1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import (
"internal/bytealg"
"runtime/internal/atomic"
"runtime/internal/sys"
"unsafe"
)
// The code in this file implements stack trace walking for all architectures.
// The most important fact about a given architecture is whether it uses a link register.
// On systems with link registers, the prologue for a non-leaf function stores the
// incoming value of LR at the bottom of the newly allocated stack frame.
// On systems without link registers, the architecture pushes a return PC during
// the call instruction, so the return PC ends up above the stack frame.
// In this file, the return PC is always called LR, no matter how it was found.
//
// To date, the opposite of a link register architecture is an x86 architecture.
// This code may need to change if some other kind of non-link-register
// architecture comes along.
//
// The other important fact is the size of a pointer: on 32-bit systems the LR
// takes up only 4 bytes on the stack, while on 64-bit systems it takes up 8 bytes.
// Typically this is ptrSize.
//
// As an exception, amd64p32 had ptrSize == 4 but the CALL instruction still
// stored an 8-byte return PC onto the stack. To accommodate this, we used regSize
// as the size of the architecture-pushed return PC.
//
// usesLR is defined below in terms of minFrameSize, which is defined in
// arch_$GOARCH.go. ptrSize and regSize are defined in stubs.go.
const usesLR = sys.MinFrameSize > 0
// Traceback over the deferred function calls.
// Report them like calls that have been invoked but not started executing yet.
func tracebackdefers(gp *g, callback func(*stkframe, unsafe.Pointer) bool, v unsafe.Pointer) {
var frame stkframe
for d := gp._defer; d != nil; d = d.link {
fn := d.fn
if fn == nil {
// Defer of nil function. Args don't matter.
frame.pc = 0
frame.fn = funcInfo{}
frame.argp = 0
frame.arglen = 0
frame.argmap = nil
} else {
frame.pc = fn.fn
f := findfunc(frame.pc)
if !f.valid() {
print("runtime: unknown pc in defer ", hex(frame.pc), "\n")
throw("unknown pc")
}
frame.fn = f
frame.argp = uintptr(deferArgs(d))
var ok bool
frame.arglen, frame.argmap, ok = getArgInfoFast(f, true)
if !ok {
frame.arglen, frame.argmap = getArgInfo(&frame, f, true, fn)
}
}
frame.continpc = frame.pc
if !callback((*stkframe)(noescape(unsafe.Pointer(&frame))), v) {
return
}
}
}
const sizeofSkipFunction = 256
// Generic traceback. Handles runtime stack prints (pcbuf == nil),
// the runtime.Callers function (pcbuf != nil), as well as the garbage
// collector (callback != nil). A little clunky to merge these, but avoids
// duplicating the code and all its subtlety.
//
// The skip argument is only valid with pcbuf != nil and counts the number
// of logical frames to skip rather than physical frames (with inlining, a
// PC in pcbuf can represent multiple calls). If a PC is partially skipped
// and max > 1, pcbuf[1] will be runtime.skipPleaseUseCallersFrames+N where
// N indicates the number of logical frames to skip in pcbuf[0].
func gentraceback(pc0, sp0, lr0 uintptr, gp *g, skip int, pcbuf *uintptr, max int, callback func(*stkframe, unsafe.Pointer) bool, v unsafe.Pointer, flags uint) int {
if skip > 0 && callback != nil {
throw("gentraceback callback cannot be used with non-zero skip")
}
// Don't call this "g"; it's too easy get "g" and "gp" confused.
if ourg := getg(); ourg == gp && ourg == ourg.m.curg {
// The starting sp has been passed in as a uintptr, and the caller may
// have other uintptr-typed stack references as well.
// If during one of the calls that got us here or during one of the
// callbacks below the stack must be grown, all these uintptr references
// to the stack will not be updated, and gentraceback will continue
// to inspect the old stack memory, which may no longer be valid.
// Even if all the variables were updated correctly, it is not clear that
// we want to expose a traceback that begins on one stack and ends
// on another stack. That could confuse callers quite a bit.
// Instead, we require that gentraceback and any other function that
// accepts an sp for the current goroutine (typically obtained by
// calling getcallersp) must not run on that goroutine's stack but
// instead on the g0 stack.
throw("gentraceback cannot trace user goroutine on its own stack")
}
level, _, _ := gotraceback()
var ctxt *funcval // Context pointer for unstarted goroutines. See issue #25897.
if pc0 == ^uintptr(0) && sp0 == ^uintptr(0) { // Signal to fetch saved values from gp.
if gp.syscallsp != 0 {
pc0 = gp.syscallpc
sp0 = gp.syscallsp
if usesLR {
lr0 = 0
}
} else {
pc0 = gp.sched.pc
sp0 = gp.sched.sp
if usesLR {
lr0 = gp.sched.lr
}
ctxt = (*funcval)(gp.sched.ctxt)
}
}
nprint := 0
var frame stkframe
frame.pc = pc0
frame.sp = sp0
if usesLR {
frame.lr = lr0
}
waspanic := false
cgoCtxt := gp.cgoCtxt
printing := pcbuf == nil && callback == nil
// If the PC is zero, it's likely a nil function call.
// Start in the caller's frame.
if frame.pc == 0 {
if usesLR {
frame.pc = *(*uintptr)(unsafe.Pointer(frame.sp))
frame.lr = 0
} else {
frame.pc = uintptr(*(*sys.Uintreg)(unsafe.Pointer(frame.sp)))
frame.sp += sys.RegSize
}
}
f := findfunc(frame.pc)
if !f.valid() {
if callback != nil || printing {
print("runtime: unknown pc ", hex(frame.pc), "\n")
tracebackHexdump(gp.stack, &frame, 0)
}
if callback != nil {
throw("unknown pc")
}
return 0
}
frame.fn = f
var cache pcvalueCache
lastFuncID := funcID_normal
n := 0
for n < max {
// Typically:
// pc is the PC of the running function.
// sp is the stack pointer at that program counter.
// fp is the frame pointer (caller's stack pointer) at that program counter, or nil if unknown.
// stk is the stack containing sp.
// The caller's program counter is lr, unless lr is zero, in which case it is *(uintptr*)sp.
f = frame.fn
if f.pcsp == 0 {
// No frame information, must be external function, like race support.
// See golang.org/issue/13568.
break
}
// Found an actual function.
// Derive frame pointer and link register.
if frame.fp == 0 {
// Jump over system stack transitions. If we're on g0 and there's a user
// goroutine, try to jump. Otherwise this is a regular call.
if flags&_TraceJumpStack != 0 && gp == gp.m.g0 && gp.m.curg != nil {
switch f.funcID {
case funcID_morestack:
// morestack does not return normally -- newstack()
// gogo's to curg.sched. Match that.
// This keeps morestack() from showing up in the backtrace,
// but that makes some sense since it'll never be returned
// to.
frame.pc = gp.m.curg.sched.pc
frame.fn = findfunc(frame.pc)
f = frame.fn
frame.sp = gp.m.curg.sched.sp
cgoCtxt = gp.m.curg.cgoCtxt
case funcID_systemstack:
// systemstack returns normally, so just follow the
// stack transition.
frame.sp = gp.m.curg.sched.sp
cgoCtxt = gp.m.curg.cgoCtxt
}
}
frame.fp = frame.sp + uintptr(funcspdelta(f, frame.pc, &cache))
if !usesLR {
// On x86, call instruction pushes return PC before entering new function.
frame.fp += sys.RegSize
}
}
var flr funcInfo
if topofstack(f, gp.m != nil && gp == gp.m.g0) {
frame.lr = 0
flr = funcInfo{}
} else if usesLR && f.funcID == funcID_jmpdefer {
// jmpdefer modifies SP/LR/PC non-atomically.
// If a profiling interrupt arrives during jmpdefer,
// the stack unwind may see a mismatched register set
// and get confused. Stop if we see PC within jmpdefer
// to avoid that confusion.
// See golang.org/issue/8153.
if callback != nil {
throw("traceback_arm: found jmpdefer when tracing with callback")
}
frame.lr = 0
} else {
var lrPtr uintptr
if usesLR {
if n == 0 && frame.sp < frame.fp || frame.lr == 0 {
lrPtr = frame.sp
frame.lr = *(*uintptr)(unsafe.Pointer(lrPtr))
}
} else {
if frame.lr == 0 {
lrPtr = frame.fp - sys.RegSize
frame.lr = uintptr(*(*sys.Uintreg)(unsafe.Pointer(lrPtr)))
}
}
flr = findfunc(frame.lr)
if !flr.valid() {
// This happens if you get a profiling interrupt at just the wrong time.
// In that context it is okay to stop early.
// But if callback is set, we're doing a garbage collection and must
// get everything, so crash loudly.
doPrint := printing
if doPrint && gp.m.incgo && f.funcID == funcID_sigpanic {
// We can inject sigpanic
// calls directly into C code,
// in which case we'll see a C
// return PC. Don't complain.
doPrint = false
}
if callback != nil || doPrint {
print("runtime: unexpected return pc for ", funcname(f), " called from ", hex(frame.lr), "\n")
tracebackHexdump(gp.stack, &frame, lrPtr)
}
if callback != nil {
throw("unknown caller pc")
}
}
}
frame.varp = frame.fp
if !usesLR {
// On x86, call instruction pushes return PC before entering new function.
frame.varp -= sys.RegSize
}
// For architectures with frame pointers, if there's
// a frame, then there's a saved frame pointer here.
if frame.varp > frame.sp && (GOARCH == "amd64" || GOARCH == "arm64") {
frame.varp -= sys.RegSize
}
// Derive size of arguments.
// Most functions have a fixed-size argument block,
// so we can use metadata about the function f.
// Not all, though: there are some variadic functions
// in package runtime and reflect, and for those we use call-specific
// metadata recorded by f's caller.
if callback != nil || printing {
frame.argp = frame.fp + sys.MinFrameSize
var ok bool
frame.arglen, frame.argmap, ok = getArgInfoFast(f, callback != nil)
if !ok {
frame.arglen, frame.argmap = getArgInfo(&frame, f, callback != nil, ctxt)
}
}
ctxt = nil // ctxt is only needed to get arg maps for the topmost frame
// Determine frame's 'continuation PC', where it can continue.
// Normally this is the return address on the stack, but if sigpanic
// is immediately below this function on the stack, then the frame
// stopped executing due to a trap, and frame.pc is probably not
// a safe point for looking up liveness information. In this panicking case,
// the function either doesn't return at all (if it has no defers or if the
// defers do not recover) or it returns from one of the calls to
// deferproc a second time (if the corresponding deferred func recovers).
// In the latter case, use a deferreturn call site as the continuation pc.
frame.continpc = frame.pc
if waspanic {
if frame.fn.deferreturn != 0 {
frame.continpc = frame.fn.entry + uintptr(frame.fn.deferreturn) + 1
// Note: this may perhaps keep return variables alive longer than
// strictly necessary, as we are using "function has a defer statement"
// as a proxy for "function actually deferred something". It seems
// to be a minor drawback. (We used to actually look through the
// gp._defer for a defer corresponding to this function, but that
// is hard to do with defer records on the stack during a stack copy.)
// Note: the +1 is to offset the -1 that
// stack.go:getStackMap does to back up a return
// address make sure the pc is in the CALL instruction.
} else {
frame.continpc = 0
}
}
if callback != nil {
if !callback((*stkframe)(noescape(unsafe.Pointer(&frame))), v) {
return n
}
}
if pcbuf != nil {
pc := frame.pc
// backup to CALL instruction to read inlining info (same logic as below)
tracepc := pc
// Normally, pc is a return address. In that case, we want to look up
// file/line information using pc-1, because that is the pc of the
// call instruction (more precisely, the last byte of the call instruction).
// Callers expect the pc buffer to contain return addresses and do the
// same -1 themselves, so we keep pc unchanged.
// When the pc is from a signal (e.g. profiler or segv) then we want
// to look up file/line information using pc, and we store pc+1 in the
// pc buffer so callers can unconditionally subtract 1 before looking up.
// See issue 34123.
// The pc can be at function entry when the frame is initialized without
// actually running code, like runtime.mstart.
if (n == 0 && flags&_TraceTrap != 0) || waspanic || pc == f.entry {
pc++
} else {
tracepc--
}
// If there is inlining info, record the inner frames.
if inldata := funcdata(f, _FUNCDATA_InlTree); inldata != nil {
inltree := (*[1 << 20]inlinedCall)(inldata)
for {
ix := pcdatavalue(f, _PCDATA_InlTreeIndex, tracepc, &cache)
if ix < 0 {
break
}
if inltree[ix].funcID == funcID_wrapper && elideWrapperCalling(lastFuncID) {
// ignore wrappers
} else if skip > 0 {
skip--
} else if n < max {
(*[1 << 20]uintptr)(unsafe.Pointer(pcbuf))[n] = pc
n++
}
lastFuncID = inltree[ix].funcID
// Back up to an instruction in the "caller".
tracepc = frame.fn.entry + uintptr(inltree[ix].parentPc)
pc = tracepc + 1
}
}
// Record the main frame.
if f.funcID == funcID_wrapper && elideWrapperCalling(lastFuncID) {
// Ignore wrapper functions (except when they trigger panics).
} else if skip > 0 {
skip--
} else if n < max {
(*[1 << 20]uintptr)(unsafe.Pointer(pcbuf))[n] = pc
n++
}
lastFuncID = f.funcID
n-- // offset n++ below
}
if printing {
// assume skip=0 for printing.
//
// Never elide wrappers if we haven't printed
// any frames. And don't elide wrappers that
// called panic rather than the wrapped
// function. Otherwise, leave them out.
// backup to CALL instruction to read inlining info (same logic as below)
tracepc := frame.pc
if (n > 0 || flags&_TraceTrap == 0) && frame.pc > f.entry && !waspanic {
tracepc--
}
// If there is inlining info, print the inner frames.
if inldata := funcdata(f, _FUNCDATA_InlTree); inldata != nil {
inltree := (*[1 << 20]inlinedCall)(inldata)
var inlFunc _func
inlFuncInfo := funcInfo{&inlFunc, f.datap}
for {
ix := pcdatavalue(f, _PCDATA_InlTreeIndex, tracepc, nil)
if ix < 0 {
break
}
// Create a fake _func for the
// inlined function.
inlFunc.nameoff = inltree[ix].func_
inlFunc.funcID = inltree[ix].funcID
if (flags&_TraceRuntimeFrames) != 0 || showframe(inlFuncInfo, gp, nprint == 0, inlFuncInfo.funcID, lastFuncID) {
name := funcname(inlFuncInfo)
file, line := funcline(f, tracepc)
print(name, "(...)\n")
print("\t", file, ":", line, "\n")
nprint++
}
lastFuncID = inltree[ix].funcID
// Back up to an instruction in the "caller".
tracepc = frame.fn.entry + uintptr(inltree[ix].parentPc)
}
}
if (flags&_TraceRuntimeFrames) != 0 || showframe(f, gp, nprint == 0, f.funcID, lastFuncID) {
// Print during crash.
// main(0x1, 0x2, 0x3)
// /home/rsc/go/src/runtime/x.go:23 +0xf
//
name := funcname(f)
file, line := funcline(f, tracepc)
if name == "runtime.gopanic" {
name = "panic"
}
print(name, "(")
argp := (*[100]uintptr)(unsafe.Pointer(frame.argp))
for i := uintptr(0); i < frame.arglen/sys.PtrSize; i++ {
if i >= 10 {
print(", ...")
break
}
if i != 0 {
print(", ")
}
print(hex(argp[i]))
}
print(")\n")
print("\t", file, ":", line)
if frame.pc > f.entry {
print(" +", hex(frame.pc-f.entry))
}
if gp.m != nil && gp.m.throwing > 0 && gp == gp.m.curg || level >= 2 {
print(" fp=", hex(frame.fp), " sp=", hex(frame.sp), " pc=", hex(frame.pc))
}
print("\n")
nprint++
}
lastFuncID = f.funcID
}
n++
if f.funcID == funcID_cgocallback && len(cgoCtxt) > 0 {
ctxt := cgoCtxt[len(cgoCtxt)-1]
cgoCtxt = cgoCtxt[:len(cgoCtxt)-1]
// skip only applies to Go frames.
// callback != nil only used when we only care
// about Go frames.
if skip == 0 && callback == nil {
n = tracebackCgoContext(pcbuf, printing, ctxt, n, max)
}
}
waspanic = f.funcID == funcID_sigpanic
injectedCall := waspanic || f.funcID == funcID_asyncPreempt
// Do not unwind past the bottom of the stack.
if !flr.valid() {
break
}
// Unwind to next frame.
frame.fn = flr
frame.pc = frame.lr
frame.lr = 0
frame.sp = frame.fp
frame.fp = 0
frame.argmap = nil
// On link register architectures, sighandler saves the LR on stack
// before faking a call.
if usesLR && injectedCall {
x := *(*uintptr)(unsafe.Pointer(frame.sp))
frame.sp += sys.MinFrameSize
if GOARCH == "arm64" {
// arm64 needs 16-byte aligned SP, always
frame.sp += sys.PtrSize
}
f = findfunc(frame.pc)
frame.fn = f
if !f.valid() {
frame.pc = x
} else if funcspdelta(f, frame.pc, &cache) == 0 {
frame.lr = x
}
}
}
if printing {
n = nprint
}
// Note that panic != nil is okay here: there can be leftover panics,
// because the defers on the panic stack do not nest in frame order as
// they do on the defer stack. If you have:
//
// frame 1 defers d1
// frame 2 defers d2
// frame 3 defers d3
// frame 4 panics
// frame 4's panic starts running defers
// frame 5, running d3, defers d4
// frame 5 panics
// frame 5's panic starts running defers
// frame 6, running d4, garbage collects
// frame 6, running d2, garbage collects
//
// During the execution of d4, the panic stack is d4 -> d3, which
// is nested properly, and we'll treat frame 3 as resumable, because we
// can find d3. (And in fact frame 3 is resumable. If d4 recovers
// and frame 5 continues running, d3, d3 can recover and we'll
// resume execution in (returning from) frame 3.)
//
// During the execution of d2, however, the panic stack is d2 -> d3,
// which is inverted. The scan will match d2 to frame 2 but having
// d2 on the stack until then means it will not match d3 to frame 3.
// This is okay: if we're running d2, then all the defers after d2 have
// completed and their corresponding frames are dead. Not finding d3
// for frame 3 means we'll set frame 3's continpc == 0, which is correct
// (frame 3 is dead). At the end of the walk the panic stack can thus
// contain defers (d3 in this case) for dead frames. The inversion here
// always indicates a dead frame, and the effect of the inversion on the
// scan is to hide those dead frames, so the scan is still okay:
// what's left on the panic stack are exactly (and only) the dead frames.
//
// We require callback != nil here because only when callback != nil
// do we know that gentraceback is being called in a "must be correct"
// context as opposed to a "best effort" context. The tracebacks with
// callbacks only happen when everything is stopped nicely.
// At other times, such as when gathering a stack for a profiling signal
// or when printing a traceback during a crash, everything may not be
// stopped nicely, and the stack walk may not be able to complete.
if callback != nil && n < max && frame.sp != gp.stktopsp {
print("runtime: g", gp.goid, ": frame.sp=", hex(frame.sp), " top=", hex(gp.stktopsp), "\n")
print("\tstack=[", hex(gp.stack.lo), "-", hex(gp.stack.hi), "] n=", n, " max=", max, "\n")
throw("traceback did not unwind completely")
}
return n
}
// reflectMethodValue is a partial duplicate of reflect.makeFuncImpl
// and reflect.methodValue.
type reflectMethodValue struct {
fn uintptr
stack *bitvector // ptrmap for both args and results
argLen uintptr // just args
}
// getArgInfoFast returns the argument frame information for a call to f.
// It is short and inlineable. However, it does not handle all functions.
// If ok reports false, you must call getArgInfo instead.
// TODO(josharian): once we do mid-stack inlining,
// call getArgInfo directly from getArgInfoFast and stop returning an ok bool.
func getArgInfoFast(f funcInfo, needArgMap bool) (arglen uintptr, argmap *bitvector, ok bool) {
return uintptr(f.args), nil, !(needArgMap && f.args == _ArgsSizeUnknown)
}
// getArgInfo returns the argument frame information for a call to f
// with call frame frame.
//
// This is used for both actual calls with active stack frames and for
// deferred calls or goroutines that are not yet executing. If this is an actual
// call, ctxt must be nil (getArgInfo will retrieve what it needs from
// the active stack frame). If this is a deferred call or unstarted goroutine,
// ctxt must be the function object that was deferred or go'd.
func getArgInfo(frame *stkframe, f funcInfo, needArgMap bool, ctxt *funcval) (arglen uintptr, argmap *bitvector) {
arglen = uintptr(f.args)
if needArgMap && f.args == _ArgsSizeUnknown {
// Extract argument bitmaps for reflect stubs from the calls they made to reflect.
switch funcname(f) {
case "reflect.makeFuncStub", "reflect.methodValueCall":
// These take a *reflect.methodValue as their
// context register.
var mv *reflectMethodValue
var retValid bool
if ctxt != nil {
// This is not an actual call, but a
// deferred call or an unstarted goroutine.
// The function value is itself the *reflect.methodValue.
mv = (*reflectMethodValue)(unsafe.Pointer(ctxt))
} else {
// This is a real call that took the
// *reflect.methodValue as its context
// register and immediately saved it
// to 0(SP). Get the methodValue from
// 0(SP).
arg0 := frame.sp + sys.MinFrameSize
mv = *(**reflectMethodValue)(unsafe.Pointer(arg0))
// Figure out whether the return values are valid.
// Reflect will update this value after it copies
// in the return values.
retValid = *(*bool)(unsafe.Pointer(arg0 + 3*sys.PtrSize))
}
if mv.fn != f.entry {
print("runtime: confused by ", funcname(f), "\n")
throw("reflect mismatch")
}
bv := mv.stack
arglen = uintptr(bv.n * sys.PtrSize)
if !retValid {
arglen = uintptr(mv.argLen) &^ (sys.PtrSize - 1)
}
argmap = bv
}
}
return
}
// tracebackCgoContext handles tracing back a cgo context value, from
// the context argument to setCgoTraceback, for the gentraceback
// function. It returns the new value of n.
func tracebackCgoContext(pcbuf *uintptr, printing bool, ctxt uintptr, n, max int) int {
var cgoPCs [32]uintptr
cgoContextPCs(ctxt, cgoPCs[:])
var arg cgoSymbolizerArg
anySymbolized := false
for _, pc := range cgoPCs {
if pc == 0 || n >= max {
break
}
if pcbuf != nil {
(*[1 << 20]uintptr)(unsafe.Pointer(pcbuf))[n] = pc
}
if printing {
if cgoSymbolizer == nil {
print("non-Go function at pc=", hex(pc), "\n")
} else {
c := printOneCgoTraceback(pc, max-n, &arg)
n += c - 1 // +1 a few lines down
anySymbolized = true
}
}
n++
}
if anySymbolized {
arg.pc = 0
callCgoSymbolizer(&arg)
}
return n
}
func printcreatedby(gp *g) {
// Show what created goroutine, except main goroutine (goid 1).
pc := gp.gopc
f := findfunc(pc)
if f.valid() && showframe(f, gp, false, funcID_normal, funcID_normal) && gp.goid != 1 {
printcreatedby1(f, pc)
}
}
func printcreatedby1(f funcInfo, pc uintptr) {
print("created by ", funcname(f), "\n")
tracepc := pc // back up to CALL instruction for funcline.
if pc > f.entry {
tracepc -= sys.PCQuantum
}
file, line := funcline(f, tracepc)
print("\t", file, ":", line)
if pc > f.entry {
print(" +", hex(pc-f.entry))
}
print("\n")
}
func traceback(pc, sp, lr uintptr, gp *g) {
traceback1(pc, sp, lr, gp, 0)
}
// tracebacktrap is like traceback but expects that the PC and SP were obtained
// from a trap, not from gp->sched or gp->syscallpc/gp->syscallsp or getcallerpc/getcallersp.
// Because they are from a trap instead of from a saved pair,
// the initial PC must not be rewound to the previous instruction.
// (All the saved pairs record a PC that is a return address, so we
// rewind it into the CALL instruction.)
// If gp.m.libcall{g,pc,sp} information is available, it uses that information in preference to
// the pc/sp/lr passed in.
func tracebacktrap(pc, sp, lr uintptr, gp *g) {
if gp.m.libcallsp != 0 {
// We're in C code somewhere, traceback from the saved position.
traceback1(gp.m.libcallpc, gp.m.libcallsp, 0, gp.m.libcallg.ptr(), 0)
return
}
traceback1(pc, sp, lr, gp, _TraceTrap)
}
func traceback1(pc, sp, lr uintptr, gp *g, flags uint) {
// If the goroutine is in cgo, and we have a cgo traceback, print that.
if iscgo && gp.m != nil && gp.m.ncgo > 0 && gp.syscallsp != 0 && gp.m.cgoCallers != nil && gp.m.cgoCallers[0] != 0 {
// Lock cgoCallers so that a signal handler won't
// change it, copy the array, reset it, unlock it.
// We are locked to the thread and are not running
// concurrently with a signal handler.
// We just have to stop a signal handler from interrupting
// in the middle of our copy.
atomic.Store(&gp.m.cgoCallersUse, 1)
cgoCallers := *gp.m.cgoCallers
gp.m.cgoCallers[0] = 0
atomic.Store(&gp.m.cgoCallersUse, 0)
printCgoTraceback(&cgoCallers)
}
var n int
if readgstatus(gp)&^_Gscan == _Gsyscall {
// Override registers if blocked in system call.
pc = gp.syscallpc
sp = gp.syscallsp
flags &^= _TraceTrap
}
// Print traceback. By default, omits runtime frames.
// If that means we print nothing at all, repeat forcing all frames printed.
n = gentraceback(pc, sp, lr, gp, 0, nil, _TracebackMaxFrames, nil, nil, flags)
if n == 0 && (flags&_TraceRuntimeFrames) == 0 {
n = gentraceback(pc, sp, lr, gp, 0, nil, _TracebackMaxFrames, nil, nil, flags|_TraceRuntimeFrames)
}
if n == _TracebackMaxFrames {
print("...additional frames elided...\n")
}
printcreatedby(gp)
if gp.ancestors == nil {
return
}
for _, ancestor := range *gp.ancestors {
printAncestorTraceback(ancestor)
}
}
// printAncestorTraceback prints the traceback of the given ancestor.
// TODO: Unify this with gentraceback and CallersFrames.
func printAncestorTraceback(ancestor ancestorInfo) {
print("[originating from goroutine ", ancestor.goid, "]:\n")
for fidx, pc := range ancestor.pcs {
f := findfunc(pc) // f previously validated
if showfuncinfo(f, fidx == 0, funcID_normal, funcID_normal) {
printAncestorTracebackFuncInfo(f, pc)
}
}
if len(ancestor.pcs) == _TracebackMaxFrames {
print("...additional frames elided...\n")
}
// Show what created goroutine, except main goroutine (goid 1).
f := findfunc(ancestor.gopc)
if f.valid() && showfuncinfo(f, false, funcID_normal, funcID_normal) && ancestor.goid != 1 {
printcreatedby1(f, ancestor.gopc)
}
}
// printAncestorTraceback prints the given function info at a given pc
// within an ancestor traceback. The precision of this info is reduced
// due to only have access to the pcs at the time of the caller
// goroutine being created.
func printAncestorTracebackFuncInfo(f funcInfo, pc uintptr) {
name := funcname(f)
if inldata := funcdata(f, _FUNCDATA_InlTree); inldata != nil {
inltree := (*[1 << 20]inlinedCall)(inldata)
ix := pcdatavalue(f, _PCDATA_InlTreeIndex, pc, nil)
if ix >= 0 {
name = funcnameFromNameoff(f, inltree[ix].func_)
}
}
file, line := funcline(f, pc)
if name == "runtime.gopanic" {
name = "panic"
}
print(name, "(...)\n")
print("\t", file, ":", line)
if pc > f.entry {
print(" +", hex(pc-f.entry))
}
print("\n")
}
func callers(skip int, pcbuf []uintptr) int {
sp := getcallersp()
pc := getcallerpc()
gp := getg()
var n int
systemstack(func() {
n = gentraceback(pc, sp, 0, gp, skip, &pcbuf[0], len(pcbuf), nil, nil, 0)
})
return n
}
func gcallers(gp *g, skip int, pcbuf []uintptr) int {
return gentraceback(^uintptr(0), ^uintptr(0), 0, gp, skip, &pcbuf[0], len(pcbuf), nil, nil, 0)
}
// showframe reports whether the frame with the given characteristics should
// be printed during a traceback.
func showframe(f funcInfo, gp *g, firstFrame bool, funcID, childID funcID) bool {
g := getg()
if g.m.throwing > 0 && gp != nil && (gp == g.m.curg || gp == g.m.caughtsig.ptr()) {
return true
}
return showfuncinfo(f, firstFrame, funcID, childID)
}
// showfuncinfo reports whether a function with the given characteristics should
// be printed during a traceback.
func showfuncinfo(f funcInfo, firstFrame bool, funcID, childID funcID) bool {
// Note that f may be a synthesized funcInfo for an inlined
// function, in which case only nameoff and funcID are set.
level, _, _ := gotraceback()
if level > 1 {
// Show all frames.
return true
}
if !f.valid() {
return false
}
if funcID == funcID_wrapper && elideWrapperCalling(childID) {
return false
}
name := funcname(f)
// Special case: always show runtime.gopanic frame
// in the middle of a stack trace, so that we can
// see the boundary between ordinary code and
// panic-induced deferred code.
// See golang.org/issue/5832.
if name == "runtime.gopanic" && !firstFrame {
return true
}
return bytealg.IndexByteString(name, '.') >= 0 && (!hasPrefix(name, "runtime.") || isExportedRuntime(name))
}
// isExportedRuntime reports whether name is an exported runtime function.
// It is only for runtime functions, so ASCII A-Z is fine.
func isExportedRuntime(name string) bool {
const n = len("runtime.")
return len(name) > n && name[:n] == "runtime." && 'A' <= name[n] && name[n] <= 'Z'
}
// elideWrapperCalling reports whether a wrapper function that called
// function id should be elided from stack traces.
func elideWrapperCalling(id funcID) bool {
// If the wrapper called a panic function instead of the
// wrapped function, we want to include it in stacks.
return !(id == funcID_gopanic || id == funcID_sigpanic || id == funcID_panicwrap)
}
var gStatusStrings = [...]string{
_Gidle: "idle",
_Grunnable: "runnable",
_Grunning: "running",
_Gsyscall: "syscall",
_Gwaiting: "waiting",
_Gdead: "dead",
_Gcopystack: "copystack",
_Gpreempted: "preempted",
}
func goroutineheader(gp *g) {
gpstatus := readgstatus(gp)
isScan := gpstatus&_Gscan != 0
gpstatus &^= _Gscan // drop the scan bit
// Basic string status
var status string
if 0 <= gpstatus && gpstatus < uint32(len(gStatusStrings)) {
status = gStatusStrings[gpstatus]
} else {
status = "???"
}
// Override.
if gpstatus == _Gwaiting && gp.waitreason != waitReasonZero {
status = gp.waitreason.String()
}
// approx time the G is blocked, in minutes
var waitfor int64
if (gpstatus == _Gwaiting || gpstatus == _Gsyscall) && gp.waitsince != 0 {
waitfor = (nanotime() - gp.waitsince) / 60e9
}
print("goroutine ", gp.goid, " [", status)
if isScan {
print(" (scan)")
}
if waitfor >= 1 {
print(", ", waitfor, " minutes")
}
if gp.lockedm != 0 {
print(", locked to thread")
}
print("]:\n")
}
func tracebackothers(me *g) {
level, _, _ := gotraceback()
// Show the current goroutine first, if we haven't already.
curgp := getg().m.curg
if curgp != nil && curgp != me {
print("\n")
goroutineheader(curgp)
traceback(^uintptr(0), ^uintptr(0), 0, curgp)
}
// We can't take allglock here because this may be during fatal
// throw/panic, where locking allglock could be out-of-order or a
// direct deadlock.
//
// Instead, use atomic access to allgs which requires no locking. We
// don't lock against concurrent creation of new Gs, but even with
// allglock we may miss Gs created after this loop.
ptr, length := atomicAllG()
for i := uintptr(0); i < length; i++ {
gp := atomicAllGIndex(ptr, i)
if gp == me || gp == curgp || readgstatus(gp) == _Gdead || isSystemGoroutine(gp, false) && level < 2 {
continue
}
print("\n")
goroutineheader(gp)
// Note: gp.m == g.m occurs when tracebackothers is
// called from a signal handler initiated during a
// systemstack call. The original G is still in the
// running state, and we want to print its stack.
if gp.m != getg().m && readgstatus(gp)&^_Gscan == _Grunning {
print("\tgoroutine running on other thread; stack unavailable\n")
printcreatedby(gp)
} else {
traceback(^uintptr(0), ^uintptr(0), 0, gp)
}
}
}
// tracebackHexdump hexdumps part of stk around frame.sp and frame.fp
// for debugging purposes. If the address bad is included in the
// hexdumped range, it will mark it as well.
func tracebackHexdump(stk stack, frame *stkframe, bad uintptr) {
const expand = 32 * sys.PtrSize
const maxExpand = 256 * sys.PtrSize
// Start around frame.sp.
lo, hi := frame.sp, frame.sp
// Expand to include frame.fp.
if frame.fp != 0 && frame.fp < lo {
lo = frame.fp
}
if frame.fp != 0 && frame.fp > hi {
hi = frame.fp
}
// Expand a bit more.
lo, hi = lo-expand, hi+expand
// But don't go too far from frame.sp.
if lo < frame.sp-maxExpand {
lo = frame.sp - maxExpand
}
if hi > frame.sp+maxExpand {
hi = frame.sp + maxExpand
}
// And don't go outside the stack bounds.
if lo < stk.lo {
lo = stk.lo
}
if hi > stk.hi {
hi = stk.hi
}
// Print the hex dump.
print("stack: frame={sp:", hex(frame.sp), ", fp:", hex(frame.fp), "} stack=[", hex(stk.lo), ",", hex(stk.hi), ")\n")
hexdumpWords(lo, hi, func(p uintptr) byte {
switch p {
case frame.fp:
return '>'
case frame.sp:
return '<'
case bad:
return '!'
}
return 0
})
}
// Does f mark the top of a goroutine stack?
func topofstack(f funcInfo, g0 bool) bool {
return f.funcID == funcID_goexit ||
f.funcID == funcID_mstart ||
f.funcID == funcID_mcall ||
f.funcID == funcID_morestack ||
f.funcID == funcID_rt0_go ||
f.funcID == funcID_externalthreadhandler ||
// asmcgocall is TOS on the system stack because it
// switches to the system stack, but in this case we
// can come back to the regular stack and still want
// to be able to unwind through the call that appeared
// on the regular stack.
(g0 && f.funcID == funcID_asmcgocall)
}
// isSystemGoroutine reports whether the goroutine g must be omitted
// in stack dumps and deadlock detector. This is any goroutine that
// starts at a runtime.* entry point, except for runtime.main,
// runtime.handleAsyncEvent (wasm only) and sometimes runtime.runfinq.
//
// If fixed is true, any goroutine that can vary between user and
// system (that is, the finalizer goroutine) is considered a user
// goroutine.
func isSystemGoroutine(gp *g, fixed bool) bool {
// Keep this in sync with cmd/trace/trace.go:isSystemGoroutine.
f := findfunc(gp.startpc)
if !f.valid() {
return false
}
if f.funcID == funcID_runtime_main || f.funcID == funcID_handleAsyncEvent {
return false
}
if f.funcID == funcID_runfinq {
// We include the finalizer goroutine if it's calling
// back into user code.
if fixed {
// This goroutine can vary. In fixed mode,
// always consider it a user goroutine.
return false
}
return !fingRunning
}
return hasPrefix(funcname(f), "runtime.")
}
// SetCgoTraceback records three C functions to use to gather
// traceback information from C code and to convert that traceback
// information into symbolic information. These are used when printing
// stack traces for a program that uses cgo.
//
// The traceback and context functions may be called from a signal
// handler, and must therefore use only async-signal safe functions.
// The symbolizer function may be called while the program is
// crashing, and so must be cautious about using memory. None of the
// functions may call back into Go.
//
// The context function will be called with a single argument, a
// pointer to a struct:
//
// struct {
// Context uintptr
// }
//
// In C syntax, this struct will be
//
// struct {
// uintptr_t Context;
// };
//
// If the Context field is 0, the context function is being called to
// record the current traceback context. It should record in the
// Context field whatever information is needed about the current
// point of execution to later produce a stack trace, probably the
// stack pointer and PC. In this case the context function will be
// called from C code.
//
// If the Context field is not 0, then it is a value returned by a
// previous call to the context function. This case is called when the
// context is no longer needed; that is, when the Go code is returning
// to its C code caller. This permits the context function to release
// any associated resources.
//
// While it would be correct for the context function to record a
// complete a stack trace whenever it is called, and simply copy that
// out in the traceback function, in a typical program the context
// function will be called many times without ever recording a
// traceback for that context. Recording a complete stack trace in a
// call to the context function is likely to be inefficient.
//
// The traceback function will be called with a single argument, a
// pointer to a struct:
//
// struct {
// Context uintptr
// SigContext uintptr
// Buf *uintptr
// Max uintptr
// }
//
// In C syntax, this struct will be
//
// struct {
// uintptr_t Context;
// uintptr_t SigContext;
// uintptr_t* Buf;
// uintptr_t Max;
// };
//
// The Context field will be zero to gather a traceback from the
// current program execution point. In this case, the traceback
// function will be called from C code.
//
// Otherwise Context will be a value previously returned by a call to
// the context function. The traceback function should gather a stack
// trace from that saved point in the program execution. The traceback
// function may be called from an execution thread other than the one
// that recorded the context, but only when the context is known to be
// valid and unchanging. The traceback function may also be called
// deeper in the call stack on the same thread that recorded the
// context. The traceback function may be called multiple times with
// the same Context value; it will usually be appropriate to cache the
// result, if possible, the first time this is called for a specific
// context value.
//
// If the traceback function is called from a signal handler on a Unix
// system, SigContext will be the signal context argument passed to
// the signal handler (a C ucontext_t* cast to uintptr_t). This may be
// used to start tracing at the point where the signal occurred. If
// the traceback function is not called from a signal handler,
// SigContext will be zero.
//
// Buf is where the traceback information should be stored. It should
// be PC values, such that Buf[0] is the PC of the caller, Buf[1] is
// the PC of that function's caller, and so on. Max is the maximum
// number of entries to store. The function should store a zero to
// indicate the top of the stack, or that the caller is on a different
// stack, presumably a Go stack.
//
// Unlike runtime.Callers, the PC values returned should, when passed
// to the symbolizer function, return the file/line of the call
// instruction. No additional subtraction is required or appropriate.
//
// On all platforms, the traceback function is invoked when a call from
// Go to C to Go requests a stack trace. On linux/amd64, linux/ppc64le,
// and freebsd/amd64, the traceback function is also invoked when a
// signal is received by a thread that is executing a cgo call. The
// traceback function should not make assumptions about when it is
// called, as future versions of Go may make additional calls.
//
// The symbolizer function will be called with a single argument, a
// pointer to a struct:
//
// struct {
// PC uintptr // program counter to fetch information for
// File *byte // file name (NUL terminated)
// Lineno uintptr // line number
// Func *byte // function name (NUL terminated)
// Entry uintptr // function entry point
// More uintptr // set non-zero if more info for this PC
// Data uintptr // unused by runtime, available for function
// }
//
// In C syntax, this struct will be
//
// struct {
// uintptr_t PC;
// char* File;
// uintptr_t Lineno;
// char* Func;
// uintptr_t Entry;
// uintptr_t More;
// uintptr_t Data;
// };
//
// The PC field will be a value returned by a call to the traceback
// function.
//
// The first time the function is called for a particular traceback,
// all the fields except PC will be 0. The function should fill in the
// other fields if possible, setting them to 0/nil if the information
// is not available. The Data field may be used to store any useful
// information across calls. The More field should be set to non-zero
// if there is more information for this PC, zero otherwise. If More
// is set non-zero, the function will be called again with the same
// PC, and may return different information (this is intended for use
// with inlined functions). If More is zero, the function will be
// called with the next PC value in the traceback. When the traceback
// is complete, the function will be called once more with PC set to
// zero; this may be used to free any information. Each call will
// leave the fields of the struct set to the same values they had upon
// return, except for the PC field when the More field is zero. The
// function must not keep a copy of the struct pointer between calls.
//
// When calling SetCgoTraceback, the version argument is the version
// number of the structs that the functions expect to receive.
// Currently this must be zero.
//
// The symbolizer function may be nil, in which case the results of
// the traceback function will be displayed as numbers. If the
// traceback function is nil, the symbolizer function will never be
// called. The context function may be nil, in which case the
// traceback function will only be called with the context field set
// to zero. If the context function is nil, then calls from Go to C
// to Go will not show a traceback for the C portion of the call stack.
//
// SetCgoTraceback should be called only once, ideally from an init function.
func SetCgoTraceback(version int, traceback, context, symbolizer unsafe.Pointer) {
if version != 0 {
panic("unsupported version")
}
if cgoTraceback != nil && cgoTraceback != traceback ||
cgoContext != nil && cgoContext != context ||
cgoSymbolizer != nil && cgoSymbolizer != symbolizer {
panic("call SetCgoTraceback only once")
}
cgoTraceback = traceback
cgoContext = context
cgoSymbolizer = symbolizer
// The context function is called when a C function calls a Go
// function. As such it is only called by C code in runtime/cgo.
if _cgo_set_context_function != nil {
cgocall(_cgo_set_context_function, context)
}
}
var cgoTraceback unsafe.Pointer
var cgoContext unsafe.Pointer
var cgoSymbolizer unsafe.Pointer
// cgoTracebackArg is the type passed to cgoTraceback.
type cgoTracebackArg struct {
context uintptr
sigContext uintptr
buf *uintptr
max uintptr
}
// cgoContextArg is the type passed to the context function.
type cgoContextArg struct {
context uintptr
}
// cgoSymbolizerArg is the type passed to cgoSymbolizer.
type cgoSymbolizerArg struct {
pc uintptr
file *byte
lineno uintptr
funcName *byte
entry uintptr
more uintptr
data uintptr
}
// cgoTraceback prints a traceback of callers.
func printCgoTraceback(callers *cgoCallers) {
if cgoSymbolizer == nil {
for _, c := range callers {
if c == 0 {
break
}
print("non-Go function at pc=", hex(c), "\n")
}
return
}
var arg cgoSymbolizerArg
for _, c := range callers {
if c == 0 {
break
}
printOneCgoTraceback(c, 0x7fffffff, &arg)
}
arg.pc = 0
callCgoSymbolizer(&arg)
}
// printOneCgoTraceback prints the traceback of a single cgo caller.
// This can print more than one line because of inlining.
// Returns the number of frames printed.
func printOneCgoTraceback(pc uintptr, max int, arg *cgoSymbolizerArg) int {
c := 0
arg.pc = pc
for c <= max {
callCgoSymbolizer(arg)
if arg.funcName != nil {
// Note that we don't print any argument
// information here, not even parentheses.
// The symbolizer must add that if appropriate.
println(gostringnocopy(arg.funcName))
} else {
println("non-Go function")
}
print("\t")
if arg.file != nil {
print(gostringnocopy(arg.file), ":", arg.lineno, " ")
}
print("pc=", hex(pc), "\n")
c++
if arg.more == 0 {
break
}
}
return c
}
// callCgoSymbolizer calls the cgoSymbolizer function.
func callCgoSymbolizer(arg *cgoSymbolizerArg) {
call := cgocall
if panicking > 0 || getg().m.curg != getg() {
// We do not want to call into the scheduler when panicking
// or when on the system stack.
call = asmcgocall
}
if msanenabled {
msanwrite(unsafe.Pointer(arg), unsafe.Sizeof(cgoSymbolizerArg{}))
}
call(cgoSymbolizer, noescape(unsafe.Pointer(arg)))
}
// cgoContextPCs gets the PC values from a cgo traceback.
func cgoContextPCs(ctxt uintptr, buf []uintptr) {
if cgoTraceback == nil {
return
}
call := cgocall
if panicking > 0 || getg().m.curg != getg() {
// We do not want to call into the scheduler when panicking
// or when on the system stack.
call = asmcgocall
}
arg := cgoTracebackArg{
context: ctxt,
buf: (*uintptr)(noescape(unsafe.Pointer(&buf[0]))),
max: uintptr(len(buf)),
}
if msanenabled {
msanwrite(unsafe.Pointer(&arg), unsafe.Sizeof(arg))
}
call(cgoTraceback, noescape(unsafe.Pointer(&arg)))
}
|