:
		return z.SetInt64(0), Exact

	case inf:
		return nil, makeAcc(x.neg)
	}

	panic("unreachable")
}

// Rat returns the rational number corresponding to x;
// or nil if x is an infinity.
// The result is Exact if x is not an Inf.
// If a non-nil *Rat argument z is provided, Rat stores
// the result in z instead of allocating a new Rat.
func (x *Float) Rat(z *Rat) (*Rat, Accuracy) {
	if debugFloat {
		x.validate()
	}

	if z == nil && x.form <= finite {
		z = new(Rat)
	}

	switch x.form {
	case finite:
		// 0 < |x| < +Inf
		allBits := int32(len(x.mant)) * _W
		// build up numerator and denominator
		z.a.neg = x.neg
		switch {
		case x.exp > allBits:
			z.a.abs = z.a.abs.shl(x.mant, uint(x.exp-allBits))
			z.b.abs = z.b.abs[:0] // == 1 (see Rat)
			// z already in normal form
		default:
			z.a.abs = z.a.abs.set(x.mant)
			z.b.abs = z.b.abs[:0] // == 1 (see Rat)
			// z already in normal form
		case x.exp < allBits:
			z.a.abs = z.a.abs.set(x.mant)
			t := z.b.abs.setUint64(1)
			z.b.abs = t.shl(t, uint(allBits-x.exp))
			z.norm()
		}
		return z, Exact

	case zero:
		return z.SetInt64(0), Exact

	case inf:
		return nil, makeAcc(x.neg)
	}

	panic("unreachable")
}

// Abs sets z to the (possibly rounded) value |x| (the absolute value of x)
// and returns z.
func (z *Float) Abs(x *Float) *Float {
	z.Set(x)
	z.neg = false
	return z
}

// Neg sets z to the (possibly rounded) value of x with its sign negated,
// and returns z.
func (z *Float) Neg(x *Float) *Float {
	z.Set(x)
	z.neg = !z.neg
	return z
}

func validateBinaryOperands(x, y *Float) {
	if !debugFloat {
		// avoid performance bugs
		panic("validateBinaryOperands called but debugFloat is not set")
	}
	if len(x.mant) == 0 {
		panic("empty mantissa for x")
	}
	if len(y.mant) == 0 {
		panic("empty mantissa for y")
	}
}

// z = x + y, ignoring signs of x and y for the addition
// but using the sign of z for rounding the result.
// x and y must have a non-empty mantissa and valid exponent.
func (z *Float) uadd(x, y *Float) {
	// Note: This implementation requires 2 shifts most of the
	// time. It is also inefficient if exponents or precisions
	// differ by wide margins. The following article describes
	// an efficient (but much more complicated) implementation
	// compatible with the internal representation used here:
	//
	// Vincent Lefèvre: "The Generic Multiple-Precision Floating-
	// Point Addition With Exact Rounding (as in the MPFR Library)"
	// http://www.vinc17.net/research/papers/rnc6.pdf

	if debugFloat {
		validateBinaryOperands(x, y)
	}

	// compute exponents ex, ey for mantissa with "binary point"
	// on the right (mantissa.0) - use int64 to avoid overflow
	ex := int64(x.exp) - int64(len(x.mant))*_W
	ey := int64(y.exp) - int64(len(y.mant))*_W

	al := alias(z.mant, x.mant) || alias(z.mant, y.mant)

	// TODO(gri) having a combined add-and-shift primitive
	//           could make this code significantly faster
	switch {
	case ex < ey:
		if al {
			t := nat(nil).shl(y.mant, uint(ey-ex))
			z.mant = z.mant.add(x.mant, t)
		} else {
			z.mant = z.mant.shl(y.mant, uint(ey-ex))
			z.mant = z.mant.add(x.mant, z.mant)
		}
	default:
		// ex == ey, no shift needed
		z.mant = z.mant.add(x.mant, y.mant)
	case ex > ey:
		if al {
			t := nat(nil).shl(x.mant, uint(ex-ey))
			z.mant = z.mant.add(t, y.mant)
		} else {
			z.mant = z.mant.shl(x.mant, uint(ex-ey))
			z.mant = z.mant.add(z.mant, y.mant)
		}
		ex = ey
	}
	// len(z.mant) > 0

	z.setExpAndRound(ex+int64(len(z.mant))*_W-fnorm(z.mant), 0)
}

// z = x - y for |x| > |y|, ignoring signs of x and y for the subtraction
// but using the sign of z for rounding the result.
// x and y must have a non-empty mantissa and valid exponent.
func (z *Float) usub(x, y *Float) {
	// This code is symmetric to uadd.
	// We have not factored the common code out because
	// eventually uadd (and usub) should be optimized
	// by special-casing, and the code will diverge.

	if debugFloat {
		validateBinaryOperands(x, y)
	}

	ex := int64(x.exp) - int64(len(x.mant))*_W
	ey := int64(y.exp) - int64(len(y.mant))*_W

	al := alias(z.mant, x.mant) || alias(z.mant, y.mant)

	switch {
	case ex < ey:
		if al {
			t := nat(nil).shl(y.mant, uint(ey-ex))
			z.mant = t.sub(x.mant, t)
		} else {
			z.mant = z.mant.shl(y.mant, uint(ey-ex))
			z.mant = z.mant.sub(x.mant, z.mant)
		}
	default:
		// ex == ey, no shift needed
		z.mant = z.mant.sub(x.mant, y.mant)
	case ex > ey:
		if al {
			t := nat(nil).shl(x.mant, uint(ex-ey))
			z.mant = t.sub(t, y.mant)
		} else {
			z.mant = z.mant.shl(x.mant, uint(ex-ey))
			z.mant = z.mant.sub(z.mant, y.mant)
		}
		ex = ey
	}

	// operands may have canceled each other out
	if len(z.mant) == 0 {
		z.acc = Exact
		z.form = zero
		z.neg = false
		return
	}
	// len(z.mant) > 0

	z.setExpAndRound(ex+int64(len(z.mant))*_W-fnorm(z.mant), 0)
}

// z = x * y, ignoring signs of x and y for the multiplication
// but using the sign of z for rounding the result.
// x and y must have a non-empty mantissa and valid exponent.
func (z *Float) umul(x, y *Float) {
	if debugFloat {
		validateBinaryOperands(x, y)
	}

	// Note: This is doing too much work if the precision
	// of z is less than the sum of the precisions of x
	// and y which is often the case (e.g., if all floats
	// have the same precision).
	// TODO(gri) Optimize this for the common case.

	e := int64(x.exp) + int64(y.exp)
	if x == y {
		z.mant = z.mant.sqr(x.mant)
	} else {
		z.mant = z.mant.mul(x.mant, y.mant)
	}
	z.setExpAndRound(e-fnorm(z.mant), 0)
}

// z = x / y, ignoring signs of x and y for the division
// but using the sign of z for rounding the result.
// x and y must have a non-empty mantissa and valid exponent.
func (z *Float) uquo(x, y *Float) {
	if debugFloat {
		validateBinaryOperands(x, y)
	}

	// mantissa length in words for desired result precision + 1
	// (at least one extra bit so we get the rounding bit after
	// the division)
	n := int(z.prec/_W) + 1

	// compute adjusted x.mant such that we get enough result precision
	xadj := x.mant
	if d := n - len(x.mant) + len(y.mant); d > 0 {
		// d extra words needed => add d "0 digits" to x
		xadj = make(nat, len(x.mant)+d)
		copy(xadj[d:], x.mant)
	}
	// TODO(gri): If we have too many digits (d < 0), we should be able
	// to shorten x for faster division. But we must be extra careful
	// with rounding in that case.

	// Compute d before division since there may be aliasing of x.mant
	// (via xadj) or y.mant with z.mant.
	d := len(xadj) - len(y.mant)

	// divide
	var r nat
	z.mant, r = z.mant.div(nil, xadj, y.mant)
	e := int64(x.exp) - int64(y.exp) - int64(d-len(z.mant))*_W

	// The result is long enough to include (at least) the rounding bit.
	// If there's a non-zero remainder, the corresponding fractional part
	// (if it were computed), would have a non-zero sticky bit (if it were
	// zero, it couldn't have a non-zero remainder).
	var sbit uint
	if len(r) > 0 {
		sbit = 1
	}

	z.setExpAndRound(e-fnorm(z.mant), sbit)
}

// ucmp returns -1, 0, or +1, depending on whether
// |x| < |y|, |x| == |y|, or |x| > |y|.
// x and y must have a non-empty mantissa and valid exponent.
func (x *Float) ucmp(y *Float) int {
	if debugFloat {
		validateBinaryOperands(x, y)
	}

	switch {
	case x.exp < y.exp:
		return -1
	case x.exp > y.exp:
		return +1
	}
	// x.exp == y.exp

	// compare mantissas
	i := len(x.mant)
	j := len(y.mant)
	for i > 0 || j > 0 {
		var xm, ym Word
		if i > 0 {
			i--
			xm = x.mant[i]
		}
		if j > 0 {
			j--
			ym = y.mant[j]
		}
		switch {
		case xm < ym:
			return -1
		case xm > ym:
			return +1
		}
	}

	return 0
}

// Handling of sign bit as defined by IEEE 754-2008, section 6.3:
//
// When neither the inputs nor result are NaN, the sign of a product or
// quotient is the exclusive OR of the operands’ signs; the sign of a sum,
// or of a difference x−y regarded as a sum x+(−y), differs from at most
// one of the addends’ signs; and the sign of the result of conversions,
// the quantize operation, the roundToIntegral operations, and the
// roundToIntegralExact (see 5.3.1) is the sign of the first or only operand.
// These rules shall apply even when operands or results are zero or infinite.
//
// When the sum of two operands with opposite signs (or the difference of
// two operands with like signs) is exactly zero, the sign of that sum (or
// difference) shall be +0 in all rounding-direction attributes except
// roundTowardNegative; under that attribute, the sign of an exact zero
// sum (or difference) shall be −0. However, x+x = x−(−x) retains the same
// sign as x even when x is zero.
//
// See also: https://play.golang.org/p/RtH3UCt5IH

// Add sets z to the rounded sum x+y and returns z. If z's precision is 0,
// it is changed to the larger of x's or y's precision before the operation.
// Rounding is performed according to z's precision and rounding mode; and
// z's accuracy reports the result error relative to the exact (not rounded)
// result. Add panics with ErrNaN if x and y are infinities with opposite
// signs. The value of z is undefined in that case.
func (z *Float) Add(x, y *Float) *Float {
	if debugFloat {
		x.validate()
		y.validate()
	}

	if z.prec == 0 {
		z.prec = umax32(x.prec, y.prec)
	}

	if x.form == finite && y.form == finite {
		// x + y (common case)

		// Below we set z.neg = x.neg, and when z aliases y this will
		// change the y operand's sign. This is fine, because if an
		// operand aliases the receiver it'll be overwritten, but we still
		// want the original x.neg and y.neg values when we evaluate
		// x.neg != y.neg, so we need to save y.neg before setting z.neg.
		yneg := y.neg

		z.neg = x.neg
		if x.neg == yneg {
			// x + y == x + y
			// (-x) + (-y) == -(x + y)
			z.uadd(x, y)
		} else {
			// x + (-y) == x - y == -(y - x)
			// (-x) + y == y - x == -(x - y)
			if x.ucmp(y) > 0 {
				z.usub(x, y)
			} else {
				z.neg = !z.neg
				z.usub(y, x)
			}
		}
		if z.form == zero && z.mode == ToNegativeInf && z.acc == Exact {
			z.neg = true
		}
		return z
	}

	if x.form == inf && y.form == inf && x.neg != y.neg {
		// +Inf + -Inf
		// -Inf + +Inf
		// value of z is undefined but make sure it's valid
		z.acc = Exact
		z.form = zero
		z.neg = false
		panic(ErrNaN{"addition of infinities with opposite signs"})
	}

	if x.form == zero && y.form == zero {
		// ±0 + ±0
		z.acc = Exact
		z.form = zero
		z.neg = x.neg && y.neg // -0 + -0 == -0
		return z
	}

	if x.form == inf || y.form == zero {
		// ±Inf + y
		// x + ±0
		return z.Set(x)
	}

	// ±0 + y
	// x + ±Inf
	return z.Set(y)
}

// Sub sets z to the rounded difference x-y and returns z.
// Precision, rounding, and accuracy reporting are as for Add.
// Sub panics with ErrNaN if x and y are infinities with equal
// signs. The value of z is undefined in that case.
func (z *Float) Sub(x, y *Float) *Float {
	if debugFloat {
		x.validate()
		y.validate()
	}

	if z.prec == 0 {
		z.prec = umax32(x.prec, y.prec)
	}

	if x.form == finite && y.form == finite {
		// x - y (common case)
		yneg := y.neg
		z.neg = x.neg
		if x.neg != yneg {
			// x - (-y) == x + y
			// (-x) - y == -(x + y)
			z.uadd(x, y)
		} else {
			// x - y == x - y == -(y - x)
			// (-x) - (-y) == y - x == -(x - y)
			if x.ucmp(y) > 0 {
				z.usub(x, y)
			} else {
				z.neg = !z.neg
				z.usub(y, x)
			}
		}
		if z.form == zero && z.mode == ToNegativeInf && z.acc == Exact {
			z.neg = true
		}
		return z
	}

	if x.form == inf && y.form == inf && x.neg == y.neg {
		// +Inf - +Inf
		// -Inf - -Inf
		// value of z is undefined but make sure it's valid
		z.acc = Exact
		z.form = zero
		z.neg = false
		panic(ErrNaN{"subtraction of infinities with equal signs"})
	}

	if x.form == zero && y.form == zero {
		// ±0 - ±0
		z.acc = Exact
		z.form = zero
		z.neg = x.neg && !y.neg // -0 - +0 == -0
		return z
	}

	if x.form == inf || y.form == zero {
		// ±Inf - y
		// x - ±0
		return z.Set(x)
	}

	// ±0 - y
	// x - ±Inf
	return z.Neg(y)
}

// Mul sets z to the rounded product x*y and returns z.
// Precision, rounding, and accuracy reporting are as for Add.
// Mul panics with ErrNaN if one operand is zero and the other
// operand an infinity. The value of z is undefined in that case.
func (z *Float) Mul(x, y *Float) *Float {
	if debugFloat {
		x.validate()
		y.validate()
	}

	if z.prec == 0 {
		z.prec = umax32(x.prec, y.prec)
	}

	z.neg = x.neg != y.neg

	if x.form == finite && y.form == finite {
		// x * y (common case)
		z.umul(x, y)
		return z
	}

	z.acc = Exact
	if x.form == zero && y.form == inf || x.form == inf && y.form == zero {
		// ±0 * ±Inf
		// ±Inf * ±0
		// value of z is undefined but make sure it's valid
		z.form = zero
		z.neg = false
		panic(ErrNaN{"multiplication of zero with infinity"})
	}

	if x.form == inf || y.form == inf {
		// ±Inf * y
		// x * ±Inf
		z.form = inf
		return z
	}

	// ±0 * y
	// x * ±0
	z.form = zero
	return z
}

// Quo sets z to the rounded quotient x/y and returns z.
// Precision, rounding, and accuracy reporting are as for Add.
// Quo panics with ErrNaN if both operands are zero or infinities.
// The value of z is undefined in that case.
func (z *Float) Quo(x, y *Float) *Float {
	if debugFloat {
		x.validate()
		y.validate()
	}

	if z.prec == 0 {
		z.prec = umax32(x.prec, y.prec)
	}

	z.neg = x.neg != y.neg

	if x.form == finite && y.form == finite {
		// x / y (common case)
		z.uquo(x, y)
		return z
	}

	z.acc = Exact
	if x.form == zero && y.form == zero || x.form == inf && y.form == inf {
		// ±0 / ±0
		// ±Inf / ±Inf
		// value of z is undefined but make sure it's valid
		z.form = zero
		z.neg = false
		panic(ErrNaN{"division of zero by zero or infinity by infinity"})
	}

	if x.form == zero || y.form == inf {
		// ±0 / y
		// x / ±Inf
		z.form = zero
		return z
	}

	// x / ±0
	// ±Inf / y
	z.form = inf
	return z
}

// Cmp compares x and y and returns:
//
//   -1 if x <  y
//    0 if x == y (incl. -0 == 0, -Inf == -Inf, and +Inf == +Inf)
//   +1 if x >  y
//
func (x *Float) Cmp(y *Float) int {
	if debugFloat {
		x.validate()
		y.validate()
	}

	mx := x.ord()
	my := y.ord()
	switch {
	case mx < my:
		return -1
	case mx > my:
		return +1
	}
	// mx == my

	// only if |mx| == 1 we have to compare the mantissae
	switch mx {
	case -1:
		return y.ucmp(x)
	case +1:
		return x.ucmp(y)
	}

	return 0
}

// ord classifies x and returns:
//
//	-2 if -Inf == x
//	-1 if -Inf < x < 0
//	 0 if x == 0 (signed or unsigned)
//	+1 if 0 < x < +Inf
//	+2 if x == +Inf
//
func (x *Float) ord() int {
	var m int
	switch x.form {
	case finite:
		m = 1
	case zero:
		return 0
	case inf:
		m = 2
	}
	if x.neg {
		m = -m
	}
	return m
}

func umax32(x, y uint32) uint32 {
	if x > y {
		return x
	}
	return y
}