summaryrefslogtreecommitdiffstats
path: root/src/math/cmplx/tan.go
blob: 67a1133a6f432280690b935d2018a1d3689c0b57 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package cmplx

import (
	"math"
	"math/bits"
)

// The original C code, the long comment, and the constants
// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
// The go code is a simplified version of the original C.
//
// Cephes Math Library Release 2.8:  June, 2000
// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
//
// The readme file at http://netlib.sandia.gov/cephes/ says:
//    Some software in this archive may be from the book _Methods and
// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
// International, 1989) or from the Cephes Mathematical Library, a
// commercial product. In either event, it is copyrighted by the author.
// What you see here may be used freely but it comes with no support or
// guarantee.
//
//   The two known misprints in the book are repaired here in the
// source listings for the gamma function and the incomplete beta
// integral.
//
//   Stephen L. Moshier
//   moshier@na-net.ornl.gov

// Complex circular tangent
//
// DESCRIPTION:
//
// If
//     z = x + iy,
//
// then
//
//           sin 2x  +  i sinh 2y
//     w  =  --------------------.
//            cos 2x  +  cosh 2y
//
// On the real axis the denominator is zero at odd multiples
// of PI/2. The denominator is evaluated by its Taylor
// series near these points.
//
// ctan(z) = -i ctanh(iz).
//
// ACCURACY:
//
//                      Relative error:
// arithmetic   domain     # trials      peak         rms
//    DEC       -10,+10      5200       7.1e-17     1.6e-17
//    IEEE      -10,+10     30000       7.2e-16     1.2e-16
// Also tested by ctan * ccot = 1 and catan(ctan(z))  =  z.

// Tan returns the tangent of x.
func Tan(x complex128) complex128 {
	switch re, im := real(x), imag(x); {
	case math.IsInf(im, 0):
		switch {
		case math.IsInf(re, 0) || math.IsNaN(re):
			return complex(math.Copysign(0, re), math.Copysign(1, im))
		}
		return complex(math.Copysign(0, math.Sin(2*re)), math.Copysign(1, im))
	case re == 0 && math.IsNaN(im):
		return x
	}
	d := math.Cos(2*real(x)) + math.Cosh(2*imag(x))
	if math.Abs(d) < 0.25 {
		d = tanSeries(x)
	}
	if d == 0 {
		return Inf()
	}
	return complex(math.Sin(2*real(x))/d, math.Sinh(2*imag(x))/d)
}

// Complex hyperbolic tangent
//
// DESCRIPTION:
//
// tanh z = (sinh 2x  +  i sin 2y) / (cosh 2x + cos 2y) .
//
// ACCURACY:
//
//                      Relative error:
// arithmetic   domain     # trials      peak         rms
//    IEEE      -10,+10     30000       1.7e-14     2.4e-16

// Tanh returns the hyperbolic tangent of x.
func Tanh(x complex128) complex128 {
	switch re, im := real(x), imag(x); {
	case math.IsInf(re, 0):
		switch {
		case math.IsInf(im, 0) || math.IsNaN(im):
			return complex(math.Copysign(1, re), math.Copysign(0, im))
		}
		return complex(math.Copysign(1, re), math.Copysign(0, math.Sin(2*im)))
	case im == 0 && math.IsNaN(re):
		return x
	}
	d := math.Cosh(2*real(x)) + math.Cos(2*imag(x))
	if d == 0 {
		return Inf()
	}
	return complex(math.Sinh(2*real(x))/d, math.Sin(2*imag(x))/d)
}

// reducePi reduces the input argument x to the range (-Pi/2, Pi/2].
// x must be greater than or equal to 0. For small arguments it
// uses Cody-Waite reduction in 3 float64 parts based on:
// "Elementary Function Evaluation:  Algorithms and Implementation"
// Jean-Michel Muller, 1997.
// For very large arguments it uses Payne-Hanek range reduction based on:
// "ARGUMENT REDUCTION FOR HUGE ARGUMENTS: Good to the Last Bit"
// K. C. Ng et al, March 24, 1992.
func reducePi(x float64) float64 {
	// reduceThreshold is the maximum value of x where the reduction using
	// Cody-Waite reduction still gives accurate results. This threshold
	// is set by t*PIn being representable as a float64 without error
	// where t is given by t = floor(x * (1 / Pi)) and PIn are the leading partial
	// terms of Pi. Since the leading terms, PI1 and PI2 below, have 30 and 32
	// trailing zero bits respectively, t should have less than 30 significant bits.
	//	t < 1<<30  -> floor(x*(1/Pi)+0.5) < 1<<30 -> x < (1<<30-1) * Pi - 0.5
	// So, conservatively we can take x < 1<<30.
	const reduceThreshold float64 = 1 << 30
	if math.Abs(x) < reduceThreshold {
		// Use Cody-Waite reduction in three parts.
		const (
			// PI1, PI2 and PI3 comprise an extended precision value of PI
			// such that PI ~= PI1 + PI2 + PI3. The parts are chosen so
			// that PI1 and PI2 have an approximately equal number of trailing
			// zero bits. This ensures that t*PI1 and t*PI2 are exact for
			// large integer values of t. The full precision PI3 ensures the
			// approximation of PI is accurate to 102 bits to handle cancellation
			// during subtraction.
			PI1 = 3.141592502593994      // 0x400921fb40000000
			PI2 = 1.5099578831723193e-07 // 0x3e84442d00000000
			PI3 = 1.0780605716316238e-14 // 0x3d08469898cc5170
		)
		t := x / math.Pi
		t += 0.5
		t = float64(int64(t)) // int64(t) = the multiple
		return ((x - t*PI1) - t*PI2) - t*PI3
	}
	// Must apply Payne-Hanek range reduction
	const (
		mask     = 0x7FF
		shift    = 64 - 11 - 1
		bias     = 1023
		fracMask = 1<<shift - 1
	)
	// Extract out the integer and exponent such that,
	// x = ix * 2 ** exp.
	ix := math.Float64bits(x)
	exp := int(ix>>shift&mask) - bias - shift
	ix &= fracMask
	ix |= 1 << shift

	// mPi is the binary digits of 1/Pi as a uint64 array,
	// that is, 1/Pi = Sum mPi[i]*2^(-64*i).
	// 19 64-bit digits give 1216 bits of precision
	// to handle the largest possible float64 exponent.
	var mPi = [...]uint64{
		0x0000000000000000,
		0x517cc1b727220a94,
		0xfe13abe8fa9a6ee0,
		0x6db14acc9e21c820,
		0xff28b1d5ef5de2b0,
		0xdb92371d2126e970,
		0x0324977504e8c90e,
		0x7f0ef58e5894d39f,
		0x74411afa975da242,
		0x74ce38135a2fbf20,
		0x9cc8eb1cc1a99cfa,
		0x4e422fc5defc941d,
		0x8ffc4bffef02cc07,
		0xf79788c5ad05368f,
		0xb69b3f6793e584db,
		0xa7a31fb34f2ff516,
		0xba93dd63f5f2f8bd,
		0x9e839cfbc5294975,
		0x35fdafd88fc6ae84,
		0x2b0198237e3db5d5,
	}
	// Use the exponent to extract the 3 appropriate uint64 digits from mPi,
	// B ~ (z0, z1, z2), such that the product leading digit has the exponent -64.
	// Note, exp >= 50 since x >= reduceThreshold and exp < 971 for maximum float64.
	digit, bitshift := uint(exp+64)/64, uint(exp+64)%64
	z0 := (mPi[digit] << bitshift) | (mPi[digit+1] >> (64 - bitshift))
	z1 := (mPi[digit+1] << bitshift) | (mPi[digit+2] >> (64 - bitshift))
	z2 := (mPi[digit+2] << bitshift) | (mPi[digit+3] >> (64 - bitshift))
	// Multiply mantissa by the digits and extract the upper two digits (hi, lo).
	z2hi, _ := bits.Mul64(z2, ix)
	z1hi, z1lo := bits.Mul64(z1, ix)
	z0lo := z0 * ix
	lo, c := bits.Add64(z1lo, z2hi, 0)
	hi, _ := bits.Add64(z0lo, z1hi, c)
	// Find the magnitude of the fraction.
	lz := uint(bits.LeadingZeros64(hi))
	e := uint64(bias - (lz + 1))
	// Clear implicit mantissa bit and shift into place.
	hi = (hi << (lz + 1)) | (lo >> (64 - (lz + 1)))
	hi >>= 64 - shift
	// Include the exponent and convert to a float.
	hi |= e << shift
	x = math.Float64frombits(hi)
	// map to (-Pi/2, Pi/2]
	if x > 0.5 {
		x--
	}
	return math.Pi * x
}

// Taylor series expansion for cosh(2y) - cos(2x)
func tanSeries(z complex128) float64 {
	const MACHEP = 1.0 / (1 << 53)
	x := math.Abs(2 * real(z))
	y := math.Abs(2 * imag(z))
	x = reducePi(x)
	x = x * x
	y = y * y
	x2 := 1.0
	y2 := 1.0
	f := 1.0
	rn := 0.0
	d := 0.0
	for {
		rn++
		f *= rn
		rn++
		f *= rn
		x2 *= x
		y2 *= y
		t := y2 + x2
		t /= f
		d += t

		rn++
		f *= rn
		rn++
		f *= rn
		x2 *= x
		y2 *= y
		t = y2 - x2
		t /= f
		d += t
		if !(math.Abs(t/d) > MACHEP) {
			// Caution: Use ! and > instead of <= for correct behavior if t/d is NaN.
			// See issue 17577.
			break
		}
	}
	return d
}

// Complex circular cotangent
//
// DESCRIPTION:
//
// If
//     z = x + iy,
//
// then
//
//           sin 2x  -  i sinh 2y
//     w  =  --------------------.
//            cosh 2y  -  cos 2x
//
// On the real axis, the denominator has zeros at even
// multiples of PI/2.  Near these points it is evaluated
// by a Taylor series.
//
// ACCURACY:
//
//                      Relative error:
// arithmetic   domain     # trials      peak         rms
//    DEC       -10,+10      3000       6.5e-17     1.6e-17
//    IEEE      -10,+10     30000       9.2e-16     1.2e-16
// Also tested by ctan * ccot = 1 + i0.

// Cot returns the cotangent of x.
func Cot(x complex128) complex128 {
	d := math.Cosh(2*imag(x)) - math.Cos(2*real(x))
	if math.Abs(d) < 0.25 {
		d = tanSeries(x)
	}
	if d == 0 {
		return Inf()
	}
	return complex(math.Sin(2*real(x))/d, -math.Sinh(2*imag(x))/d)
}